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Abstract: Heart rate (HR) and respiratory rate (RR) are two vital parameters of the body medically
used for diagnosing short/long-term illness. Out-of-the-body, non-skin-contact HR/RR measure-
ment remains a challenge due to imprecise readings. “Invisible” wearables integrated into day-to-
day garments have the potential to produce precise readings with a comfortable user experience.
Sleep studies and patient monitoring benefit from “Invisibles” due to longer wearability without
significant discomfort. This paper suggests a novel method to reduce the footprint of sleep monitoring
devices. We use a single silver-coated nylon fabric band integrated into a substrate of a standard
cotton/nylon garment as a resistive elastomer sensor to measure air and blood volume change across
the chest. We introduce a novel event-based architecture to process data at the edge device and
describe two algorithms to calculate real-time HR/RR on ARM Cortex-M3 and Cortex-M4F micro-
controllers. RR estimations show a sensitivity of 99.03% and a precision of 99.03% for identifying
individual respiratory peaks. The two algorithms used for HR calculation show a mean absolute
error of 0.81 ± 0.97 and 0.86 ± 0.61 beats/min compared with a gold standard ECG-based HR. The
event-based algorithm converts the respiratory/pulse waveform into instantaneous events, therefore
reducing the data size by 40–140 times and requiring 33% less power to process and transfer data.
Furthermore, we show that events hold enough information to reconstruct the original waveform,
retaining pulse and respiratory activity. We suggest fabric sensors and event-based algorithms would
drastically reduce the device footprint and increase the performance for HR/RR estimations during
sleep studies, providing a better user experience.

Keywords: edge computing; textile sensors; wearable sensors; wireless sensors

1. Introduction

Continuous heart rate (HR) and respiratory rate (RR) monitoring is an essential part
of sleep monitoring applications. HR and RR variation analysis during sleep could reveal
the quality of sleep [1], the recovery efficiency of professional athletes [1] or the general
wellbeing of a person, which may directly affect quality of life [2,3]. Generally, sleep occurs
in a controlled and predictable environment where the subject is relatively still compared
with during the daytime. However, the wearability of HR and RR monitoring devices
requires optimization for comfort and long-duration overnight use.

Conventional methods of monitoring HR and RR during sleep are well-established.
Polysomnography (PSG), the gold standard of sleep monitoring, uses either electrocardio-
gram (ECG) or photoplethysmography (PPG) for HR capture [4]. RR is conventionally
captured with respiratory inductive plethysmography (RIP) belts [5,6], nasal pressure
transducers [7], thermal sensing devices or acoustic methods [8]. Advancements in material
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science and consumer/researcher interest in wearable technologies have led to the produc-
tion of a variety of wearable devices enabling heart rate and respiratory rate with smaller,
more comfortable power-efficient devices. Some of these implementations are summarized
in Table 1, with a focus on the capability to monitor HR and RR, the technology used, and
how the sensor is applied in the wearable setting.

An unobtrusive, noncontact option of HR/RR measurement has its advantages, disad-
vantages, and limitations. Ideally, these sensors are placed away from the user. The distance
from the user to the sensor location should be more than arm’s length, or hidden behind
(such as a mattress, pillow or bed sheet) to avoid being a hindrance to the user, otherwise,
it could degrade the original purpose and advantage. The simplest and most intuitive
option is to use audio/visual sensors (i.e., microphones or cameras). Audio/visual meth-
ods are studied in tightly controlled environments where the authors reported accurate
breath detection results [9]. The reliability of audio/visual methods drops significantly
when the subject is standing [9] or in dark or noisy environments. In a dark environment,
infrared or thermal cameras could be used as an alternative, however, these sensors are
extremely expensive and only suitable in highly constrained scenarios where the sensor
cost is justified. One experiment conducted with preterm neonates [10] to monitor respi-
ration reported a root mean square error (RMSE) of 4.15 ± 1.44 breaths/min and better
RMSE with healthy adults 0.31 ± 0.09 breaths/min. Another experiment conducted in an
infrared illuminated room with an infrared camera reported a 3.4% mean percentage error
for RR and 5% mean percentage error for HR calculation using independent component
analysis [11]. These visual methods could be unfavorable due to privacy reasons as well.

Respiratory measurements from depth/time-of-flight sensors can be recorded when
the sensor is mounted a few meters away from the user. One experiment conducted with
Microsoft Kinect V2 with automated region-of-interest selection reported RR calculation
within an error of 1 ± 3.7 breaths/min [12]. Another experiment that uses both Microsoft
Kinect and thermal cameras shows a good agreement between the calculated RR between
two sensors [13].

Radar-based HR/RR measurement has become popular during the past few years due
to declining sensor cost and the high utilization of radars in the automotive industry result-
ing in wider availability of sensors and algorithms. A study with 12 subjects conducted
with a Doppler radar sensor to capture respiration and pulse shows good results in the
supine position, while seated subjects showed degraded agreement with ground-truth [14].
In another experiment, Wavelet Independent Component Analysis was used to retrieve
HR and RR [15], and the authors reported HR detection with an RMSE of 1.36 beats/min
across 12 subjects. Once the sensor waves are focused, radar sensors could produce a fairly
accurate estimation of HR/RR with proper processing algorithms. Radar sensors are not
useful when the subject is moving across the field of view, if the subject is close to another
person, or if the sensor requires battery-powered portable operation in long-term monitor-
ing applications. Force- or pressure-based sensors mounted under a sleeping mattress/bed
is another interesting approach tested in [16–19]. These solutions provide accurate readings
for a single subject but are not suitable when used in a shared bed.

Fibre Bragg Gating (FBG)-based strain sensors have also been used in research to
detect RR/HR [20], however, this method demands optical interrogator devices which are
unsuitable in portable, low-cost solutions. FBGs response shifts with temperature, and
the authors in [21] attempted to utilize this property to build a low-cost solution using a
photo-detector without an optical interrogator. The authors report the estimated cost of the
system is around USD 5000. However, FBGs are very useful in harsh environments with
high electromagnetic interference where there are minimum alternatives [22,23].

Flexible electroactive materials demonstrate excellent potential to provide comfortable
physiological monitoring at scale. However, current approaches share some common
weaknesses in how they are applied, especially for sleep monitoring. Devices that require
direct skin contact have the disadvantage of requiring thorough testing for long-term skin
compatibility for humans, with the possibility that a group of people will react to the sensor
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material. Furthermore, adhesive-type skin contact sensors are uncomfortable to wear and
remove, need frequent changing in long-term applications, and possibly cause skin irrita-
tion or skin damage [24,25]. For long-term monitoring, non-skin-contact sensors would
be preferable. Fabric-based sensors, such as conductive fabric or capacitively coupled
fabric electrodes, could be of further appeal to users if integrated into regular clothing as
“invisible” sensors. The lack of rigid and firm body contact (e.g., electrode adhesive) makes
them more likely to be impacted by body movement artifacts. Furthermore, capacitively
coupled electrodes require more complex instrumentation such as filters, impedance match-
ing circuits, and instrumentation amplifiers [26,27], which results in comparatively power
hungry or larger devices. By comparison, electro-resistive fabric requires straightforward
instrumentation to measure resistive changes using a single current source and an ADC.
Vendors such as Texas instruments offer 24-bit high-precision ADCs with integrated, pro-
grammable constant current sources in a 3.5 mm × 3.5 mm package [28], making the full
instrumentation circuit achievable in a single 12.25 mm2 integrated circuit.

Table 1. Physiological monitoring wearables summarized based on measurement technology and
sensor application method.

Study Physiological Measurement Measurement Technology Application MethodHR RR

Stephen P. Lee et al. [29]
(2018) 3 7 Adhesive ECG electrodes Attached to the skin

Insang You et al. [30] (2016) 3 3 Resistive elastomer Attached to the skin

Roudjane et al. [31] (2018) 7 3 Wireless antenna attenuation Sewn into the clothing

Presti et al. [32] (2019) 7 3 Flexible fiber Bragg grating Sensor bands are worn over
regular clothing

“Phyjama”,
Kiaghadi et al. [33] (2019) 3 3 Resistive sensor fabric Sensor patches are sewn to the

underside of the clothing

Kim et al. [34] (2015) 3 7 Flexible RF resonator
The sensor is placed on the

wrist close to the skin
(no contact)

Rachim et al. [35] (2016) 3 7
Capacitively coupled fabric

electrodes
Armband placed on top of

regular clothing

Wu et al. [36] (2015) 3 3
Capacitively coupled fabric

electrodes
Chest band placed on top of

regular clothing

Ràfols-de-Urquía et al. [37]
(2018) 3 3

Surface diaphragm
electromyography

Electrodes directly attached to
the skin

Another important factor often overlooked is that post-monitoring data analysis does
not focus on the behavior of the raw data when the recording time is longer—instead, the
analysis focuses on the change in derived parameters. For example, a full night sleep test
analysis does not focus on the shape of the waveform of every respiratory or heart rate
measurement. Instead, the analysis would be based on how the derived respiratory rate
and heart rate vary with time. Due to this phenomenon, the ratio of useful information
to available data is meager. This ratio is often between hundred-to-one to thousand-to-
one depending on the target parameter and the sample rate. A typical data acquisition
approach for a connected embedded system is shown in Figure 1 and exemplifies this issue.
An internal microcontroller unit (MCU) captures and stores raw data to local memory
with a timestamp. When the data acquisition period ends, data are transferred to an end
device through either wired or wireless communication. Some devices will store data to
ensure data integrity while transferring data to a wirelessly connected device in real time.
Typically, a mobile device is used to relay raw data to an end computer unit for processing.
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While this method is relatively simple to implement, when the sampling rate is high, and
higher precision is required, direct data acquisition generates a large amount of data.

Figure 1. Typical architecture of an embedded data acquisition system showing a single channel input.

For example, if a 200 Hz sampling rate is used, a single channel of 24-bit precision data
with 32-bit timestamps would result in 38.45 MB of data for an 8-hour recording. The data
size increases proportionally with the number of channels and sample rate. Storing and
transferring a large amount of data wirelessly to a mobile phone either requires a longer
time using low-power wireless methods (e.g., Bluetooth low energy (BLE) or near field
communication (NFC)) or requires higher power for high-throughput protocols (e.g., WiFi).
While data storage components have become cheaper, the power required to store/transfer
data has not decreased significantly. Higher storage/bandwidth requirements pose a
significant challenge to optimizing the size, cost, complexity, and power budget in small
vital monitoring systems.

This work aims to solve two challenges: (1) provide a comfortable vital monitoring ex-
perience and (2) reduce the amount of raw data handling, hence reducing the storage and
power requirements of the overall system. We hypothesized that DC-polarized, electrically
conductive fabric-based morphic sensors could acquire both respiration and heart rate infor-
mation from a single unit in a low-activity environment. Using a single sensor/channel for
two vital parameters benefits the user from a comfort perspective but also significantly reduces
data storage/transfer requirements. We further postulated that by using a novel event-based
processing algorithm, we could discard most of the redundant data and accurately capture
heart rate (HR) and respiratory rate (RR) at the micro-controller level. We hypothesized that this
event-based approach would allow raw data to be processed into useful events that estimate
beat-to-beat heart rate and breath-to-breath respiratory rate in real time.

Furthermore, we speculated that with the event-based approach, we could process
and transmit data using substantially less power than transmitting/storing the raw data.
Since the power requirement of the device directly affects device size and recharge fre-
quency, such an event-based algorithm would be of substantial utility in wearable physio-
logical monitors and edge computing more broadly. The novel event-based data pipeline
we propose aims to process long-term recordings more efficiently in edge devices. In-
stead of storing and streaming raw samples from the morphic sensor, we generate events
at the MCU where only the critical information is retained. The events capture only sig-
nificant data oscillations. Often, these significant and periodic wave oscillations correlate
with the peaks of respiration and pulse information. This paper explains the design and
instrumentation of the sensor and the implementation and evaluation of event-based RR
and HR estimation algorithms in edge devices.
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2. Materials and Methods
2.1. Sensor Design

The chest-worn sensor is based on a highly ionic, silver-plated nylon elastic fabric
manufactured by Holland Shielding (Dordrecht, Netherlands) [38]. The double-direction
knit pattern, as shown in Figure 2a,b, allows the fabric to stretch in both horizontal and
vertical directions. The fabric has a different weaving structure on the front and backside,
so that during the horizontal stretch, the back threading becomes looser (Figure 2d) while
the front threading becomes tighter (Figure 2c). The tightness of threads induces an increase
in conductivity and the loosening of threads introduces increased resistivity. When the
fabric is cut into thin strips, the fabric strips behave like stretch sensors by changing
resistivity. However, the stretch length vs resistance is not linear, as shown in Figure 2e. The
nonlinearity of the fabric sensor used in our work is studied in detail in [39,40], where the
results indicate the coating choice could increase nonlinearity. Nonlinearity properties of
knitted fabrics are well-observed and characterized for different usages. Similar properties
are observed for Electrolycra (Mindsets Ltd., Essex, UK) fabric [41,42] and EeonTex (Eeonyx
Corporation, Pinole, CA, USA) [43]. Nonlinearity could be mitigated by exploring different
cut patterns [44], using different coating materials and multiple coating techniques [45–47],
curve fitting, or simply limiting the stretch to the linear region.

Nonlinearity becomes an advantage in HR/RR estimation with a single sensor. Gener-
ally, cardiac events are very low-amplitude compared with respiration, requiring a high
sensitivity response from the sensor. As we intend to capture both respiration and cardiac
activity from the same sensor, and respiratory wave requires a high stretch, a linear sensor
could pose instrumentation difficulties for such a high dynamic range. The inherently low
responsiveness at higher stretches simplifies instrumentation by naturally focusing the
dynamic range in the cardiac response region.
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Figure 2. Sensor fabric and strain–resistance curve. (a) Unstretched front view, (b) unstretched
back view, (c) stretched front view, (d) stretched back view, and (e) sensor stretch vs resistance
measurement showing a nonlinear relationship.

It should be noted that this linearity error would be a problem if the sensor were to
be used in respiratory volume measurement; however, this is not relevant for our target
HR/RR estimation. The sensor band is manufactured by cutting a 3 mm × 1000 mm fabric
strip and concealing the fabric in U configuration using kinesiology tape (Figure 3c).
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Figure 3. (a) Sensor instrumentation schematic view, (b) the developed PCB for bench tests, (c) the
fabric sensor bands enclosed to kinesiology tape and sewn into the t-shirt fabric, and (d) proposed
wearable data acquisition unit.

2.2. Sensor Instrumentation

A custom PCB was developed to acquire the signal from the fabric sensor. Since the
fabric acts as a variable resistor under stretch, when polarized under constant current,
the sensor produces a voltage output that could be either amplified or directly measured.
An LT3092 programmable current source is used to generate the constant current, and the
resulting voltage is fed through a noninverting filter amplifier circuit. The LT3092 current
source can be controlled using a variable resistor to adjust the current. Figure 3a shows
the schematic overview of the circuit, Figure 3b shows the final product used for testing
the band, and Figure 3d shows the proposed wearable solution developed with additional
ECG, accelerometer sensors for data verification purposes. Since the sensor evaluation is
conducted in a bench setup, the Figure 3b PCB is produced with manual variable resistors
to adjust the settings easily.

2.3. Experiment Setup

The experiments focus on evaluating the sensor in subjects staying in a stationary
position. An example scenario would be sleep monitoring, aged/movement-restricted
patient monitoring or infant monitoring. The sensor bands are worn in a supine position
across the chest just over the heart such that the bands could capture the volume change
in the chest due to respiratory movement and cardiac activity. The change in volume due
to cardiac activity is much lower amplitude compared with respiratory volume; therefore,
the pulse will always be superimposed onto the respiratory waveform. We recorded a
12 min recording from a healthy male (28 years) participant and used these data to develop
the event-based HR/RR algorithm. We subsequently evaluated the performance of the
algorithm in all three event-based architectures proposed. Next, we collected another
data set from the same participant on a different occasion and used these data as the
verification dataset.
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2.4. Event-Based Processing Architecture

The event-based data processing follows a different architecture to a conventional
setup, as shown in Figure 1. The idea is to reduce the computational complexity by
converting raw data to useful data and push the processing toward edge devices. The event-
based processing is demonstrated in three situations, but where the MCU is the event
generator in all cases. The events generated at MCU could be either processed on (1) MCU
itself to produce HR and RR estimations, (2) transferred to a mobile phone via a wireless
method to process events at the mobile device or (3) relayed via a mobile platform to a
PC or cloud computer for post-processing. We hypothesize that method (1) and (2) show
advantages in power efficiency and real-time processing; however, they requires low-level
custom algorithms. Method (3) is generally not suitable for real-time data analysis; however,
it benefits from a great variety of available tools for post-processing data. Figure 4 shows
the data flow in these three situations.

Figure 4. The abstract view of the event-based data processing flows in (a) event processing at MCU,
(b) event processing at a mobile device, and (c) event processing at a PC or a cloud computer.

A Biopac AMI100D amplifier input module was used to capture data from the instru-
mentation circuit into a PC with a 10 kHz sample rate. The data are imported into MATLAB
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for analysis and filtered using a second-order, anti-aliasing Butterworth filter at 100 Hz
cut-off frequency. The data were re-sampled to 200 Hz after filtering. As the ground-truth
measure for the pulse recording, a single-channel ECG waveform is acquired at 10 kHz
simultaneously. During the analysis, the ECG data were also re-sampled to 200 Hz. A
Biopac ECG100C amplifier was used to capture the ECG waveform simultaneously.

3. Event-Based Algorithm Design
3.1. Raw Data Waveform Observation and Event Generation

An example waveform from the acquired signal is shown in Figure 5 and demonstrates
a visible respiratory peak with smaller pulse peaks in synchrony with the ECG ground-
truth. The inset shows a zoomed-in view of the pulse. Initial observations show the band
captured the pulse pattern consistently; however, the signal height is small compared
with the respiratory signal, as expected. For example, the peak-to-peak pulse amplitude
shown in Figure 5 (inset) is 84 mV, while the respiratory wave shows 3120 mV peak-to-peak
amplitude. The ratio between respiratory and pulse amplitude is 37.15, equivalent to a
31 dB difference.

Figure 5. An example waveform from the sensor band showing the respiratory and pulse signal with
corresponding ECG. Inset: zoomed-in view of the pulse.

An event generation algorithm based on delay–compare–integrate operations was
explored to extract information of interest from the raw signal. The data Y(n) were
compared with Y(n + p), where p is the delay. A compromise delay of ten samples (50 ms)
was used as initial experiments found shorter delays produced many false positive events
due to high-frequency noise, while longer delays produced more false negatives by ignoring
pulse information.

An event signal V(n) was generated as follows:

V(n) =

{
1, Y(n + p) < Y(n)
0, Y(n + p) ≥ Y(n)

(1)
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The cumulative sum C(n) of each event signal is summed while V(n) is positive. Each
falling edge of V(n) resets the cumulative sum to zero

C(n) =

{
V(n) + V(n − 1), V(n) = 1
0, V(n) = 0

(2)

As shown in Figure 6, the compare operation produces shorter high (V(n) = 1)
periods due to heartbeats and longer periods in response to respiratory peaks. The final
cumulative sum C(n) prior to each reset (denoted H) is essentially the area of each event
period. Ultimately, this method reduces all cardiac and respiration events to two numbers,
the event period (H) and the timestamp at the end of the pulse. However, to reconstruct
the entire signal of interest, the amplitude of the sensor signal at each positive and negative
edge is included in the data structure. Thus, an event contains the following four fields,
timestamp (T), event period (H), sensor amplitude at the positive edge (V1) , and negative
edge (V2). Each field is a 4-byte integer or floating-point number; therefore, each event
produces 16 bytes of data. Figure 7 shows a visual representation of aligned events and
raw data.

Figure 6. The output of the event generation step showing the original band signal (Y(n)), shifted
band signal (Y(n + p)), and the event signal (V(n)) represented as binary values. Inverted event
pulse during the inspiration (at 3.5 s mark).

3.2. Algorithms for Event Processing

Ideally, the event processing algorithm would only require adaptive thresholding to
separate cardiac and respiratory events and calculate HR and RR directly. However, real-
world data produces an event stream from the delay–compare–integrate step with many
false positives (FP) and false negatives (FN). Therefore, the event processing algorithm is
responsible for:

• Separation of respiratory and cardiac events.
• Removal of events generated due to noise and artifact (false positive rejection).
• Compensation for missing events (false negative correction).
• Calculation of RR and HR.
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Figure 7. Events produced by the event-generating step of the algorithm. Each event has an associated
timestamp (T), event period (H), band signal amplitude at the beginning (V1), and end of the
event (V2).

3.2.1. Separation of Respiratory and Cardiac Events

The event periods (H) related to respiratory peaks are significantly longer than those
due to heartbeats. However, if a heartbeat occurs during inspiration, the respiratory event
could be presented as two events, as shown in Figure 6 between the 3 and 4 s marks.
Simple thresholding will present both events as respiratory events, resulting in a significant
error in respiratory rate calculations. This behavior can be rectified before the separation of
respiration and cardiac events.

An event stream of this kind shows two respiratory events separated by a very short
time. Addressing these events requires combining two or more H > 20 events. For each
consequent pair of events (E1, E2), we check if fewer than 20 samples separate the events.
If the sampling rate is N,

Inter Event Period (P) =
(

T2 −
H2

N

)
− T1 (3)

If P × N < 20, then we change the characteristics of the E1 and E2 events as shown
in Table 2. After converting these occurrences into a cardiac and respiratory events, the
thresholding function can separate the respiratory and cardiac events as outlined previously.

Table 2. Reassigning the event values for respiratory events when separated by a pulse event.

E1 E2

H = P × N H = H1 + H2

T =
(

T2 − H2
N

)
T = T2

V1 = V12 V1 = V11

V2 = V21 V2 = V22
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3.2.2. Removal of Events Generated Due to Noise and Artifact (False Positive Rejection)

In this step, outliers are identified and removed based on timestamp data. The maxi-
mum respiratory rate is considered as 60 breaths per minute, while the maximum heart
rate is considered 180 beats per minute (bpm). Within two events, the minimum allowable
interval is defined using these two edge cases. When two subsequent events fall within
this category, we reject one event only. The priority is given to the event with the larger
H value.

3.2.3. Compensation for Missing Events (False Negative Correction)

Due to the prominence of the respiratory signal, there is a very low chance of missing
an actual respiratory peak. Therefore, false negative correction is applied solely for cardiac
events where the likelihood of false negatives is much higher. Assuming the wearer is not
missing heartbeats, we can actively estimate the number of missing beats in the data using
local statistics. We utilize the fact that the number of heartbeats between any two other
heartbeats is an integer value. For example, if three events show a calculated beat-to-beat
rate of 70, 32, and 73 bpm, it is highly likely that a single beat was missed to produce
the 32 bpm rate. We may confidently correct this to 64 bpm (closest integer multiplier
to adjacent events), and the new instantaneous heart rate pattern would be 70, 64, 64,
73. The false negative correction part of the algorithm relies on actively injecting events
to provide a reasonable estimate of the current heart rate using adjacent data instead of
rejecting statistical outliers.

Figure 8 presents a strong case for active compensation for missing beats. The graph
shows the event periods for each subsequent cardiac event. We calculate the 20-sample
moving median value (x̃) for each event and draw 2 × x̃, 3 × x̃, and 4 × x̃ to visually
represent the integer multiplication of x̃. The two, three, and four times median events
occur when there are missing beats that result in a longer period. As shown in Figure 8,
the missing events are clearly separable as groups and easily compensated for to produce
an accurate HR estimation. Three alternative algorithms were explored to correct these
false negatives. A conventional k-means algorithm tested the hypothesis that false negative
correction would improve estimates of heart rate. A median-value-based algorithm and
a bucketing algorithm were optimized and compared for minimal memory use and low
processing power. The performance of the median value algorithm and bucketing algorithm
were explored when implemented in the MCU, mobile device, and PC (Figure 4).

3.2.4. Compensation for Missing Events Option 1—k-Means Clustering

k-means clustering in the MATLAB environment is used to cluster cardiac event
periods into three groups. The initial seed values supplied to the algorithm were x̃, 2 × x̃,
and 3 × x̃; 15 s, 30 s, and 60 s nonoverlapping windows were chosen. When the data are
clustered, the group that has the most elements could be used to obtain the mean heart
rate during the period by dropping other clusters; however, the aim is to compensate for
missing beats. Instead of rejecting the remaining two clusters, each element is multiplied
by an array of 1

2 , 1
3 , and 1

4 , and the dominant cluster mean is subtracted to calculate three
error values. The absolute minimum error-producing multiplication is taken, and the event
period is multiplied by the denominator of the lowest error-producing factor. The results are
compared with the dominant cluster-based method to establish the benefit of nondominant
clusters being used for false negative compensation.

3.3. Compensation for Missing Events Option 2—Median-Value-Based Algorithm

The goal of event-based architecture is to push data processing to the edge device
without compromising battery life while simultaneously reducing memory requirements.
The MATLAB solution that uses k-means clustering is not suitable for running on all three
platforms (PC, Mobile, and MCU). Therefore, a lightweight algorithm based on median
values was developed in the C programming language that requires less memory and
computational power.
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Figure 8. Cardiac event periods and 20-sample moving median value with its integer multiples.

For each cardiac pulse event, the algorithm checks the median value x̃ for the past
30 cardiac events. Then, it generates the 1st, 2nd, 3rd, and 4th harmonics of x̃ by multiplying
the median value by 2, 3, 4, and 5, respectively. The compensated period is obtained by
dividing the event period by the median multiplication factor that produces the absolute
minimum error. The median-value-based algorithm is simpler; however, it requires consid-
erable floating-point operations to find a new median value for the past 30 events at each
event it processes. Moreover, the algorithm cannot produce any HR estimation until the
first 30 events have occurred.

3.4. Compensation for Missing Events Option 3—Bucketing Algorithm

The bucketing algorithm works similarly to a nonuniform histogram. An array of
constant values is maintained, which keeps the bucket threshold values, and three dynamic
arrays store event-related statistics.

• Bucket array = [ 0.4, 0.45, 0.5, 0.6, 0.7,0.8, 0.9, 1, 1.2, 1.6, 2, 2.4, 2.8, 3.2 ].
• Event array = [· · · ] floating-point array of size 30 to store the last 30 cardiac pulse

event periods.
• Mean array = [· · · ] floating-point array the same size as the bucket array to maintain

mean values for each bucket.
• Counter array = [· · · ] integer array the same size as the bucket array to keep track of

how many elements are in the corresponding bucket.

At each cardiac pulse event, the event period is calculated, and the bucket index is
then found by comparing the event period to the values of the bucket array. For example,
if the event period is 0.67 s, the bucket index is 5 (relates to 0.7 s). The arrays are updated
by removing the first element from the event array and updating the corresponding mean
and counter array values using the relevant index. The new element is appended to the
event array, and the process repeats. By performing this removal and insertion operation, a
record of events is maintained and grouped according to the reference bucket array. Since
the counter array works as a histogram, we can easily differentiate the most frequent data
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(as cardiac pulse period) versus noise. Three separate majority measures are used (Figure 9)
and prioritized in the following decreasing order to find the most frequent event period:

1. Single majority: If any element in the counter array is >20.
2. Dual combined majority: If the sum of two adjacent elements in the counter array

is >15.
3. Triple combined majority: If the sum of three adjacent elements in the counter array

is >15.

In case 1, the single majority value is returned. In cases 2 and 3, the mean value
of adjacent elements is returned. If a majority cannot be found, the last valid HR value
is returned.

After the algorithm finds a majority group with index i, it calculates the mean period
using i − 1, i and i + 1 buckets. This allows the algorithm to capture oscillations of HR
during the last 30 events which would be bucketed to adjacent indexes. Finally, the
algorithm tries to compensate for possible missing beats. A clear example is shown in
Figure 9, where a double majority case exists, and a group of possible missing beats are
bucketed into indexes 9, 10, and 11.

Majority: 1 0 0 0 4 20 1 0 0 3 0 2 0 0

Double: 1 0 0 0 9 8 0 0 2 8 2 1 0 0

Triple: 1 0 1 2 0 6 8 3 1 8 0 1 0 0

(a) (b) (c)

1

4

20

1
3

2
1

9
8

2

8

2
1 1 1

2

6
8

3
1

8

1

Figure 9. Example scenarios for counter array grouping strategy. (a) Single majority where one
bucket has more than 20 elements. (b) Double majority where two adjacent buckets have the majority
elements. (c) Triple majority where three adjacent buckets have the majority elements.

After finding index i and the corresponding mean value, the algorithm scans the
counter array forward to find any buckets that have more than three elements. If found,
the algorithm checks the mean of the corresponding bucket and determines if the mean
period of that particular bucket would fall into the 20 bpm range within already established
HR (using majority mean) by dividing by 2 or 3. If it falls within the 20 bpm range, the
corresponding elements are also included in the HR calculation. Similar to the median value
algorithm, the bucketing algorithm has a pre-filling period where it cannot produce any
HR output. The algorithm will wait until it has elements satisfying a single, double or triple
majority, which could theoretically happen after 15 pulse events. However, in practice, a
majority is typically found after 20–30 elements. The bucketing algorithm features a smaller
number of floating-point arithmetic operations compared with the median-based algorithm.

3.5. Test Devices

A PC with Intel i7-6700K CPU running at 4.0 GHz with Ubuntu 14.04.5 LTS was used
for benchmarking. The mobile device was a Samsung Galaxy S7 Edge (Seoul, South Korea)
with Samsung Exynos Octa 8890, 2.6 GHz processor. The MCU tests were conducted using
two platforms. A Texas Instruments (TI) CC2640 (ARM Cortex-M3, 48 MHz) was chosen
as a test MCU without a floating-point arithmetic unit (FPU), and a TI CC2642 (ARM
Cortex-M4, 48 MHz) was chosen as a test MCU with FPU support.

GCC 4.8.4 was used as the C compiler. An LLVM Clang cross-compiler provided by
the Android NDK was used to compile the source code to the Android mobile platform.
TI ARM compiler version 18 was used to compile the source code in both Cortex-M3
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and Cortex-M4 platforms. Algorithm performance was measured in all three platforms
using internal timers. In PC and mobile, the gettimeofday() function from the sys /time.h
library was used, with a resolution up to 1 µs. In the CC2640 and CC2642 platforms, the
internal timestamp service Timestamp_get32() was used, supporting up to 15 µs resolution.
The power measurements are conducted with TI EnergyTrace technology [48] and presented
as the average.

4. Results

First, the event detection performance of each algorithm step is presented incremen-
tally based on the processing of offline data. Results from the k-means clustering approach
are then presented followed by the results and benchmark testing of the two event-based
algorithms (mean-value and bucketing) with comparisons when running on all three event-
based processing architectures. Algorithms were compared considering processing time,
algorithm performance, and power requirements.

4.1. Event Generation and the Effect of the False Positive (FP) Reduction Step

The shift and compare event generation method is compared with ground-truth ECG
and respiratory wave data to assess the performance of the event generation procedure.
The results are shown in Table 3 for each step and include event classification of HR and
RR with and without false positive reduction. Respiration peak detection shows high
sensitivity, precision and very low miss rate and false discovery rate. However, the pulse
information shows a much higher miss rate (30%) but high precision, i.e., when a cardiac
event is detected, there is a high chance that it is a real heartbeat. However, a high chance of
missing events could negatively affect the overall performance of the algorithm. This result
solidifies the requirement for a false negative compensation procedure which allows us to
manage a high miss rate successfully.

Table 3. Respiratory and cardiac event detection performance after event generation and false
positive reduction.

Algorithm Step # of TP # of FP # of FN Sensitivity (%) Precision (%) Miss-Rate (%) False Discovery
Rate (%)

Respiration Event generation 206 3 2 99.03 98.56 0.96 1.43
Respiration +FP reduction 206 2 2 99.03 99.03 0.96 0.96

Pulse Event generation 721 102 301 70.54 87.60 29.45 12.39
Pulse +FP reduction 707 36 315 69.17 95.15 30.82 4.84

4.2. HR and RR Estimation Using K-Means Clustering

The k-means algorithm is used for false negative correction, and the results are used as
a baseline value to compare newly developed median value and bucketing algorithms. The
k-means algorithm is applied to estimate HR after the FP reduction step. Breath-to-breath
RR is directly calculated after FP reduction using timestamp information (no involvement of
the k-means algorithm). The k-means algorithm uses 1 min, 30 s, and 15 s nonoverlapping
windows to calculate HR. For each window, HR is estimated either by selecting only the
dominant cluster or doing active missing beat compensation by approximation. Table 4
and Figure 10 shows the result compared with ground-truth calculated using ECG and
respiratory wave peak detection (for RR). The results show that even a 15-s window could
accurately estimate HR. Missing beats compensation reduces error and is more effective
with shorter HR windows. However, the compensation technique increases the standard
deviation of the error by a small margin. RR calculation does not use any false negative
correction and compared well with ground-truth with an absolute mean error of only
0.18 breaths per minute.
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Table 4. HR/RR calculation descriptive statistics (k-means algorithm for HR and simple thresholding
for RR) showing mean absolute error and standard deviation (STD) of the absolute error.

Window Size
Absolute Mean Error ± STD (Beats or Breaths per Minute)

No Compensation With Compensation

HR
60 s 0.83 ± 0.61 0.81 ± 1.00
30 s 1.37 ± 0.85 1.05 ± 1.43
15 s 2.17 ± 2.54 1.56 ± 3.38

RR NA (breath-to-breath) 0.18 ± 0.27 Not required

 

(a) (b)

(c) (d)

Figure 10. HR and RR estimation compared with ground-truth for the k-means algorithm. (a) HR
estimation using a 1 min window. (b) HR estimation using a 30 s window. (c) HR estimation using a
15 s window. (d) Breath-to-breath RR estimation. The inset shows a closer view for one minute period.

4.3. HR and RR Estimation Using Median and Bucketing Method

Benchmark results of the two implementations of event processing algorithms running
on a PC, a mobile phone, and MCUs (ARM Cortex-M3 and M4) are detailed. The bench-
mark results compare the computational requirements of the algorithms and are useful in
determining the suitability of each algorithm implementation on an MCU/mobile in real
time. The event generation part is only benchmarked on the MCU because there are no
scenarios for the event-based architecture where the mobile device or PC act as the event
generator (this would defeat the purpose of having the event-based architecture in the
current context).
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4.3.1. Event Generation at MCU

The event generation step combines the delay, compare, and integrate steps to produce
single events with a size of 16 bytes. A single event has four elements: Timestamp (T),
event period (H), and Band signal amplitude at the beginning (V1) and end (V2) of the
event. A total of 20,000 raw data points are loaded from a floating-point array and read
sequentially. Reading data from an already constructed array isolates dependency on raw
data read time, which can vary depending on the application (e.g., SPI bus speed and ADC
acquisition time).

Table 5 shows the results from the two MCUs generating 146 events from the raw
data samples. Processing time per sample is minuscule compared with the sample period
(5000 µs). For comparison, if the MCU reads a 24-bit ADC via 6 MHz SPI bus, the data read
time (4 µs) would still be longer than the event generation time of 2.7 µs.

Table 5. Event generation time using ARM Cortex-M3 and Cortex-M4 MCUs processing
20,000 samples (100 s dataset). A total of 146 events generated.

Device Total Time Event Generation
Time per Sample

Sample Period (at
200 Hz)

Processing Time per
Sample Period

ARM Cortex-M3
(CC2640R2F) 53.8 ms 2.70 µs 5000 µs 0.054%

ARM Cortex-M4F
(CC2642R1F) 40.5 ms 2.03 µs 5000 µs 0.041%

4.3.2. HR and RR Estimation Processing Time on PC, Mobile, and MCU for Median and
Bucketing Algorithms

Event processing can occur on PC, Mobile or MCU. The event processing algorithm
implemented in C is highly portable; we can run exactly the same source code with zero
modifications on all three platforms. During the experiment, 12 min of data containing
1045 events are loaded from memory to calculate event processing time on each platform.

The median-value-based algorithm takes twice as much time on mobile devices com-
pared with the PC implementation (Table 6); however, it is still extremely fast. The ARM
Cortex-M3 MCU does not have a dedicated FPU and takes 1.37 ms on average to fully
process a single event. The ARM Cortex-M4 MCU, which has an FPU, is four times faster
and takes only 0.338 ms to process a single event. On the current dataset, the average
event period (total time/number of events) is 688.995 ms, and the event processing takes a
fraction of the event period to process data to comfortably achieve real-time performance.

Table 6. Event processing time for PC, Mobile, and two ARM processors for 1045 events generated
during a 12 min recording.

Device Total Processing
Time (ms)

Average Processing
Time per Event (ms)

Processing Time per
Average Event Period

Median Value-Based Algorithm

PC 6.02 0.00576 0.000 836 %
Mobile 13.29 0.01272 0.001 846 %

ARM Cortex-M3 1428.4 1.36688 0.198 387 %
ARM Cortex-M4F 353.2 0.33799 0.049 055 %

Bucketing Algorithm

PC 0.90 0.00086 0.000 124 %
Mobile 2.26 0.00216 0.000 313 %

ARM Cortex-M3 159.8 0.15291 0.022 193 %
ARM Cortex-M4F 52.8 0.05052 0.007 332 %

The bucketing algorithm outperforms the median-value-based algorithm in terms of
processing time (Table 6). It is 670 % faster on PC, 590 % faster on Mobile, 900 % faster on
the M3 MCU, and 680 % faster on the M4 MCU at processing the same event data due
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to the reduced floating-point arithmetic requirements. When the event-based processing
part of the algorithm runs on an MCU, it has to co-exist with the event generation process.
The estimates in Table 7 show that both parts of the algorithm can run on the MCU with
a comfortable margin to accommodate other background tasks. This example scenario
includes the use of an external ADC to capture raw data with a 2 MHz SPI bus back to the
MCU. We assume that the MCU is an ARM Cortex-M3 running the median-value-based
algorithm to emulate the worst-case scenario.

Table 7. Total estimated processing time to run the full algorithm in ARM Cortex-M3 MCU with an
external ADC with 200 Hz sample rate and 2 MHz SPI clock.

Operation Time Comment

Raw data acquisition 12 µs SPI runs at 2 MHz and external ADC
samples parallel to the MCU process.

Event generation 2.7 µs To process a single raw-data sample

Event processing 9.9 µs Average process time divided across the
number of samples.

Free time for context switching,
interrupt handling, wireless
communication, and other

background tasks.

4975.4 µs At 200 Hz, the time between samples is
5000 µs.

4.4. HR and RR Estimation Results on PC, Mobile, and MCU for Median and
Bucketing Algorithms

The two event-based algorithms, running on both PC mobile and MCU, were com-
pared with ground-truth data. Since the same steps as the k-means algorithm are used
(up to FP reduction) to calculate RR results in both implementations, there is no difference
between RR results from the C implementation and results presented for offline MATLAB
processing (Table 4). Moreover, since the same source code is operating on all platforms,
there is no difference in the output for HR estimation between devices. The only difference
is the HR estimation between the two algorithms. Instead of calculating the HR based
on nonoverlapping windows, the HR is calculated at each HR event and estimated as the
mean HR for the last 30 events. The output is smoothed by a six-sample averaging filter.
The ground truth ECG HR is also produced by taking beat-to-beat HR and taking the mean
for the past 30 beats.

Figure 11 shows the result from both the median-value-based algorithm and bucketing
algorithm along with the corresponding absolute error shown as a box plot. The majority
of error is less than one beat per minute, and the median-value-based algorithm is slightly
more accurate than the bucketing algorithm as shown in Table 8.

Table 8. Error statistics for hr estimation using median/bucketing algorithms.

Algorithm Absolute Error: Mean
(bpm)

Absolute Error: StDev
(bpm)

Absolute Error:
Median (bpm)

Median 0.81 0.97 0.38
Bucketing 0.86 0.61 0.73

4.5. Power Requirements During Continuous Operation of Event-Based Algorithms

Regardless of the negligible processing time required, the event-based algorithm will
add additional load to the MCU. Therefore, the power requirements of the MCU will
increase slightly. However, the MCU is not only responsible for acquiring data. In a
conventional system, the MCU needs additional subsystems to transmit and store the raw
data. In this section, the power requirements to run the algorithm elements are computed.
The power cost of running the event-based algorithm is compared with the power savings
that may be realized by online processing and the inherent data size reduction that comes
with that solution.
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(a) (b)

(c) (d)

Median based:
Mean error: 0.8082
Median: 0.3795
Std: 0.9714

Bucketing bases:
Mean error: 0.8583
Median: 0.731
Std: 0.6053

Figure 11. Results from the median-value-based algorithm and bucketing algorithm for HR estimation.
(a) HR estimation compared with ECG ground-truth—median algorithm and (b) absolute error box
plot. (c) HR estimation compared with ECG ground-truth—bucketing algorithm and (d) absolute error
box plot.

The data-handling pipeline may be defined in an additive fashion as follows:

• SYS0: Data acquisition at 200 Hz only.
• SYS0_G: Data acquisition at 200 Hz and generating events.
• SYS0_G_EVM: Data acquisition at 200 Hz, generating events and processing events

using the median-value-based algorithm.
• SYS0_G_EVB: Data acquisition at 200 Hz, generating events and processing events

using the bucketing algorithm.
• SYS0_W: Data acquisition at 200 Hz and transferring raw data wirelessly.
• SYS0_G_W: Running data acquisition at 200 Hz, generating events and transferring

events wirelessly.
• SYS0_G_EVM_W: Running data acquisition at 200 Hz, generating events, process

events using median-value-based algorithm and transfer results wirelessly.
• SYS0_G_EVB_W: Running data acquisition at 200 Hz, generating events, process

events using the bucketing algorithm and transfer results wirelessly.

There is no scenario where SYS0 is useful; however, it was implemented to isolate the
MCU power consumption of each element of the algorithm. As such, we can calculate the
power requirement of the following elements:

• Power requirement of generating events
POWG = SYS0_G − SYS0.
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• Power requirement of median-value-based algorithm
POWEVM = SYS0_G_EVM − SYS0.

• Power requirement of the bucketing algorithm
POWEVB = SYS0_G_EVB − SYS0.

Naturally, SYS0_G, SYS0_G_EVM, and SYS0_G_EVB all require more power than SYS0.
However, a typical system would operate as SYS0_W. What is of interest from a practical
perspective is to observe if the power requirements of SYS0_G_W, SYS0_G_EVM_W, and
SYS0_G_EVB_W are less than SYS0_W. In other words, the question is to determine if it is
more beneficial to (1) acquire and transfer data, (2) perform event generation and transfer
events, or (3) run the full event-based algorithm and transfer results. Power consumption
in all cases is shown in Figure 12 and Table 9.

Generating an event on the MCU costs 0.4 µW power, however, it gains a massive
2223.4 µW advantage overall due to the event-based architecture savings in data trans-
mission volume. This is roughly 5500 times more efficient when considering algorithm
optimization alone. Event generation and processing alone could save up to 33 % power,
even when running the full algorithm on the MCU and transmitting data to an external
system. In this example, BLE v4.2 was used. As the sample period is 5 ms, and two samples
can be embedded in a single BLE packet with the timestamp, a 12.5 ms connection interval
was used.
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Figure 12. Power consumption for eight different data-handling pipelines running a combination of
raw-data acquisition, event-based processing, and wireless data transfer on an ARM Cortex-M4 MCU.

Table 9. Additional power and current requirements of running the event-based algorithm on MCU.

Event Algorithm Power (µW) Current (µA)

Compared with SYS0
SYS0_G 0.4 0.1

SYS0_G_EVM 11.9 3.6
SYS0_G_EVB 22.8 6.8

Compared with SYS0_W
SYS0_G_W −2223.4 −673.8

SYS0_G_EVM_W −2116.0 −641.3
SYS0_G_EVB_W −2019.6 −612.1

4.6. Data Size Reduction with Event-Based Algorithms

The event-based algorithms were compared with the conventional approach on the
basis of required data size (for transfer or storage depending on the application). The results
for a 12 min dataset are summarized in Table 10. The original signal may be reconstructed
if we choose to retain V1 and V2 values after processing the data.
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Table 10. Data size comparison with and without running the event-based algorithm.

Use Case Number of Elements Data Size Data Size with Raw
Data Reconstruction

SYS0 143,832 1123.68 kB N/A
SYS0_G 1045 16.33 kB 16.33 kB

SYS0_G_EVB &
SYS0_G_EVM 1045 8.16 kB 16.33 kB

Data size is reduced considerably in SYS0_G scenario, 1.45 % of that required by
SYS0. If we choose to compute the HR/RR on the MCU itself and discard the V1 and V2
values, we achieve a further data size reduction (0.73 % of SYS0). Since the size of the data
generated on the event-based algorithm depends on the HR and RR of the subject, the
factor will vary depending on the subject. The results are presented for a subject with an
average RR of 17.41 breaths/min and an average HR of 85.59 beats/min.

4.7. Band Signal Reconstruction Using Event Information

Figure 13 shows a one-minute window from the dataset, where event-based data
are used to reconstruct the original waveform. The events have retained all respiratory
waveform information and retained some of the identified pulse information. By default,
the event-based architecture retains the information to reconstruct and visualize the raw
waveform for any verification purposes involved in the post-processing stage

(b)

(a)

Figure 13. One-minute window of the data set showing the original waveform reconstructed using
event-based data. (a) Waveform reconstructed using the event data. (b) Raw-data waveform.

5. Discussion

This work describes the use of a novel electrodeless and nonoptical flexible sensor that
does not require direct skin contact to measure HR and RR. Furthermore, we present two
event-based algorithms to extract respiratory and cardiac information in a manner suitable
for edge IoT applications. The structure, methods, operation, and evaluation of these
algorithms in terms of performance and power efficiency were compared with traditional
methods and in multiple embodiments (MCU, mobile, and PC).
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Results for RR calculation are accurate, with an absolute error of just
0.18 ± 0.27 breaths/minute in breath-to-breath RR calculations. The sensor is sensitive
to cardiac activity, and with the introduced delay–compare–integrate operation and the
subsequent event generation, we observed high precision (95.15%), however, with a high
event miss rate (30.82%). Three alternative methods to account for this miss-rate were
implemented and tested. The k-means approach resulted in less than one beat-per-minute
HR error with and without missing beat compensation (0.81 ± 1 bpm vs. 0.83 ± 0.61 bpm).

Event-based architectures were explored to determine if it is possible to push the
computing task to the edge devices. Two event-processing algorithms were created, a
median-value algorithm and bucketing algorithm, and evaluated on three proposed event-
processing architectures (PC, Mobile, and MCU). Even the slowest processor among the
three platforms tested (Cortex-M3) takes only 0.2% of the processing time available to com-
pute the median-value-based algorithm and 0.02% of processing time available to compute
the bucketing algorithm. The time taken to compute HR/RR on the MCU is insignificant
compared with the other MCU operations involved in data acquisition. RR produced by
these two algorithms is exactly the same as the previous approach, and therefore accurate
up to 0.18 ± 0.27 breaths per minute for the given dataset. The HR output is different
from the k-means approach. The algorithms produce event-to-event HR and produce HR
estimations with an absolute mean error of 0.81 bpm for the median-value-based algorithm
and 0.86 bpm absolute error for the bucketing approach. HR estimations closely follow
ground-truth data observed from simultaneous ECG recordings. Ultimately, the computa-
tion time and accuracy of these algorithms make them suitable for real-time processing on
the MCU edge device.

The advantages of event-based data processing are evident when compared with a
more conventional approach. Events are generated less frequently (about 130 times less)
than raw data samples, requiring less frequent packet transfers and reducing the power
budget required for wireless communication. The additional load on the MCU to generate
and run the event-based algorithm is insignificant compared with the power efficiency
achieved by the small bandwidth requirement of events or processed HR/RR values. If the
MCU is generating events only, the additional power required to generate events is only
0.4 µW. However, if we add the wireless communication cost to transfer raw data, overall
power consumption is reduced by 2223.4 µW. Even if the MCU is processing events, the
power required is about 22.8 µW, however, a 2019.6 µW power reduction is achieved when
wireless transmission costs are considered. A 70-to-140 times data size reduction is further
achieved compared with raw-data size. We predict an even higher benefit when data
storage power requirements are incorporated, a topic not explored in this paper. Ultimately,
the reduced power and data requirements could lead to a smaller battery and smaller
wearable solutions.

While there are some significant advantages of this type of sensor and event-based
data processing approach, some weaknesses and limitations are of note. Since there
is a high chance of missing a heartbeat when the band data is processed through the
automated algorithm, our approach (flexible fabric bands on the chest) cannot be used
to diagnose any conditions which may cause skipped beats or arrhythmia. Moreover,
the sensor cannot be used to extract the cardiac pulse during significant movement. The
body movement dramatically reduces the signal-to-noise ratio, and cardiac information
is not easily distinguished from noise using this approach. Therefore, our sensor is only
usable in low-activity monitoring scenarios (e.g., sleep and infants). Our dataset is used
only as a proof-of-concept and as an example scenario to evaluate the performance of the
algorithm and the sensor. Additional testing is required on different body sizes and ages
to fully understand the usability of the sensor. However, the algorithms we proposed are
general-purpose, and therefore could be used in any other sensor platform (ECG or PPG)
with few modifications. We believe the event-based process architecture allows for greatly
reduced data size and power consumption and enables the MCU to compute the required
result at the edge.
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The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
BLE Bluetooth Low-Energy
CPU Central Processing Unit
DC Direct Current
ECG Electrocardiogram
FBG Fibre Bragg Gating
FN False Negatives
FP False Positives
FPU Floating Point Unit
GCC GNU Compiler Collection
HR Heart Rate
LTS Long Term Support
MCU Microcontroller Unit
NDK Native Development Kit
NFC Near Field Communication
PC Personal Computer
PCB Printed Circuit Board
PPG Photoplethysmography
PSG Polysomnography
RF Radio Frequency
RIP Respiratory Indictive Plethysmography
RMSE Root Mean Square Error
RR Respiration Rate
TI Texas Instruments
TP True Positive
Vcc Voltage Common Collector
Vee Voltage Common Emitter
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