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Abstract: Six-axis force/torque sensors are widely installed in manipulators to help researchers
achieve closed-loop control. When manipulators work in comic space and deep sea, the adverse
ambient environment will cause various degrees of damage to F/T sensors. If the disability of one
or two dimensions is restored by self-restoration methods, the robustness and practicality of F/T
sensors can be considerably enhanced. The coupling effect is an important characteristic of multi-axis
F/T sensors, which implies that all dimensions of F/T sensors will influence each other. We can use
this phenomenon to speculate the broken dimension by other regular dimensions. Back propagation
neural network (BPNN) is a classical feedforward neural network, which consists of several layers
and adopts the back-propagation algorithm to train networks. Hyperparameters of BPNN cannot be
updated by training, but they impact the network performance directly. Hence, the particle swarm
optimization (PSO) algorithm is adopted to tune the hyperparameters of BPNN. In this work, each
dimension of a six-axis F/T sensor is regarded as an element in the input vector, and the relationships
among six dimensions can be obtained using optimized BPNN. The average MSE of restoring one
dimension and two dimensions over the testing data is 1.1693× 10−5 and 3.4205× 10−5, respectively.
Furthermore, the average quote error of one restored dimension and two restored dimensions are
8.800× 10−3 and 8.200× 10−3, respectively. The analysis of experimental results illustrates that the
proposed fault restoration method based on PSO-BPNN is viable and practical. The F/T sensor
restored using the proposed method can reach the original measurement precision.

Keywords: force/torque sensor; back propagation neural network; fault restoration; coupling;
particle swarm optimization

1. Introduction

Multi-axis F/T sensors play an important role in high-end manufacturing fields.
For example, F/T sensors can provide feedback for researchers to achieve fine grab in deep
sea and the remote control in comic space [1–3]. However, high pressure under deep sea
and high vacuum, high-low temperatures in comic space and other adverse factors will
cause damage to F/T sensors [4]. It can be helpful and economical if the damaged F/T
sensors can be restored rather than replaced when the damage is not fatal. Therefore, fault
restoration is meaningful and necessary for multi-axis F/T sensors.

A six-axis strain gauge sensor is taken as an example of multi-axis F/T sensors in
this paper, and the proposed method can be applied to other types of multi-axis F/T
sensors with minor modifications. An elastic body and several strain gauges constitute
the six-axis F/T strain gauge sensor, and every four strain gauges (two strain gauges for
semi-bridge) pasted on an elastic body compose a Wheatstone bridge. Because all strain
gauges are pasted on the same elastic body, applying a load in one direction will induce
deformation not only on the corresponding dimension, but also on other dimensions, which
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is called coupling. The coupling effect will reduce the measurement precision of six-axis
F/T sensors, and scholars have proposed numerous decoupling methods to eliminate
the effects of coupling. Song et al. [5] proposed a robust static decoupling algorithm for
3-axis force sensors based on ε-SVR, and Liang et al. [6] proposed a decoupling method
based on parallel voltage extreme learning machine (PV-ELM) for six-axis F/M sensors.
Nevertheless, if we make use of the coupling effect and find the correlations among all
dimensions, it is feasible to achieve restoration of slight damages of F/T sensors.

The key to fault restoration for F/T sensors is to find out how the output of one
dimension is affected by the loads from other dimensions. Mechanical analysis and finite
element analysis (FEA) can reveal inherent correlations between dimensions. Niu et al. [7]
analyzed the structure of a six-dimensional parallel-mechanism force sensor and proposed
a new structure to minimize the coupling effect. Nevertheless, mechanical analysis and FEA
are costly and demand too much prior knowledge. Machine learning has attracted much
attention recently. Neural network is a major branch of machine learning, which is widely
used for regression and classification in engineering, economics, and other fields [8,9].

Back propagation (BP) neural networks have simple structures and high efficiency,
which makes them popular in fault detection and restoration [10–13]. BPNNs pass informa-
tion through multiple hidden layers and calculate gradients of weights and biases by the
back-propagation algorithm. Hyperparameters such as the counts of layers and the width
of hidden layers will effect the convergence rate and performance of BPNN. Hyperparam-
eters are normally selected by blind trails which are costly and not satisfying. Particle
swarm optimization is a famous multi-objective optimization algorithm, and it is utilized
for acquiring optimal solutions in math and engineering [14–17]. Lin et al. [18] proposed
an adaptive dissipative particle swarm optimization (ADPSO) algorithm, which is used to
solve the resource balancing optimization problem for different network-plans scales.

In this work, we proposed a fault restoration method based on the particle swarm opti-
mization (PSO) algorithm optimizing back propagation neural networks (BPNN). After that,
we conducted a coupling experiment to research the impact of coupling effects and obtain
the transfer expression for the six-axis F/T sensor. Finally, some simulations are conducted
to evaluate the proposed method. The rest of this paper is organized as follows: the concept
and algorithm of BPNN and the PSO algorithm are briefly reviewed, then a novel fault
restoration method for six-axis F/T sensors is proposed based on PSO-BPNN. Experiments
including sensor calibration and model training are presented. Finally, the performance of
the proposed method is discussed through the analysis of experiment results.

2. Methodology
2.1. Back Propagation Neural Networks

A BP neural network consists of one input layer, one output layer and several hidden
layers. Each hidden layer owns an activation function, which calculates responses of layer
nodes. Assuming X = {x1, x2, · · · , xm}T is the input vector, Y = {y1, y2, · · · , yn}T is the
output vector, the typical structure of BPNN is shown in Figure 1.

2.1.1. Forward Propagation

The input data flows through a series of hidden layers in turn, and the output of
hidden layers can be expressed as follows:

uh = f
(

Wh × X + bh
)

, (1)

where

h = {1, 2, · · · , H}is the index of layer,

Wh ∈ Rn×l and bh ∈ Rl are the weight matrix and the bias vector of h’th layer,
respectively,

f (·) the nonlinear activate function.
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The model output Y can be obtained by the same formula in (1), except that the output
activation function is set to linear function:

Ŷ = f
(

V× uh + bo
)

, (2)

where V ∈ Rm×n and bo ∈ Rn are the weight matrix and bias vector of the output layer.

Figure 1. A typical structure of BPNN, W and b are the weight matrix and the bias vector, respectively.

2.1.2. Backward Propagation

The training principle of BPNN is to reduce the total errors in the dataset. Mean square
error (MSE) is a common criterion for regression tasks, which is formulated as follows:

loss = MSE
(
Y, Ŷ

)
=

1
l

l

∑
i=1

(yi − ŷi)
2, (3)

BPNN adopts the back-propagation algorithm to train the network, which updates
weights and biases along the gradient directions.

2.1.3. Repetition and Termination

The progress of forward and backward propagation are repeated iteratively, and the
training terminates when it reaches the maximum iteration or the target error. The maxi-
mum iteration is essential for model training, and a suitable maximum iteration should be
selected for keeping balance between under-fitting and over-fitting.

2.2. Particle Swarm Optimization

Meta-heuristic algorithms have attracted a lot of attention in many fields, such as
mathematics, cyber-security, and the Internet of Things (IoT) [19,20]. These algorithms have
three attractive characteristics: simplicity, flexibility, and the ability to avoid local optima.
The particle swarm optimization algorithm is a meta-heuristic optimization algorithm,
and it is inspired by crowd behavior observed in insects, fishes and birds.

Assuming ui = (ui1, ui2, · · · , uin) , vi = (vi1, vi2, · · · , vim) are the current position,
and the speed of iteration i, respectively. pi = (pi1, pi2, · · · , pim) presents the optimal
position and p∗i =

(
p∗i1, p∗i2, · · · , p∗im

)
is the global optimal position of each particle in

iteration i. The basic evolution expression can be formulated as follows:
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vid(t + 1) = w× vid(t) + c1 × r1 × (pid(t)− xid(t))
+c2 × r2 × (p∗(t)− xid(t)),

(4)

xid(t + 1) = xid(t) + vid(t + 1), (5)

where i = {1, 2, · · · , n} is the index of particle, d = {1, 2, · · · , D} is the dimension index;
t = {1, 2, · · · , T} indicates the current generation and w is inertia factor; and r1,r2 are
random variables in the range of [0, 1].

The inertia factor w is negative. The bigger w means the better global search ability,
while the smaller w means the better local search ability. Generally, dynamic strategies are
adopted to adapt the inertia factor w to the searching progress, which is shown as follows:

w(t) = (wmax − wmin) ·
(T − t)

T
+ wmin, (6)

where wmax and wmin are the maximum and minimum inertia factor, respectively. T
indicates the maximum iteration.

The pseudo code of PSO with dynamic strategy is shown in Algorithm 1.

Algorithm 1: Dynamic Particle Swarm Optimization

Inputs: The count of dimensions D, the count of particles N,
the maximum iteration T, the boundary of inertia factor [wmin, wmax].

Outputs: The optimal position of all dimensions.
Process:

1. for each particle i
2. Initialize velocity vi and position xi, set pi = xi ;
3. Evaluate the fitness;
4. end for
5. p∗ = min(pi);
6. while t ≤ T
7. for i = 1 to N
8. Update the velocity and position by (4) and (5);
9. Update the inertia factor by (6);

10. Evaluate the fitness of particle i;
11. if f itness(xi) < f itness(pi)
12. pi = xi;
13. if f itness(pi) < f itness(p∗)
14. p∗ = pi;
15. end for
16. end while
17. return p∗

3. Fault Restoration Based on PSO-BPNN

The target for fault restoration is predicting the output of the broken dimension based
on the correlations among other dimensions. Considering the complex of mutual impacts of
coupling among dimensions, two schemes are assumed in this work: one arbitrary broken
dimension restored by the other five dimensions and two arbitrary broken dimensions
restored by the other four dimensions.

This chapter will describe how to apply the BPNN for restoring the broken dimension
in the aforesaid two schemes and tuning hyperparameters of BPNN by the PSO algorithm.
Lastly, the flowchart of the proposed method is presented.

3.1. Dataset Preparation

Assuming the input vectors are Xi =
[
x1

i , x2
i , · · · , xm

i
]T , and the output vectors are

Ui =
[
u1

i , u2
i , · · · , un

i
]T , where (m, n) ∈ {(5, 1), (4, 2)}. For the first scheme which restores

one damaged dimension by the other five dimensions, input vectors contain voltages of
five dimensions, and output vectors contain voltages of the broken dimension. For the



Sensors 2022, 22, 6691 5 of 12

second scheme, which restores two damaged dimensions by another four dimensions,
input vectors contain voltages of four dimensions, and output vectors contain voltages
of the two broken dimensions. The data is collected in coupling experiments by exerting
loads orderly on dimensions. About 70% of collected data will be separated for training,
while the remaining 30% for testing.

3.2. The BP Network
3.2.1. Network Structures

The basic BP network consists of one input layer, one output layer and one hidden
layer. Besides, the amount of hidden layer elements is selected by experience. In this work,
the PSO algorithm is utilized to obtain the optimal counts of hidden layers and elements in
each hidden layer. The counts of elements in input and output layers are decided according
to Section 3.1.

3.2.2. Activation Function

Activation function g(z) for all hidden layers is the hyperbolic tangent activation
function, which is formulated as follows:

g(z) = tanh(z).

Additionally, the linear function is selected for the output layers, which is shown as
the following equation:

g(z) = z.

3.2.3. Cost Function

The BP networks use a cost function to calculate the error between predicted values
and real values. Mean square error is selected to be the cost function in this work, which is
suitable for regression task.

3.2.4. Maximum Iteration

The BP networks will update weights and bias during training progress iteratively.
Early Stopping, a type of parameter fine tuning strategy, calculates the accuracy of a model
at the end of each cycle and stop training when the accuracy is no longer increasing. Hence,
appropriate iterations can benefit to alleviate the under-fitting or over-fitting problems.
The PSO algorithm is utilized to search for the optimal target iteration, which enhances the
model performance.

3.3. Model Optimization by PSO

This section will illustrate how PSO is applied to optimize hyperparameters for the
BPNN. As shown in Section 3.2, there are three hyperparameters to be optimized in BPNN,
including the counts of hidden layers, the counts of neurons in each hidden layer, and the
maximum iterations.

3.3.1. Searching Space of Parameters

Considering the balance between model complexity and performance, we selected an
approximate searching range for parameters, which is listed in Table 1.

Table 1. Searching ranges of hyperparameters.

Parameters Ranges

counts of hidden layer [1, 5]
neuron counts in each hidden layer [5, 50]

maximum iteration [500, 1000]
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3.3.2. PSO Configurations

After a large number of experiments, the particle count of PSO was set to 50. The target
iteration of PSO was set to 300 according to the model precision. The update strategy of
inertia factor w is linear decreasing, as shown in (6).

The implementation process of the BPNN optimized using the PSO algorithm is
illustrated in Figure 2:

Figure 2. Flowchart of fault restoration for six-axis F/T sensors based on PSO-BPNN.

4. Experiments

A six-axis F/T sensor produced by the Institute of Intelligent Machines (IIM), Chinese
Academy of Sciences (CAS), is utilized for experiments in this section. A unique double
E-shape elastic body and several strain gauges constitute this six-axis F/T sensor [21].
The prototype and measurement circuit of the six-axis F/T sensor is shown in Figure 3, and
the rated ranges of all dimensions are shown in Table 2. The experiment was programmed
using MATLAB software and conducted on a PC which contains 3.6 GHz CPU and NVIDIA
RTX 3070 GPU.

Table 2. Rated range of each dimension.

Dimensions Ranges Units

Fx −1000 to 1000 N
Fy −1000 to 1000 N
Fz −1000 to 1000 N
Mx −30 to 30 N·m
My −30 to 30 N·m
Mz −30 to 30 N·m
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(a)

(b)

Figure 3. A novel six-axis F/T sensors designed by IIM, CAS. (a) The six-axis F/T sensor prototype.
(b) The measurement circuit consists of six Wheatstone bridges.

4.1. Coupling Experiments

A coupling experiment was conducted to study the coupling effects among dimen-
sions on the F/T sensor, and the experimental data were gathered for sensor calibration
and model training. The coupling experiment is similar to the sensor calibration, which
investigates the coupling output of all dimensions while the single dimension is loaded.
Assuming U = [u1, u2, · · · , u6]

T represents the vector of voltage outputs of six dimensions,
and L = [Fx, Fy, Fz, Mx, My, Mz] indicates the measured load vector.

The main procedures of coupling and calibrating for six-axis F/T sensors apply a
series of specific loads, which increase from minimum to maximum rated ranges with
a certain step. These procedures were repeated three times in this coupling experiment,
and the load vector L and voltage vector U were recorded at sample points for processing.
The configuration of sample points is shown in Table 3, and the temperature and humidity
of environment are 25 ◦C and 60%, respectively.

Table 3. The calibration experiment configuration.

Dimensions Load Points Units

Fx 0, ±200, ±400, ±600, ±800, ±1000 N
Fy 0, ±200, ±400, ±600, ±800, ±1000 N
Fz 0, ±200, ±400, ±600, ±800, ±1000 N
Mx 0, ±10, ±20, ±30 N·m
My 0, ±10, ±20, ±30 N·m
Mz 0, ±10, ±20, ±30, ±40, ±50 N·m

4.1.1. Calibration

Calibrating for F/T sensors aims to build the transfer expression between loads and
output voltages, and it can be formulated by the following equation:
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L = W ×U + B, (7)

where W is a calibration matrix, which consists of weights between loads and output
voltages, and B is bias vector.

Least Square (LS) algorithm is commonly utilized to calculate the calibration matrix
W and bias vector B. W, B obtained from LS in this calibration experiment are shown
as follows:

W =



0.870 −0.001 0.004 0.009 −0.710 −0.004

−0.009 0.837 −0.03 0.687 0.005 −0.009

0.004 0.003 0.280 −0.003 0.005 0.003

−0.019 −0.304 0.025 0.597 0.014 −0.005

0.250 −0.007 0.005 −0.011 0.638 0.002

−0.101 −0.025 0.006 −0.011 0.087 1.401


, (8)

B = [−0.925,−75.016,−49.692, 5.463, 164.978,−31.988]T . (9)

The transfer expression is obtained by substituting W and B into (7).

4.1.2. Coupling

Coupling effects can be illustrated by taking the load on one dimension as an inde-
pendent variable, while the output voltages of all dimensions are dependent variables.
As shown in Figure 4, coupling effects are observed between some dimension pairs. For ex-
ample, the output voltages of dimension My have positive correlation with the loads on
dimension Fx, the output voltages of dimension Fy have a negative correlation with the
loads on dimension Mx. However, the loads exerted on dimension Fz and My cause minor
effects on other dimensions, which means the structures of dimension Fz and My are
somewhat independent of other dimensions.

Figure 4. Voltage outputs of all dimensions when exerting loads on a single dimension. Not only does
the loaded dimension have the output, other dimensions also have corresponding coupling outputs.
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Based on the above analysis, coupling effects exist among dimensions of the six-axis
F/T sensor, and we can use this phenomenon to restore one and two dimensions from
damages. Besides, the effects of restoration are relative to the coupling level of dimensions.

4.2. Model Training

The data gathered in the coupling experiment contains the output of six dimensions.
Since any dimension can be damaged in work, we assumed that one dimension was
damaged in scheme 1 and restored it, then repeated this progress for all dimensions in
turn. Similarly, we assumed that two dimensions were broken in scheme 2 and restored
them by turns. Thus, there will be six combinations in scheme 1 and fifteen combinations
in scheme 2.

To evaluate the effect of the proposed method, we take a basic BP network as a
comparison, which consists of an input layer, an output layer, and two hidden layers.

4.3. Experiment Result and Analysis

After the restoration model is well trained, restoration experiments are carried out to
evaluate the performance of the proposed method. Figure 5 shows how the trained model
works in the measurement process. The testing errors indicated by the MSE of scheme
1 and scheme 2 are shown in Table 4 and Table 5, respectively. Besides, the convergence
curve of training for dimension Fz is taken for a representative, which is shown in Figure 6.

Expect for the MSE, we calculated the quote errors (QE) between the measurement
outputs of the normal six-axis F/T sensor and restored one. The QE divides the full scale
of the factor, which can make it easier to compare the performance of dimensions whose
rated ranges are different. The quote errors can be calculate using (10).

QE(ŷ, y) = average
yi∈D

(
|ŷi − yi|

yFS

)
, (10)

where ŷ and y indicate the restored measurement vector and original measurement vector,
respectively. D is the training set or testing set, and yFS is the measurement range of the
corresponding dimension.

The quote errors of scheme 1 and scheme 2 in the training and testing sets are shown
in Table 6 and Table 7, respectively. The measurement ranges are listed in Table 2.

Figure 5. Workflow of trained PSO-BPNN in the measurement process.

Table 4. Testing error of restoring one dimension.

Dimensions PSO-BPNN Std-BPNN

Fx 1.066× 10−5 5.518× 10−5

Fy 6.888× 10−7 5.711× 10−5

Fz 1.914× 10−6 1.193× 10−6

Mx 4.147× 10−7 8.711× 10−7

My 7.432× 10−7 8.351× 10−7

Mz 5.553× 10−5 9.361× 10−5
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Table 5. Testing error of restoring two dimensions.

Dimensions PSO-BPNN Std-BPNN

Fx, Fy 2.778 × 10−5 2.428 × 10−5

Fx, Fz 3.518 × 10−7 2.701 × 10−6

Fx, Mx 4.200 × 10−6 2.153 × 10−6

Fx, My 2.861 × 10−5 1.353 × 10−4

Fx, Mz 4.887 × 10−5 3.928 × 10−5

Fy, Fz 5.857 × 10−7 5.812 × 10−6

Fy, Mx 1.218 × 10−4 2.218 × 10−4

Fy, My 1.831 × 10−5 9.515 × 10−6

Fy, Mz 5.245 × 10−5 5.429 × 10−5

Fz, Mx 2.723 × 10−5 1.500 × 10−4

Fz, My 2.203 × 10−6 2.885 × 10−6

Fz, Mz 1.187 × 10−4 1.287 × 10−4

Mx, My 2.194 × 10−6 1.351 × 10−5

Mx, Mz 9.272 × 10−6 2.054 × 10−5

My, Mz 5.059 × 10−5 6.253 × 10−5

Table 6. Quote errors of restoring one dimension.

Dimensions Training Set Testing Set

Fx 7.524× 10−5 8.192× 10−5

Fy 5.419× 10−4 5.863× 10−4

Fz 1.193× 10−4 1.454× 10−4

Mx 3.900× 10−3 7.000× 10−3

My 7.100× 10−3 8.700× 10−3

Mz 4.020× 10−2 3.600× 10−2

Table 7. Quote errors of restoring two dimensions.

Dimensions Training Set Testing Set

Fx, Fy 2.254 × 10−4 2.885 × 10−4

Fx, Fz 1.690 × 10−4 1.993 × 10−4

Fx, Mx 3.700 × 10−3 6.300 × 10−3

Fx, My 6.300 × 10−3 7.800 × 10−3

Fx, Mz 1.690 × 10−2 1.830 × 10−2

Fy, Fz 1.498 × 10−4 2.054 × 10−4

Fy, Mx 4.400 × 10−3 1.890 × 10−2

Fy, My 2.500 × 10−3 3.300 × 10−3

Fy, Mz 1.800 × 10−2 1.890 × 10−2

Fz, Mx 4.300 × 10−3 5.900 × 10−3

Fz, My 2.300 × 10−3 2.600 × 10−3

Fz, Mz 1.560 × 10−2 2.150 × 10−2

Mx, My 6.100 × 10−3 8.000 × 10−3

Mx, Mz 2.420 × 10−2 2.880 × 10−2

My, Mz 1.760 × 10−2 1.800 × 10−2

As the experiment results show in Tables 4 and 5, the maximum and average testing
errors of one dimension restoration are 5.553× 10−5 and 1.1693× 10−5. The maximum and
average testing MSEs of two dimensions restoration are 1.218× 10−4 and 3.4205× 10−5. The
testing MSEs show that the PSO-BPNN can accurately represent the correlations between
dimensions in most conditions, and it is possible to restore the output of the damaged
dimension with the remaining dimensions.
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Figure 6. The convergence curve of training for dimension Fz.

The maximum and average quote errors of one dimension are 3.600× 10−2 and
8.800× 10−3. The maximum and average quote errors of two dimensions are 2.42× 10−2

and 8.200× 10−3. The quote errors in testing show that the measurement output of the
restored dimensions can reach the original precision class, which means the proposed
restoration method is feasible and satisfactory.

In addition, the average fitness of BPNN during training Fz is taken to illustrate the
convergence characteristic of PSO, and the convergence curve is shown in Figure 6. As can
be seen from Figure 6, the fitness continued to decrease before reaching the target iterations,
which means that the PSO algorithm has good global search ability and is not easy to trap
in local optima.

5. Conclusions

Multi-axis force/torque sensors are commonly deployed in robotics and industry.
Due to the bad ambient conditions, multi-axis F/T sensors will be occasionally damaged,
which is fatal to the control system. If one or two dimensions get damaged, it is costly and
troublesome to replace the entire F/T sensor. Hence, fault restoration is meaningful and
necessary for multi-axis F/T sensors.

Back propagation neural networks are popular for their simpleness and good perfor-
mance. In this work, we adopted BPNN to represent the correlation between dimensions
and build restoration models for damaged dimensions. Hyperparameters are essential for
BPNN, and searching for good hyperparameters is low effective. The PSO algorithm is
utilized to determine the optimal structure for BPNN in the proposed model. Moreover,
a coupling experiment was conducted to assess the coupling effects of six-axis F/T sensors
and provide data for model training.

The results of fault restoration experiments illustrated that the PSO-BPNN is feasible
and suitable for fault restoration, and the PSO algorithm can provide optimal hyperparam-
eters to improve the performance of BPNN. Multi-axis F/T sensors, which embed the fault
restoration method, are more reliable and robust when working in the bad environment.

The proposed method performs well in fault restoration, but the model does not
take into account the indirect coupling effect between dimensions. In future research,
we will explore the inner mechanism of coupling effects and detect damage to multi-axis
F/T sensors.
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