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Abstract: Acne detection, utilizing prior knowledge to diagnose acne severity, number or position
through facial images, plays a very important role in medical diagnoses and treatment for patients
with skin problems. Recently, deep learning algorithms were introduced in acne detection to improve
detection precision. However, it remains challenging to diagnose acne based on the facial images of
patients due to the complex context and special application scenarios. Here, we provide an ensemble
neural network composed of two modules: (1) a classification module aiming to calculate the acne
severity and number; (2) a localization module aiming to calculate the detection boxes. This ensemble
model could precisely predict the acne severity, number, and position simultaneously, and could be
an effective tool to help the patient self-test and assist the doctor in the diagnosis.
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1. Introduction

Computer vision [1,2] is a simulation of biological vision by utilizing the computer and
relevant equipment. The core aim is to extract the desired information from the target pic-
tures and videos. With the rapid development of deep learning technology, the knotty tasks
in computer vision can be resolved with high precision by utilizing novel algorithms [3–6],
such as convolutional neural networks, long short-term memory networks, recurrent neural
networks, etc. Various network architectures (e.g., AlexNet, VGGNet, ResNet, MobileNet,
etc.) have been proposed to “read” the pictures and are widely used as the backbone in
diverse applications of computer vision. Usually, depending on the different application
scenarios, computer vision can be roughly divided into three subfields, i.e., visual recogni-
tion, visual tracking, and image restoration. Visual recognition [7–19], one of the hottest
research fields among them, has been widely concerned due to its significant applications in
our daily life. Wu et al. divided the recognition problems into four fundamental tasks [16]
(i.e., image classification, object detection, instance segmentation and semantic segmenta-
tion) based on their various mission content. Chai et al. introduced their applications in
different scenarios in detail [1]. Even more to the point, visual recognition can not only
be used in traditional computer vision tasks, such as image restoration [20–22], image
stitching [23–25] and face recognition [26–28], but also shows significant applications in
various engineering fields, including material analyses [29–31], material synthesis [32–34],
metamaterial design [35–37], etc.

Considering their good capabilities of extracting information from pictures, the tech-
nologies of visual recognition have also been used in healthcare to help doctors diagnose
diseases, especially skin diseases whose visual representations are easier to spot. Since skin
health can be easily affected by the living environment and lifestyle, people who live with
unhealthy habits (e.g., smoking, excessive sun exposure, sleeping in a humid environment)
are more prone to skin problems. Note that although the probability of skin diseases is not
related to regions and ages, skin diseases [38–43] are one of the common human diseases
and cause many people anxiety and depression. However, diagnosing a skin disease is
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very challenging and depends highly on the experience of dermatologists. Many patients
cannot even get a professional diagnosis due to the shortage of dermatologists. As we all
know, timely and accurate diagnosis is significant for treating skin diseases. By utilizing
deep learning and computer vision, more patients could get instant assessment and proper
treatment. For example, Liu et al. put forward a deep learning system to assist general
practitioners in diagnosing skin conditions [40]. Srinivasu et al. combined the MobileNet
V2 and LSTM to classify skin disease and the proposed model shows better performance in
tumor classification and progress analysis [42].

This paper investigates how to use deep learning to diagnose facial acne, a common
skin disease. The occurrence of acne is closely related to excessive sebum secretion, blockage
of the sebaceous duct, bacterial infection and inflammatory reaction. Since there are many
types of facial acne, it is quite challenging to design an expert system to diagnose all these
types of facial acne. As a preliminary work on computer-aided diagnoses of facial acne,
we aim to evaluate the severity and locate the acne according to the facial images. In this
paper, we propose an ensemble model to assess the acne severity, numbers and positions of
the facial images simultaneously in the inference. Compared with the previous research
regarding acne detection through neural networks: (1) we improve the prediction accuracy
in the number and severity of face acne by dataset reclassification and random sampling;
(2) we introduce a localization module to predict the location of facial acne. Guided by the
extracted features in the classification modules, the model here could precisely calculate
the acne position, while previously reported models can hardly predict the acne severity,
number and location simultaneously.

2. Related Work

In this section, we will introduce several representative studies about the diagnoses of
facial acne through deep learning.

2.1. Acne Grading

Acne grading [44–50], a specific application of image classification, aims to estimate
the severity of facial acne based on facial images. Previous works mainly take the acne
severity as the label and use neural networks to classify the severity. Specifically, Shen et al.
utilized two classifiers (i.e., binary classifier and septenary classifier) to diagnose facial
acne automatically [48]. They divided acne into seven categories, including papule, cyst,
blackhead, normal skin, pustule, whitehead and nodule. The binary classifier could
distinguish whether the image consists of skin patches based on the features extracted by
the pertained VGG16. The septenary classifier has a similar network structure to the binary
classifier and could output the probability of each acne class. In 2019, Zhao et al. developed
a lightweight model to assess the acne severity of selfie images taken by mobile phones,
greatly reducing the requirements for image resolution. They divided each face image
into four skin patches, corresponding to the forehead, right cheek, left cheek and chin by
utilizing OpenCV and adopted a new image rolling augmentation approach to improve the
spatial sensitivity of CNN models. Similarly, Yang et al. split the clinical images into four
regions and constructed a deep learning model to assess the acne severity of each clinical
image [45].

Note that the above models need complex image preprocessing, including dividing
the whole face region into several regular subregions according to the features in the
images. Researchers also use the whole image as the input to simplify the evaluation
process. In 2019, Lim et al. developed an automatic system to calculate the Investigator’s
Global Assessment (i.e., IGA) scale [49], a criterion for measuring acne severity. In the
IGA scale, there are a total of five levels from 0 to 4, corresponding to clear, almost clear,
mild, moderate and severe, respectively. Due to the limited numbers of training images,
the authors simplified the five levels into three groups (i.e., 0–1, 2, 3–4) and used data
augmentation (i.e., cropping, contrast adjustment, intensity scaling and shifting/scaling) to
generate images similar to the real image. The total number of training images increases
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to more than 6000, about 20 times that of the original. As for the network architectures,
the authors adopted three high-performing convolution neural networks (i.e., DenseNet,
Inception v4 and ResNet18), and all are trained separately from scratch on three image
sizes. They concluded that the Inception v4 model outperforms the other two models and
the best classification accuracy is 67%. To solve the problem of insufficient training data,
Wu et al. collected a new dataset ACNE04, which provided the annotations of acne severity
and the bounding boxes of lesions [47]. Specifically, the severity was graded by expert
dermatologists based on the photograph of half of the face. All of the photographs were
taken following the Hayashi grading criterion [51], and taken at an approximate 70-degree
angle from the front of the patient. Then, the expert dermatologists manually counted the
amount of acne and marked the location of the acne by rectangle boxes. Typically, the acne
appeared as a cone, and each “cone” was labeled by a rectangle box, with the apex of the
cone approximately in the center of the box. The mark boxes would overlap if some acne
was very near to each other. Finally, the amount of acne was counted and the facial images
were classified into different acne severities based on the Hayashi grading criterion (i.e.,
0–5 for mild, 6–20 for moderate, 21–25 for severe and more than 50 for very severe in half of
the face) [51] Different from the previous single-label learning in acne grading, the authors
used the Gaussian function to convert each label value into a Gaussian distribution, where
the peak was just at the label value. The label distribution of each image can be taken as the
probability distribution of the labels after normalization. Firstly, the resized facial image
was encoded into a feature vector via ResNet-50. Then, two regression layers were added
to calculate the label (i.e., lesion numbers and acne severity) distribution of the image. Note
that the acne severity depends on the number of lesions; the severity distribution can also
be calculated through the softmax operation. Lastly, KL loss is adopted to calculate the loss
of the three outputs. To further improve the prediction accuracy in acne severity, Liu et al.
proposed a novel ensemble classification framework (i.e., AcneGrader) to classify the acne
severity [52]. They utilized the results of various base models as the new feature set, and a
customized classifier was then utilized to calculate the acne severity based on the ensemble
features. Compared with the previous acne grading method, this model showed a higher
performance (e.g., prediction accuracy > 85%) and was able to provide accurate diagnoses
for patients.

2.2. Acne Detection

To locate acne in facial images to assist the doctor in diagnosis, Rashataprucksa et al.
utilized Faster-RCNN and R-FCN to train an acne detection model [44]. Precision, recall
and mean average precision are utilized to measure the performance of the models. They
concluded that R-FCN performed reasonably well with an mAP of up to 28.3%. Similarly,
Sangha et al. used the model YOLOv5, which has been pre-trained on the COCO dataset
and fine-tune the model on the publicly available dataset ACNE04. The model has good
performance in single-class (i.e., acne) detection while showing relative poor performance
in multi-class (i.e., severity levels from 1 to 4) detection. Inconsistent illumination, variation
in scales and high-density distribution would also bring great challenges to the high-
precision acne detection. Min et al. proposed a novel acne detection network named ACNet
and achieved prior performance on the ACNE04 dataset [50]. Specifically, the ACNet is
composed of Composite Feature Refinement, Dynamic Context Enhancement and Mask-
Aware Multi-Attention. The Composite Feature Refinement is composed of two backbone
architectures and three feature refinement modules which connect these two backbones at
three different levels, such that it could effectively extract the features in the images. The
Dynamic Context Enhancement is composed of a feature resizing module and dynamic
feature fusion module. It utilizes the multi-scale feature maps from Composite Feature
Refinement to remove the scale variation. The Mask-Aware Multi-Attention is composed
of a streamlined inception network, mask attention block and context attention block. This
part could detect the acne of various sizes by reducing the excessive noise. Compared with
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previous networks [44] proposed by Rashataprucksa et al, this model shows better acne
detection performance (mAP: 20.5) on the ACNE04 dataset.

3. Materials and Methods

Inspired by the previous work on acne grading and detection, we propose an ensemble
network (Figure 1) to assess the acne severity and number (i.e., classification module)
and to localize the ance position (i.e., localization module) based on the public dataset
ACNE04. The following subsections introduce the dataset, network architectures and
relevant operations.

Figure 1. Network architecture of the ensemble neural networks. The ensemble model consists of
two submodules, responsible for the severity classification and acne localization. The backbones of
the classification and localization module are ResNet50 and YOLOv5, respectively. The end of the
classification module connects the localization module, so that the accuracy of acne detection can be
improved through combinatorial inference.

3.1. Data Preparation

ACNE04 [47] is a public dataset on facial acne collected by Wu et al., in total providing
1457 facial images of various sizes as well as the corresponding acne severity and number



Sensors 2022, 22, 6828 5 of 16

of each image. Additionally, each lesson in the image is marked with a rectangular box by
professional dermatologists with a rectangular box. Figure 2 provides the detailed data
distribution of the ACNE04 dataset. The maximum acne number in each image is 65, while
the minimum number is 1. However, the sample distribution in the dataset is very uneven.
For example, a large number of samples gather in the categories with lower acne number
(e.g., <10), while there are few samples with acne number from 40 to 50. Specifically, in
the categories with acne number 1 and 2, the number of images can reach more than 160.
Among these 65 categories, there are only four categories where the number of images is
more than 100. In the categories with acne number from 43 to 50, there are only one/two
images in each category. The highest difference in the acne number between different
categories is more than 160 times, greatly improving the difficulty of model training and
evaluation. Inspired by Wu et al. [47], we reclassified the severity classification into three
classes to deal with the problem of small sample numbers in the category of high acne
numbers. Specifically, when the acne number in an image are between 1 and 5 (including
1 and 5), we set the severity as “mild”; when the acne number is greater than 5 but not
greater than 20, we set the severity as “moderate”; when the acne number is greater than
20, we set the severity as “severe”. As shown in the right panel of Figure 2, the second class
has the most facial images, while the third class has the least, and the quantity ratio among
them is below 2.

Figure 2. Data distribution in the ACNE04 dataset. There are 1457 images in total and the acne
numbers in each image range from 1 to 65.

Note that predicting the acne number in each image is one of the three tasks (i.e.,
predicting the acne severity, number and position) in the ensemble model. Thus, smoothing
the sample distributions under different acne numbers is very important to the model
training. Specifically, we fix the image number (i.e., N) in each category. Then, we randomly
choose N images in the categories with a large sample size (i.e., >N), and duplicate the
images in the categories with a small sample size (i.e., <N). It is worth mentioning that
resize operation and normalization are applied to the input images to meet the requirement
of the network input.

3.2. Classification Module

Each patient can only correspond to one category, that is, each facial image has its
category of acne number/severity. In addition to the acne characteristics, the facial images
also contain lots of other characteristics, such as face contours, color, brightness, etc. Since
these contexts show a great difference between patients, the classification of facial acne
images is a computer-vision task with quantities of redundant information. We need
to use a deep neural network to eliminate the useless face features and extract the key
acne features. Furthermore, to address the vanishing gradient problem during training,
we adopt ResNet50 with skip connections as the backbone. Meanwhile, we utilize the
bottleneck structure to reduce the feature channels, thus decreasing the parameters amount
in the model.
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As shown in the red boxes in Figure 1, the backbone of the classification module is
ResNet50. Specifically, in this model, a large convolution kernel with the size of 7× 7 is
utilized to downsample the input images while preserving the original image information
as much as possible, and the channels of the input images increase to 64. Then, a max pool
is adopted to remove the redundant information. The preprocessed image information is
decoded by four modified bottleneck blocks. Each block is composed of three convolution
layers. Next, we utilize the average pool to smooth the extracted features and express them
as vectors. Lastly, we apply two linear transforms to the feature vectors and output the
prediction of acne severities and numbers. Note that batch normalization and ReLU opera-
tors are added after each convolutional layer. The main architecture of the classification
module is shown in the left panel of Figure 1. The inputs are the images of the patient’s side
face and no extra pre-processing is needed. Different from Wu et al. [47], we adopt three
different levels (i.e., mild, moderate and severe) to describe the acne severity according to
the acne numbers in each image.

The design and selection of loss functions plays a critical role in training neural
network. Here, we try several different loss functions and analyze their influence on the
model training in detail.

(1) Considering that the main task here is to calculate the acne severity and number, we
adopt a cross-entropy loss function, which is very useful when training a classification
problem with several classes. The loss function can be written as:

lossCEL = − 1
N

N

∑
i=1

M

∑
j=1

wjyij, (1)

where N denotes the total image numbers and M denotes the total class numbers (i.e.,
4 and 65 for severity and number, respectively). Coefficient wj is a rescaling weight
given to each category and is particularly useful when the data distribution is very
uneven. Characters xij and yij denote the calculated and true probability that the
image i belongs to category j, respectively. Typically, yij is a Kronecker-like function
and can be written as:

yi,j =

{
1, if image i in category j;
0, if not.

. (2)

(2) Although the number of images in different severity classes is similar, the sample
size varies widely in the categories with different acne numbers. Focal loss [53], a
loss function aiming to handle the problem of category imbalance, would be helpful
for the prediction of acne numbers. Similar to the cross-entropy loss, focal loss tries
to make the model pay more attention to the samples, which are hard to classify by
changing the sample weights. Furthermore, the function expression can be written as:

lossFL = − 1
N

N

∑
i=1

M

∑
j=1

wj(1− xij)
αyij log xij, (3)

where α is a manual parameter named the focusing parameter, which is not smaller
than 0. Different from the cross-entropy loss, the additional coefficient (1− xij)

α,
named the modulating factor, could effectively reduce the loss contribution from the
samples which are easy to classify. Note that when α is equal to zero, the focal loss
will degenerate to the cross-entropy loss. Specifically, when image i does not belong to
categories j, xij would be small while the modulating factor is close to 1, showing little
influence on the loss. On the contrary, if the image is well classified, xij would be close
to 1, and the modulating factor becomes very small. By tuning the hyperparameters
wj and α, we can optimize the training process of the model.
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(3) Another common strategy is to transform this classification problem into a regres-
sion problem. Inspired by label distribution learning [54–62], Wu et al. introduced
Kullback–Leibler divergence loss to train the ResNet50 [47]. The general expression
of the loss function can be written as:

lossKLDL = − 1
N

N

∑
i=1

yi · (log yi − xi), (4)

where xi and yj are calculated and predicted continuous probability distribution of
the image category. Note that the Kullback–Leibler divergence loss can be taken as a
variant of the traditional cross-entropy loss. For example, if the probability is strictly
set to zero when image i does not belong to category j, probability distribution yj
would become a one-hot vector. We adopt the Normal distribution to generate the
label distribution, and the expression can be written as:

f (x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
, (5)

where the expectation µ is the true category number and the standard deviation σ is
set to 3.

3.3. Localization Module

Compared with the classical task of image detection, acne detection in the facial
images is a tough detection task, where feature boundaries between different categories are
unclear. Specifically, for two images with adjacent acne numbers, they show similar acne
characteristics, though they have different facial appearances. These acne characteristics
are very small compared with face contours, and can easily be overwhelmed by those
large features. It is quite difficult to localize small features with high similarity in different
backgrounds. In this paper, we adopt YOLOv5 as the backbone of the localization module.
The Focus structure in the backbone would improve the receptive fields and ensure no
missing context. The CSP structure (i.e., Cross Stage Partial) could deal with the problem
of gradient vanishing during extracting the deep features in the facial images. The SPP (i.e.,
Spatial Pyramid Pooling) structures could improve the capability of detecting tiny objects.

The operation process of the localization module is demonstrated in the right panel of
Figure 1. The inputs are the facial images from different patients, while the outputs are the
detection boxes of the acne in the images. We adopt YOLOv5 (blue box in Figure 1) as the
backbone of the localization module. Specifically, the architecture of YOLOv5 is composed
of four types of convolutional blocks, including Focus block, Conv block, C3 block and SPP
block. Firstly, the input images are downsampled by Focus block with increased image
channels, so that the image could be resized without loss of information. Then, deeper
features are extracted by a series of Conv blocks and C3 blocks. The Conv block consists
of a 2D convolutional operator, a batch normalization operator, and a SiLU operator. The
C3 block consists of three Conv blocks and several Bottleneck blocks. The SPP (i.e., Spatial
Pyramid Pooling) block is inserted in the middle of the architecture to fuse the multiple
receptive fields generated by several max-pooling operators. Lastly, the outputs, generated
by three different C3 blocks, are three feature matrixes with different sizes. Traditionally, a
non-max suppression algorithm is utilized to analyze the three outputs and calculate the
detection boxes according to the preset confidence. In this work, we utilize the output of
ResNet50 to guide the calculation of bounding boxes, improving the prediction accuracy of
YOLOv5 to the detection boxes.

On the contrary, we add two full connection (i.e., FC) layers at the end of YOLOv5
to calculate the acne severity and number. The architecture is similar to the Linear 1
and 2 blocks in the classification module. Kullback–Leibler divergence loss is adopted
to optimize the two blocks. Here, there are two different strategies to train the YOLOv5
and the subsequent classification blocks: (1) Train the YOLOv5 first, and then train the
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two classification blocks. The output of the trained YOLOv5 is utilized as the input of the
two classification blocks. (2) Train the YOLOv5 and two classification blocks simultaneously.
The loss of the two classification blocks is added to the loss of YOLOv5, and the total loss
function can be written as:

losstotal = αlossYOLOv5 + βlossclassi f ication, (6)

where the characters α and β denote the manual coefficients of the losses of the two parts.
Specifically, the total loss is composed of two parts, including the loss of the YOLOv5
backbone and classification block, respectively. By adding the two classification blocks
into the YOLOv5 backbones, we aim to enable the module to do the acne classification
as well as the acne localization simultaneously. Different from method 1, where the two
blocks are trained sequentially, a multi-task learning strategy should be adopted to train
the modules in method 2. As we all know, different losses guide the model to focus on
a different context in the images during training. The localization loss lossYOLOv5 here
would explore the local geometrical information of each acne, while the classification loss
lossclassi f ication would force the model to focus more on the global distribution of the acne.
Typically, we set the parameters α and β as 0.5 because we want the module could do both
equally well in classifying the severity and detecting the acne positions.

4. Results

In this section, we first introduce the training parameters and evaluation metrics of the
two modules, then detail the inference performance of the classification and localization
module discussed in Section 3. Finally, we demonstrate the good performance of the
ensemble model in predicting the acne severity, number and position simultaneously.

4.1. Training and Evaluation

We train the two neural networks on a single NVIDIA Tesla P100 based on the PyTorch
framework. For the classification module, we choose Stochastic Gradient Descent (SGD)
with the mini-batch of 32 as the model optimizer. The initial learning rate is set to 0.001
and reduced to half every 30 epochs until it reaches 120 epochs. The momentum and
weight decay are 0.9 and 5× 10−4, respectively. The input images are resized to 224× 224
and normalized by the pre-computed mean and standard deviations. For the localization
module, by utilizing the pre-trained YOLOv5 on the COCO datatset, we fine-tune the
model with the Adam optimizer and the mini-batch of 32. We set the initial learning rate to
0.0032 and apply a linear attenuation scaling factor from 1 to 0.12 as the epoch increases
from 1 to 120. The momentum and weight decay are 0.843 and 3.6× 10−4, respectively.
Here, the dataset ACNE04 with 1457 images is split into two parts for training (i.e., 80%)
and testing (i.e., 20%). Considering that the main purpose here is to predict the acne
severity, acne number and acne locations, we select the prediction accuracy and root mean
squared error (i.e., RMSE) as the evaluation metrics.

4.2. Analyses of Classification and Localization Modules

As discussed in Section 3.2, three different loss functions are adopted to optimize
the classification module. Table 1 shows the prediction accuracy of the module trained
with cross-entropy loss. Specifically, accuracy_severity and accuracy_number denote the
prediction accuracy of the module on the acne severity and number, respectively, and
RMSE_count denotes the root mean squared error of the predicted and true acne number.
In case 1, we set the rescaling weight wj as the constant (i.e., 1). The module shows high
accuracy in predicting the acne severity, while the prediction accuracy of the acne number
is very low (<10%), leading to a high RMSE. The main reason is that the distribution of
training samples at various acne severity is more uniform than that at acne numbers. In
case 2, we consider the imbalance of data distribution and set the weight wj as nj, the image
numbers in category j. The precisions on predicting acne severity and number are increased
by about 5% and 250%, respectively. However, the module performance is still far from
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meeting the medical requirement. Table 2 shows the inference result of the classification
module trained with focal loss. In all six cases, the focusing parameter α is 2, inspired
by Lin et al. Similar to the two cases in Table 1, we adopt 1 and nj as the weight wj in
cases 1 and 2, respectively. In cases 3 and 4, we apply normalization and standardization
operation on the manual rescaling weight to reduce the influence of the absolute value of
the coefficient on the training. Specifically, normalization is to constrain all values in the
sequence to be between 0 and 1 by using the following equation:

w
′
j =

wj − wmin

wmax − wmin
(7)

where wmin and wmax denote the minimum and maximum value in the coefficient wj,
respectively. For standardization, the mean and standard deviation of the sequence are
used to rescale the sequence:

w
′
j =

wj − wmean

wstd
(8)

where wmean and wstd denote the mean and standard deviation of the coefficient wj. Based
on case 3, we additionally require that the sum of all coefficients wj should be 1 to prevent
the occurrence of large errors. The inference accuracy of all six cases is given in Table 2.
We conclude that using focal loss as the loss function cannot effectively improve the
prediction accuracy of the module on acne numbers. Table 3 shows the inference result of
the classification module trained with Kullback–Leibler divergence loss. Case 1 is similar
to the model provided by Wu et al. [47], while in case 2, we introduce data augmentation
discussed in Section 3.1 during training. We find that the RMSE of case 2 is much lower
than that of case 1, though case 1 and case 2 show similar prediction accuracy on acne
severity and number.

Table 1. The prediction error of the classification module, which is trained by using cross-entropy
loss of different rescaling weights to each acne severity value and acne number.

Accuracy_Severity Accuracy_Number RMSE_Count

Case 1 90.67% 6.18% 10.54
Case 2 95.06% 21.48% 9.07

Table 2. The prediction error of the classification module, which is trained by focal loss with
different parameters.

Accuracy_Severity Accuracy_Number RMSE_Count

Case 1 99.45% 25.88% 11.70
Case 2 43.44% 11.81% 19.91
Case 3 99.45% 16.00% 7.93
Case 4 21.35% 0% 34.90
Case 5 99.45% 14.76% 8.42

Table 3. The prediction error of the classification module, which is trained by Kullback–Leibler
divergence loss with/without data augmentation.

Accuracy_Severity Accuracy_Number RMSE_Count

Case 1 99.31% 84.60% 2.74
Case 2 99.17% 84.17% 2.17

F-RCNN 73.97% 3.39
YOLOv3 63.70% 3.37
Wu et al. 84.11% 2.33
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Figure 3 demonstrates the performance of localization modules with YOLOv5 as
the backbone. Since the preset confidence in YOLOv5 is essential to the module output,
we have conducted a detailed analysis of the prediction accuracy of the module under
different confidences. As shown in Figure 3, the accuracy_severity and accuracy_number
first increase and then decrease with the increase of confidences, while the RMSE decreases
first and then increases with the increase of confidences. Specifically, when the confidence
is around 0.4, the module shows the best performance, where the accuracy_severity, accu-
racy_number and RMSE are about 0.85, 0.2 and 7, respectively. We find that the YOLOv5 is
not suitable for predicting the acne number. Since the output of YOLOv5 usually includes
the coordinates of the objects and the corresponding probability of confidence, it is hard to
use a unified confidence probability to accurately assess all categories of acne number and
severity in the application of acne detection. The main reason is that facial acne shows a
similar background to other facial features, such as the nose and mouth contour, and can
be easily affected by the ambient light and photograph angle. Then, we add classification
blocks composed of fully connected layers to resolve this problem. As shown in Figure 3b,
we adopt two different training strategies discussed in Section 3.3. The left and right panels
are the inference result of training methods 1 and 2, respectively. We find that training
method 1 is much better than training method 2. The main reason is that the simultaneous
training of the two blocks will cause the noise between different blocks to interfere with
each other, while sequential training would limit the noise in each block. However, when
the acne number is large, the module performance becomes poor, which is still far from
meeting the medical requirement.

Figure 3. Parametric analyses of localization module. (a) The prediction accuracy of YOLOv5
under different confidence values. (b) The prediction accuracy of the localization module by adding
classification blocks at the end of YOLOv5. In the left panel, the classification block is trained after
training the YOLOv5, while in the right panel, the block and YOLOv5 are trained simultaneously.



Sensors 2022, 22, 6828 11 of 16

We also compare our methods with previously reported work (as shown in Table 3).
Specifically, two classical detection models, i.e., the Faster RCNN and YOLOv3, are adopted
to count the acne number in the facial image [47]. The best prediction accuracy of the two
models is 73.97% and 64.70%, respectively, which is much lower than our methods here.
The main reason for the high accuracy in severity classification is that we smooth the data
and reclassify the labels of the dataset into three acne grades. In the classification of four
acne grades, the AcneGrader [52] proposed by Liu et al. shows a higher prediction accuracy
(>85%) on the ACNE04 dataset and outperforms state-of-the-art methods. Besides, the
minimum RMSE between the true and predicted numbers here is only 2.17, which is about
35.61% lower than the error in F-RCNN and YOLOv3 model. Note that our methods here
show a comparable accuracy to that of Wu et al. However, the previous models cannot
calculate the acne positions in the facial image. In this paper, we can not only accurately
predict the acne number and severity, but can also predict the location of facial acne,
assisting doctors in acne diagnosis. In conclusion, the main advantages of the proposed
model here lie in two aspects: (1) We smooth the dataset by reclassifying the datasets into
three categories and utilize random sampling methods to preprocess the input images,
improving the prediction accuracy of acne number and severity; (2) We introduce modified
YOLOv5, which is controlled by the classification features to calculate the acne position in
the facial images.

5. Discussion

From the previous parameters studies, we find that the localization module shows
relatively poor performance on the prediction of acne number, although the module could
detect the acne in the facial image. Considering that the classification module based
on ResNet50 could calculate the acne severity and number precisely after training with
Kullback–Leibler divergence loss, we combine the classification and localization modules
into the ensemble model to enhance the precision of detecting acne. As shown in Figure 1,
the output of the Linear 2 block in the classification module is connected to the input of the
detect block in the localization module. Instead of the preset confidence, we utilize acne
numbers to control the output of detection boxes. Figure 4 shows several examples of the
ensemble model. The top, middle and bottom panels correspond to the mild, moderate and
severe classes, respectively. In each panel, the upper and lower rows represent the predicted
and true results of each class. We find that the predicted results agree well with the real
results and the acne severity, number and position can be achieved simultaneously. We
also compare the effect of different loss functions on acne detection. As shown in Figure 5,
the right three columns are the prediction result of the models trained by cross-entropy
loss, focal loss and Kullback–Leibler divergence loss, corresponding to the cases (i.e., case 2,
case 3 and case 2) with the lowest RMSE in Table 1, Table 2 and Table 3, respectively.
We find that the model trained by cross-entropy loss and focal loss show a large error in
predicting the distribution of acne during inference. The main reason is that the Kullback–
Leibler divergence loss could force the model to learn the probability distribution of the
acne numbers instead of the category index, greatly improving the model’s capability of
detecting facial acne. It is worth mentioning that when the distribution density (e.g., >50 per
image) of acne in the face is very high, the model here would show a poor performance in
assessing the acne number and locations.
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Figure 4. Representative examples of the true results and prediction images generated by the
ensemble model.
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Figure 5. The effect of different loss functions (such as the cross-entropy loss, focal loss and Kullback–
Leibler divergence loss) on acne detection.

6. Conclusions

This paper proposes a novel ensemble model to detect facial images, including cal-
culating the acne severity, number and position. The model consists of two submodules:
(1) the classification module used to calculate the acne severity and number and provide
guidance for the inference of the localization module; (2) the localization module used
to calculate the detection boxes under the assistance of the classification module. This is
the first time that the acne severity, number and position are simultaneously predicted
through deep learning, and the prediction results show good agreement with the true
results. Furthermore, considering that the acne in the different body parts (such as the
face and back) usually shows similar geometrical configurations (i.e., a cone with the apex
approximately in the center), the proposed model can be further applied in detecting back
acne, chest acne, etc. This method could assist patients with self-testing by taking a selfie
according to the Hayashi grading criterion, and help doctors diagnose acne problems. This
ensemble model will show significant applications in medical engineering.
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