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Abstract: Mean and Median frequency are typically used for detecting and monitoring muscle fatigue.
These parameters are extracted from power spectral density whose estimate can be obtained by several
techniques, each one characterized by advantages and disadvantages. Previous works studied how
the implementation settings can influence the performance of these techniques; nevertheless, the
estimation results have never been fully evaluated when the power density spectrum is in a low-
frequency zone, as happens to the surface electromyography (sEMG) spectrum during muscle fatigue.
The latter is therefore the objective of this study that has compared the Welch and the autoregressive
parametric approaches on synthetic sEMG signals simulating severe muscle fatigue. Moreover, the
sensitivity of both the approaches to the observation duration and to the level of noise has been
analyzed. Results showed that the mean frequency greatly depends on the noise level, and that for
Signal to Noise Ratio (SNR) less than 10dB the errors make the estimate unacceptable. On the other
hand, the error in calculating the median frequency is always in the range 2–10 Hz, so this parameter
should be preferred in the tracking of muscle fatigue. Results show that the autoregressive model
always outperforms the Welch technique, and that the 3rd order continuously produced accurate and
precise estimates; consequently, the latter should be used when analyzing severe fatiguing contraction.

Keywords: power spectral density; spectral estimation techniques; Welch method; Burg method;
autoregressive model

1. Introduction

In the last years, the use of surface electromyography (sEMG) exponentially increased
in a variety of contexts and applications such as clinical assessment [1], sport performance
evaluation [2], gesture recognition [3], classification [4], and prosthesis control [5,6]. In
fact, this non-invasive technique provides useful information on the state of muscles [7].
For example, by variables in the time domain related to the signal amplitude, such as
envelope or Root Mean Square (RMS), information on timing of muscle activation and
on muscular force can be obtained [8,9], while by frequency parameters, information on
muscle physiology and on muscular fatigue [10] can be derived. Among the various
pieces of information, the one related to muscle fatigue is certainly of extreme interest.
Since muscular fatigue has been associated with electrical signs, such as an increase of
the amplitude of the sEMG signal and a compression of its spectrum toward the low-
frequency area [11,12], attention has been devoted to the detection of parameters able
to outline this behavior. Thus, to investigate the variation in the frequency content of
the power spectrum, Mean Frequency (MNF) and Median Frequency (MDF) have been
proposed [13] because they have been demonstrated to be related to alterations of firing
rate and recruitment patterns of Motor Units (MUs) [14] that occur due to metabolic
changes during fatigue. These important spectral features can be extracted from the
Power Spectral Density (PSD) of the sEMG signals. Nevertheless, due to the finiteness
of the real signals, the power spectrum cannot be computed, but only estimated; hence,
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several estimation techniques have been developed, each with its own advantages and
disadvantages [15]. In general, it is possible to assess the quality of the estimates by
studying the bias and the variance of the estimators [16]; however, the estimates also seem
to be affected by the specific implementation settings of the estimators, such as the length
and the shape of the signal segmentation window [17,18], the number of segments used
for estimation [18], the frequency distribution of the spectrum [19] and the model order
in parametric approaches [18,20]. Farina and Merletti [20], as well as Clancy et al. [10],
compared the performance of different estimation methods on the basis of the epoch length
used to process the sEMG signals. However, to our knowledge, comparisons have not been
extended to muscle fatigue conditions in which the spectrum of the sEMG signal may take
on shapes quite different from those typical of non-fatigue protocols [21].

In fact, the last methodological works that focused on the comparison of different methods
in assessing the spectral parameters is the one of Farina and Merletti [20], in which useful
recommendations for the spectral estimation with the autoregressive model were provided
(i.e., the use of the 10th order of the Burg method). As a result, all subsequent studies exploit
such recommendations without considering that changes in the frequency content of signals
might affect the spectral estimates. For example, the study by Zhang et al. [22] investigated
the PSD estimation of non-stationary signals with a time-varying autoregressive model, but
still using a fixed order for the parametric approach. Moreover, a recent study [19] showed
that the spectral estimates extracted from sEMG are affected by the frequency content of
the signals.

The aim of this work, thus, is to test whether and to what extent the results of previous
studies [19,20] can be considered valid in the case of fatiguing contractions associated
with frequency distributions different from those found in the case of no fatigue. Two
techniques for the Power Spectral Density estimation are considered: the Welch method
and a parametric approach based on the AutoRegressive (AR) model.

The methods are applied on several synthetic sEMG time-series, each with its own
Time duration (T), but all with the same compressed spectral shape. Different amounts of
white Gaussian noise, indicated by the Signal to Noise Ratio (SNR) variable, are added to
the signals to simulate as much as possible real acquisition conditions [23].

The performance of the estimators is assessed on the ability to determine the spectral
parameters (i.e., MNF and MDF) and is quantified through the Mean Absolute Error (MAE)
and its variance. This error is used as the criterion to determine the most robust estimation
approach with respect to (i) the spectrum content and shape, (ii) the time duration of the
signals, and (iii) the level of noise. For the parametric approach, the order of the model is
also studied as a factor of influence of the results.

The paper is organized as follows: the estimation techniques for the Power Spectral
Density estimation are described; the experimental design is presented; the statistical
analysis is explained. Then, the performance of the two compared techniques is presented
in terms of the error committed in the extraction of spectral parameters. Finally, the
discussion section comments the findings, and in the conclusion section, some guidelines
are provided.

2. Materials and Methods

In this section, the model used for generating the signals is illustrated. The two
estimation techniques, which have been used for the performance comparison, are fully
described, as well as the spectral parameters that are calculated from the estimated power
spectra. Then, the error that was used for the assessment of the performance is explained,
and finally the ANOVA tests for the statistical analyses are presented.
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2.1. Simulation Procedure

The model proposed by Stulen and De Luca [24] was used to generate a set of synthetic
sEMG signals. This model takes as input a zero mean white process with unit variance that
is filtered by a band-pass filter of which the square modulus of the transfer function is:

Pxx( f ) =
k2 f 4

h f 2(
f 2 + f 2

l
)(

f 2 + f 2
h
)2 (1)

In this way, Pxx represents the ideal PSD, k2 is a scaling factor, fl and fh are the low
and high cut-off frequencies, respectively, and f is the frequency that ranges from zero to
half of the sampling frequency (fs/2), because only the positive part of the spectrum is
considered. The number of spectral lines (L) in the range 0–fs/2 depends on the duration
of the analyzed signal. The model parameters were set as follows: k = 1 and fs = 1024 Hz.
The two cut-off frequencies, fl = 20 Hz and fh = 40 Hz have been selected such that the
ideal MNF and MDF had a value of 39.84 Hz and 30.95 Hz, respectively. This specific pair
of cut-off frequencies was chosen as low as possible to generate consistent myoelectric
signals presenting a substantial compression of the power spectrum shape towards the low-
frequency area, thus simulating a strong level of muscle fatigue, as highlighted in [25,26].
Eight different types of sEMG signals were generated considering eight different durations
as in [20]: (a) T = 250 ms, (b) T = 500 ms, (c) T = 750 ms, (d) T = 1000 ms, (e) T = 1250 ms,
(f) T = 1500 ms, (g) T = 1750ms, (h) T = 2000 ms. For each type, 1000 realizations were
generated. A further random 1000 realizations of white Gaussian noise were added to the
sEMG signals. Four typical SNR conditions were simulated, from 5 to 20dB, as in [23,27].
The resulting myoelectric signals have the following form:

xn =
N

∑
j=0

gnhn−j + qn n = 0, 1, . . . , N (2)

where N is the number of samples, gn is a realization of white Gaussian noise used as input
of the shaping filter hn, and qn is a further realization of white Gaussian noise. The two
processes of noise, gn and qn were assumed to be independent. The filter hn was obtained
by taking the real part of the inverse Fourier Transform of the amplitude spectrum, that
is the square root of Pxx(f ), and its phase was reconstructed as the imaginary part in the
Hilbert transformation of the logarithm of the magnitude, as explained in [24].

2.2. Mean and Median Frequency

Mean and median frequency were computed from the power spectral densities. MNF
is an average frequency, which is computed as:

MNF =
∑L

l = 1 Pl fl

∑L
l = 1 Pl

(3)

where fl is the l-th frequency, Pl is the l-th line of the power spectrum, and L represents the
total number of spectral lines in the positive part of the spectrum.

MDF, instead, is the frequency that splits the sEMG power spectrum into two regions
exactly equivalent in power [13], and it is defined as:

lMDF

∑
l = 1

Pl =
L

∑
lMDF

Pl =
1
2

L

∑
l = 1

Pl (4)

where Pl, fl, and L are the same as above. When the spectrum is symmetric with respect to
its center line (e.g., Gaussian), MNF and MDF coincide, but typically, when dealing with
myoelectrical signals, the distribution of the power in the frequency domain is left skewed
and therefore the MDF is lower than the MNF.
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2.3. Techniques to Estimate and Compute the Power Spectral Density

In the following, the Welch method, which is a non-parametric technique that estimates
the power spectral density directly from the data, and the autoregressive model for PSD
estimation are presented [28].

2.3.1. Non-Parametric Estimation

The periodogram is one of the most known non-parametric estimation techniques
but, unfortunately, this estimator is not consistent because the variance of its estimate does
not tend to zero as the number of samples increases. Consequently, improved versions,
which aimed to solve this issue, have been proposed, such as the Bartlett [29] and the Welch
method [30]. The first one solves the inconsistency problem dividing the total length of the
signal into S segments, computing the periodogram in each segment and then averaging
the results to obtain the final PSD estimate; the second method works in a similar way, but
it further improves the resulting PSD estimate because it allows overlapping windows. In
this way, the improvement comes from the greater number of windows (thus decreasing
the variance of the estimate), as well as the reduction of the loss of information at the
extremities of the window due to the effect of the Fourier transform. The S segments are
obtained by multiplying the signal to a window function (whose length is smaller than the
total length of the signal), which is translated over the entire signal with a fixed overlap of
samples. Hence, the resulting power spectral density can be estimated as:

P̂xx( f ) =
1
S

S

∑
s = 1

I(s)m ( f ) where f = 0 :
fs

m
:

fs

2
(5)

where S is the total number (13) of segments, and Im
(s) indicates the s-th periodogram that

is estimated on m samples according to the following equation:

I(s)m ( f ) =
1
U

∣∣∣∣∣ M

∑
m = 0

wmxme−j2πm f

∣∣∣∣∣
2

where U =
1
M

M

∑
m = 0

w2
m (6)

with M being the total number of samples of the window, wm the window function, xm the
signal, and U a gain factor.

In this work, according to the results showed in Figure A1, the length of the window
function was set to 25% of the total length of the signal, while the overlap was set to 25%
of the length of the segment, so the total number of segments S was equal to 13. The
zero-padding technique was applied to all the windows such that each periodogram was
estimated on a total number of samples equal to the length of the entire signal. Results
from a previous study have shown that the Tukey window function, also known as tapered
cosine, outperformed other window functions in MNF and MDF assessment [19]; for this
reason, this window was selected for the implementation of the Welch algorithm.

2.3.2. Parametric Estimation

For the parametric estimation, Autoregressive-Moving Average (ARMA) models are
the most known. This parametric approach allows to estimate parameters of a mathematical
model that can generate (and forecast) future samples by a linear combination of present
and past inputs, and its past output. Autoregressive is a special case of the ARMA model
and it is the most widely used for spectral estimation [20]. We used the Burg method [31],
which estimates the model parameters directly from the measured data minimizing the
prediction error that is generated by the difference of the actual output of the model and
the real value of the signals analyzed. Given an order of the model p, the Burg technique
estimates only the reflection coefficients app to predict future samples of a signal according
to the following equation:

x̂(n) = −
p

∑
z = 1

apzx(n − z) (7)
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where p is the order of the model, apz are the prediction coefficients that can be computed
using the iterative Levinson–Durbin algorithm, and app are the reflection coefficients (ob-
tained when the index z is equal to the order p) that can be obtained by the minimization of
the forward and backward errors of the estimation [15]. As a result, the Burg method aims
to simultaneously minimize the sum of both the forward and the backward errors via the
Least Mean Square Error (LSME) criterion. The power spectral density is thus computed as:

Pxx( f ) =
σ2

z∣∣∣1 + ∑
p
z = 1 apze−j2πz f

∣∣∣2 (8)

where σ2
z is the total error and apz are defined as before. In this work, six different orders,

heuristically selected between the 3rd and the 30th order to compare their performance
in the implementation of the Burg method, were analyzed. Different orders have been
compared because the results of a previous work [19] demonstrated that the optimal order
differs for the MNF and MDF computation, especially when a compression of the spectrum
started to be visible in the frequency domain.

2.4. Statistical Analysis

For the statistical analyses, the MAE is computed as following:

MAE =
1
C

C

∑
c=1

yd − yc with c = 0, 1, . . . , 1000 (9)

where yd is the ideal value of MNF (or MDF), yc is the MNF (or MDF) value computed
from the estimation technique, and c is the total number of generated signals. Descriptive
statistics (mean and standard deviation) were computed for both parameters. Interaction
effects among factors were investigated by performing three-way ANOVA considering the
following factors:

• method, 6 levels (Welch, Burg 3rd, 4th, 7th, 10th, 15th and 30th order)
• duration, 8 levels (250 ms, 500 ms, 750 ms, 1000 ms, 1250 ms, 1500 ms, 1750 ms, 2000 ms)
• SNR, 4 levels (5 dB, 10 dB, 15 dB, 20 dB)

When the interaction effect among the three factors was significant, we set the values
of SNR and we computed a two-way ANOVA for each level of the SNR factor; in turn, if
the interaction effect between the two other factors (duration and method) was significant,
we set the values of the duration factor, and then performed one-way ANOVA on method
for each level of the duration factor. On the other hand, when the three- and two-way
ANOVA were not significant, the main effect with one-way ANOVA on the method factor
was directly studied. In each case, when the main effect of method was significant, the
Tukey’s HSD post-hoc test was applied. Statistical analyses were conducted in MATLAB
and the significance levels were set at: * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results

In Figure 1, the ideal PSD as well as those estimated with the Welch and Burg methods
are shown. In this study, the difference between the ideal and the estimated shape was
not assessed because we are interested in the values of the spectral parameters for fatigue
detection. In Figure 1a,b, the PSDs estimated from signals with time duration equal to
250 ms and 2000 ms, respectively, when the level of noise is very high (SNR = 5 dB) are
shown; in Figure 1c,d, instead, the PSD come from signals with SNR = 20dB and duration
250 and 2000 ms, respectively.



Sensors 2022, 22, 6360 6 of 17

Sensors 2022, 22, x FOR PEER REVIEW  6  of  18 
 

 

to 250 ms and 2000 ms, respectively, when the level of noise is very high (SNR = 5 dB) are 

shown; in Figure 1c,d, instead, the PSD come from signals with SNR = 20dB and duration 

250 and 2000 ms, respectively. 

In Figure 1a,  it can be noticed  that, when dealing with brief signals  (T = 250 ms), 

neither the spectrum obtained with Welch nor those computed with Burg succeed in the 

approximation of the ideal spectrum shape (in black). In fact, low orders of Burg produced 

a spectrum shape truncated around 0–5 Hz, and thus they were not able to approximate 

the ideal shape. In the same way, orders too high (30th) and Welch failed to generate a 

well‐shaped  spectrum  shape because  their  spectra  contained one  small peak  in  corre‐

spondence of the high peak of the ideal spectrum, while the largest peak could be found 

around 50–60 Hz. It seems that the 10th order of Burg had the most similar shape, even if 

its peak (around 45 Hz) did not coincide with the ideal one around 20–25 Hz. 

When time duration (T ≥ 1000 ms) of the signal increased, as shown by one example 

in Figure 1b, some high orders of Burg method (15th and 30th) approximated the spec‐

trum shape well, having the central peak in the same frequency range of the ideal one. 

The spectrum estimated by the Welch method shifted the peak towards the low‐frequency 

area, but it started to exhibit more oscillation. On the other hand, Figure 1c,d showed the 

power spectra estimated from brief (T = 250 ms) and long (T = 2000 ms) signals, respec‐

tively, with low level of noise (SNR = 20 dB). As can be seen, these two figures are similar 

to those corresponding to low level of SNR, indicating that the SNR did not substantially 

influence the estimation of the power spectrum shape. The main difference could be seen 

in the approximation of the spectrum shape obtained by the 3rd and 4th order of the AR 

model with signals of brief duration (T = 250 ms): when the SNR was equal to 20dB, the 

shape started to approximate the ideal one with a smoothed peak (Figure 1b) instead of 

having a sharp peak (Figure 1a). 

 

Figure 1. Representation of  the  ideal Power Spectral Density  (PSD)  together with power spectra 

estimated with Welch method and six different orders of the Burg method. (a,b) show the spectra 

estimated from signals whose Time duration (T) is equal to 250 and 2000 ms, respectively. These 

two figures were generated when Signal‐to‐Noise‐Ratio (SNR) was low, that means there was a high 

level of noise. In the same way, in (c,d) power spectral densities, which were extracted from signals 

with time duration equal to 250 and 2000 ms, respectively, can be seen, but the SNR of signals was 

high, that is there was a low level of noise. 

Figure 1. Representation of the ideal Power Spectral Density (PSD) together with power spectra
estimated with Welch method and six different orders of the Burg method. (a,b) show the spectra
estimated from signals whose Time duration (T) is equal to 250 and 2000 ms, respectively. These two
figures were generated when Signal-to-Noise-Ratio (SNR) was low, that means there was a high level
of noise. In the same way, in (c,d) power spectral densities, which were extracted from signals with
time duration equal to 250 and 2000 ms, respectively, can be seen, but the SNR of signals was high,
that is there was a low level of noise.

In Figure 1a, it can be noticed that, when dealing with brief signals (T = 250 ms),
neither the spectrum obtained with Welch nor those computed with Burg succeed in the
approximation of the ideal spectrum shape (in black). In fact, low orders of Burg produced
a spectrum shape truncated around 0–5 Hz, and thus they were not able to approximate
the ideal shape. In the same way, orders too high (30th) and Welch failed to generate a well-
shaped spectrum shape because their spectra contained one small peak in correspondence
of the high peak of the ideal spectrum, while the largest peak could be found around
50–60 Hz. It seems that the 10th order of Burg had the most similar shape, even if its peak
(around 45 Hz) did not coincide with the ideal one around 20–25 Hz.

When time duration (T ≥ 1000 ms) of the signal increased, as shown by one example
in Figure 1b, some high orders of Burg method (15th and 30th) approximated the spectrum
shape well, having the central peak in the same frequency range of the ideal one. The
spectrum estimated by the Welch method shifted the peak towards the low-frequency area,
but it started to exhibit more oscillation. On the other hand, Figure 1c,d showed the power
spectra estimated from brief (T = 250 ms) and long (T = 2000 ms) signals, respectively, with
low level of noise (SNR = 20 dB). As can be seen, these two figures are similar to those
corresponding to low level of SNR, indicating that the SNR did not substantially influence
the estimation of the power spectrum shape. The main difference could be seen in the
approximation of the spectrum shape obtained by the 3rd and 4th order of the AR model
with signals of brief duration (T = 250 ms): when the SNR was equal to 20dB, the shape
started to approximate the ideal one with a smoothed peak (Figure 1b) instead of having a
sharp peak (Figure 1a).
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Then, a three-way ANOVA was computed on both MNF and MDF, and the result
of the test are summarized in Table 1. While no significant three-way interaction among
method, duration, and SNR was visible in the study of the MNF, a statistically significant
three-way interaction effect (p < 0.05) among these three factors could be seen when dealing
with the MDF.

Table 1. Three-way ANOVA tests were performed to investigate the effects of the three factors on
both Mean (MNF) and Median frequency (MDF). The three factors used were method (Welch and
orders of Burg), duration (T varying from 250 to 2000 ms), and SNR (from 5 to 20 dB). The two-way
and three-way interaction effects are shown starting from the 4th row of the table up to the 7th one,
respectively. The significance levels were set at: * p < 0.05, ** p < 0.01, *** p < 0.001. Mean square,
F-statistic, and p-value are provided. All the values less than 2 × 10−16 were indicated as 0, with the
corresponding significance indicated by *** p < 0.001.

Mean Frequency Median Frequency

Source Mean Sq. F Prob > F Mean Sq. F Prob > F

method 2.22 × 104 2.95 × 103 0 *** 1.52 × 104 2.11 × 103 0 ***
duration 5.67 × 103 754.21 0 *** 1.79 × 104 2.48 × 103 0 ***

SNR 2.74 × 107 3.65 × 106 0 *** 3.39 × 105 4.68 × 104 0 ***
method*duration 10.05 1.33 0.07 89.06 12.30 0 ***

method*SNR 1.93 × 103 257.06 0 *** 9.02 × 103 1.24 × 103 0 ***
duration*SNR 293.79 39.02 0 *** 277.71 38.36 0 ***

method*duration*SNR 1.74 0.23 1 21.57 2.98 0 ***
Error 7.52 7.23

3.1. Mean Frequency

For the MNF, no significant three-way interaction effect among method, duration, and
SNR was found, but there were significant two-way interaction effects between the fol-
lowing pairs of factors: method and SNR, and duration and SNR. The SNR influenced the
estimate of the MNF producing substantial errors that were significantly different from one
level to another independently from the estimation method, passing from an error of about
50 Hz when SNR was equal to 5 dB to an error of about 3 Hz when SNR was equal to 20 dB.
The duration, instead, influenced the precision of the estimate: as the duration increased,
the variance of the error decreased. However, since we are interested in finding the more
robust method for the estimation, one-way ANOVA was performed on the method factor
for each level of the SNR and for each level of the duration factor. Each of the test results
was significant (p < 0.0001) and thus post-hoc tests were performed on the method factor.
The results in Figure 2 show that the 3rd order of Burg outperformed Welch method and
all the other orders of Burg (p < 0.01), except for one case: when SNR was equal to 20 dB,
the mean of the MAE between the 3rd and all other orders were not statistically different
(p = 0.99).

Results in Figure 3 are similar to those in Figure 2, but they represent the case when
signals had T = 2000 ms. By comparing these results with those in Figure 2, it can be seen
how the increase in the time duration of signals reduced the variance of the error, improving
the precision of each method. Also in this case, the 3rd order of Burg outperformed Welch
and all the other orders of Burg (p < 0.01) except when SNR was equal to 20dB: in this case,
the difference between the 3rd and the 4th order was not significant (p = 0.99).

In general, Burg outperformed Welch especially when SNR was very low (SNR = 5 and
10 dB). As soon as the SNR increased, the difference between the two methods decreased,
and even if significant, the difference between the best order of Burg and Welch was less
than 1 Hz when SNR = 20 dB, for both, brief and long signals (T = 250 and T = 2000 ms,
respectively). These results can be easily visualized in Figures 2 and 3, where the MNF
errors are reported for six orders of Burg and for Welch method. Each subplot in the figures
corresponds to the analysis performed by setting one value of the SNR.
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Figure 3. Mean frequency values computed from the power spectral density, which were estimated
by Welch and Burg methods. The analysis performed on long signals (T = 2000 ms) is shown. In each
subplot, a specific level of Signal-to-Noise Ratio (SNR) is represented. Since one-way ANOVA on the
method factor was significant, post-hoc tests were performed: the significance level was set at p < 0.05.
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3.2. Median Frequency

For the MDF, three-way ANOVA revealed that there was a significant interaction effect
(p < 0.001) among method, duration, and SNR, as shown in Table 1. Therefore, we set the value
of the SNR factor, and a two-way ANOVA was performed, considering the interactions
between the method and the duration for each level of SNR. The results, summarized in
Table 2, suggest that there was always a significant interaction effect (p < 0.001) between
the method and the duration factor.

Table 2. Two-way ANOVA for the analysis of interaction effects between the method and the duration
factors. Each ANOVA test was performed considering one level of SNR at time. The significance level
is set at: * p < 0.05, ** p < 0.01 and *** p < 0.001. Mean square, F-statistic, and p-value are provided. All
the values less than 2 × 10−16 are indicated as 0, with the corresponding significance indicated by
*** p < 0.001.

SNR = 5 dB SNR = 10 dB SNR = 15 dB SNR = 20 dB

Source F Prob > F F Prob > F F Prob > F F Prob > F

method 3.17 × 103 0 *** 357.65 0 *** 71.34 0 *** 60.41 0 ***
duration 186.11 0 *** 629.21 0 *** 1.17 × 103 0 *** 1.35 × 103 0 ***

method*duration 5.48 0 *** 8.09 0 *** 3.75 0 *** 2.35 0 ***

Therefore, one-way ANOVA tests were performed on the method factor for each level
of the duration factor, in turn computed for each level of SNR. All the one-way ANOVAs
were statistically significant (p < 0.001), and thus post-hoc tests were executed to find out
which level of the method factor produced the minimum error and had the best performance.
In Figure 4, results obtained from signals with SNR = 5 dB are shown.

We can see that the lowest order of the Burg model outperformed the Welch method
and all the other orders (p < 0.05) for every time duration of the signals; the same differ-
ence with Welch and all other orders was still present for the 4th order. For brief signals
(T = 250 ms), the Welch method produced similar error to the 7th and 10th order (p > 0.05),
while by increasing the time duration of the signals, it slightly reduced the error, produc-
ing comparable results (p > 0.05) to those obtained with higher orders (15th and 30th).
Quantitatively, the mean difference between the 3rd and the 4th order was about 2–3 Hz,
while between the 3rd order and higher ones and Welch was about 4–5 Hz. In general, the
error produced by the best method (3rd order) was about 5 Hz when signals were very
brief (T = 250 ms) and it decreased as well as the duration of signals increasing, reaching
the initial error of about 2.5 Hz. This decrease (2.5 Hz) was found for each considered
technique, indicating that longer signals allow to have a better frequency resolution.

In Figure 5, instead, it is possible to see the results obtained when SNR was equal to
20 dB. In general, the minimum error was produced by the 15th order of the AR model.
When the signals had brief duration (T = 250 ms), the difference between the 15th order
and the other levels of method factor were not significant, except when compared to the 30th
order (p < 0.05). When the time duration of signals started to increase (T > 500 ms), the 15th
order produced the minimum error, whose difference was statistically significant (p < 0.05)
with respect to Welch and all other orders except for the 3rd and 4th order. Quantitatively,
the mean difference between the 15th order and the other levels of the method factor was
about 0.7–1 Hz for brief signals and it decreased to 0.2–0.5 for longer signals (T > 1000).
In general, the error produced by the best method (15th order) was about 3 Hz when
signals were very brief (T = 250 ms), but when the duration of signals increased, the total
error reduced to 1.5 Hz. A decrease of about 1.5–3 Hz was found for each considered
technique, confirming that better frequency resolution was obtained when working with
longer signals.
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4. Discussion

This study aimed to investigate the effects produced by the compression of the power
spectral density, due to muscle fatigue, on the computation of the spectral parameters.

Although the results of this work will give some suggestion in the choice of the method
to be used for the extraction of the spectral parameters, a few considerations need to be
highlighted to correctly interpret the results. First, this study focused on a single power
spectral shape representing an extreme case, that is severe muscle fatigue, which usually
might be found in real data when analyzing muscle contractions until failure. Second,
these findings, which have been extracted on synthetic sEMG, cannot be validated on real
signals because the real value of the spectral parameters is unknown. As a result, the
suggestions provided for the choice of the method could only ensure that the error in the
spectral estimates will be limited depending on the analyzed condition.

Analyzing the spectra computed with the two estimation techniques, we noticed
that the shapes of the spectra were not substantially influenced by the level of SNR (see
comparison Figure 1a,c, or Figure 1b,d), except for the low orders (3rd and 4th) of the Burg
method: this happens because a few parameters of the model are influenced by the high
level of noise and are not able to approximate the shape of the spectrum to the ideal one
being truncated at very low frequency. On the other hand, the time duration of the signal
influenced the resulting shape: in fact, by increasing the length of the signal, we increased
the frequency resolution. Both methods benefit from this increase in frequency resolution,
but the Welch method still presented a lot of oscillations over the spectrum, which then
affected the computation of the spectral parameter reducing the goodness of the estimates.
Although there were no visible effects produced by the SNR on the shape, this factor highly
influences the estimate of Mean and Median Frequency, as it can be seen in Table 1.

By analyzing the error produced in computing the Mean Frequency, we noticed that
the time duration of the signal had no significant influence on the error, while the SNR
had a great significant effect. When the level of noise was high (SNR = 5 and 10 dB), the
error generated by the computation of the Mean Frequency was around 50 Hz and 19 Hz,
respectively. Therefore, these huge errors are not acceptable, and we suggest avoiding
the Mean Frequency use when dealing with noisy signals. Instead, if the level of SNR
was high (SNR = 15 and 20 dB), the error around 5–7 Hz and 2–3 Hz, respectively, is
still acceptable: results showed that the 3rd order of the Burg model is always the most
performant in comparison with Welch and high orders of Burg. These specific results can
only be considered valid when dealing with fatiguing contraction that are producing a
harsh compression of the power spectrum. This finding is in contrast with the suggestion
of always using a 10th order of the autoregressive model given by Farina and Merletti [20],
but this is due to the fact that they considered a spectrum shape with the peak around
70–80 Hz that a 3rd order model is not able to approximate well. In contrast, if we need
to analyze a compressed spectrum, the truncated shape obtained by the 3rd order (see
Figure 1) produced a lower value of the Mean Frequency that was closer to the simulated
ideal value. Therefore, in agreement with [19], we recommend decreasing the order of the
autoregressive model to compute the Mean Frequency for tracking the development of
muscle fatigue. However, the user should be very careful in using the Mean Frequency as
an indicator of fatigue because it is highly influenced by the noise of signals, and the high
level of error could lead to misleading results.

The analysis performed on the computation of the Median Frequency, instead, revealed
that the obtained value was influenced by the interaction effects of the estimation technique,
the time duration, and the amount of noise of the signals. As can be seen from Figure 3,
even when the level of noise was very high (SNR = 5 dB), the error in the computation
of Median Frequency was around 5–10 Hz, depending on the used estimation technique.
As the time duration of the signal increased, the dispersion of the error around its mean,
instead, was greatly mitigated. These findings confirm that the Median Frequency is more
robust because it is less sensitive to noise than the mean frequency [24]. In fact, when
the level of noise was low (SNR = 20dB), the error decreased to 4 Hz, and there were no
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significant differences between the errors produced by the different techniques. Moreover,
as the time duration increased, with a consequent increase in the frequency resolution,
there was a further reduction in the error down to 2 Hz. These results indicate that high
accuracy in the computation of the Median Frequency can be obtained with both Welch
and Burg techniques. On the other hand, the precision of the measure mainly depends on
the time duration of the signals. For all these reasons, this study proposes to use a low
order of the autoregressive model (3rd–4th) to estimate the Median Frequency when high
level of muscle fatigue is to be assessed. Median Frequency should be preferred to the
Mean Frequency if accurate measures are required even in presence of noise. In general, a
normal sEMG shape of the spectrum could be estimated by high orders, (i.e., the 10th or
the 6th, as stated in [20] and [19], respectively), but the order of the Burg methods need to
be decrease to 3rd or 4th order as soon as muscle fatigue is approached.

5. Conclusions

This study aimed to investigate the effects produced by the compression of the power
spectral density toward the low-frequency area; this variation in the frequency content is
caused by the progression of muscle fatigue and influences the calculation of the Mean and
Median Frequency. Two estimation techniques, Welch and Burg, were compared for the
estimation of the power spectral density and the extraction of the spectral parameters. The
purpose of this study, moreover, was to describe how the time duration and the level of
noise of the signals affect the estimate of the power spectrum when it is harshly compressed
in the low-frequency area.

The main finding of this work is that the Median Frequency should be preferred as
indicator of muscle fatigue because it is less sensitive to noise than the Mean Frequency [24],
always producing errors in the range of 2–10 Hz, according to the specific case. In fact, the
use of Mean Frequency should be avoided when dealing with noisy signals (SNR <= 10 dB)
because it produced enormous errors that are unacceptable.

In general, by increasing the time duration, and thus increasing the frequency reso-
lution, improvements are produced in precision of the estimation, while increasing the
SNR produces improvements in the accuracy of the estimates. Results suggested that the
3rd order of the autoregressive model produced accurate estimates analyzing fatiguing
contractions, and therefore it is not necessary to use a high order (the 10th) as stated in [20],
that will also increase the complexity and the time computation of the algorithm. These
results, though, are valid when we are dealing with a power spectrum very compressed
towards the low-frequency area due to the progression of high level of muscle fatigue;
however, as stated in [19], the order of the autoregressive model for estimating the spectral
parameter is not fixed, but it should be properly changed according to the frequency content
of the spectrum that is examined, ranging from the 3rd order in presence of severe muscle
fatigue to the 6th/8th order in normal conditions.
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Abbreviations
The following abbreviations are used in this manuscript:
AR AutoRegressive model
ARMA AutoRegressive Moving Average model
LMSE Least Mean Square Error
MDF Median Frequency
MAE Mean Absolute Error
MNF Mean Frequency
MUs Motor Units
OV Overlap
PSD Power Spectral Density
RMS Root Mean Square
sEMG surface Electromyography
SNR Signal to Noise Ratio
T Time duration
WL Window Length

Appendix A

In the following, some additional statistical analyses are showed in order to justify the
choices of the settings for the Welch window (length equal to 25% of the original signal and
overlap equal to 25% of the length of the window).

Welch Window Length and Overlap

We compared the results in the computation of Mean (MNF) and Median Frequency
(MDF) obtained by using several implementations of the Welch method. Since there is the
possibility of varying the length of the window used for the computation of the spectrum
and the amount of overlap between one window and the next adjacent one, we investigated
the effect of these two factors on the accuracy of the spectral parameters estimate. The
statistical analyses were performed with a three-ways ANOVA to study the interaction
effects among the factor method, which identifies the different combination of epoch length
and overlap, the factor duration, which represents the total length of the analyzed signal,
and the SNR factor that indicate the level of noise in the signal. For simplicity, we use
the abbreviation WL for window length (where the percentage refers to the length of the
original signal) and OV for the overlap (where the percentage refers to the length of the
window).

Factors for ANOVA analyses:
Method:

1. WL = 50%, OV = 50%
2. WL = 33%, OV = 50%
3. WL = 25%, OV = 50%
4. WL = 50%, OV = 25%
5. WL = 33%, OV = 25%
6. WL = 25%, OV = 25%
7. WL = 50%, OV = 10%
8. WL = 33%, OV = 10%
9. WL = 25%, OV = 10%

Duration:

1. 250 ms
2. 500 ms
3. 750 ms
4. 1000 ms
5. 1250 ms
6. 1500 ms
7. 1750 ms
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8. 2000 ms

SNR:

1. 5 dB
2. 10 dB
3. 15 dB
4. 20 dB

First, we performed a three-way ANOVA, shown in Table A1 considering the mean
frequency as response variable.

Table A1. Three-way ANOVA tests were performed to investigate the effects of the three factors on
both, mean and median frequency. The three factors used are method (Welch and orders of Burg),
duration (T varying from 250 to 2000 ms) and SNR (from 5 to 20 dB). Their interaction effects are
showed from the 4th to the 7th row of the table. The significance levels were set at: * p < 0.05,
** p < 0.01, *** p < 0.001. All the values less than 2 × 10−16 were indicated as 0, with the corresponding
significance indicated by *** p < 0.001.

Source Sum Sq. d.f. Mean Sq. F Prob > F

method 688.1 8 86 6.43 0 ***
duration 71,280 7 10,182.9 761 0 ***

SNR 108,516,793.5 3 36,172,264.5 2,703,252.41 0 ***
method*duration 817.4 56 14.6 1.09 0.2983

method*SNR 123.9 24 5.2 0.39 0.997
duration*SNR 6694.1 21 318.8 23.82 0 ***

method*duration*SNR 291.2 168 1.7 0.13 1
Error 3,849,879 287,712 13.4
Total 112,446,567.4 287,999

Constrained (Type III) sums of squares

As we can see in the table, there was no interaction effect among the three factors,
neither between method and duration or between method and SNR, which are the two
interaction effects we wanted to investigate. Therefore, we directly analyzed the main
effect of the method factor to study how different combinations of window length and
overlap influence the estimate of MNF. A Tukey post-hoc test was performed to find out
which combination of WL and OV performed better, and the results are summarized in the
following figure.
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Figure A1. Post-hoc test on the main effect of the method factor on the Mean Frequency. Significance
was set at 5%. Blue color shows the Window Length (WL)-Overlap (OV) combination that we want to
compare with the others. In black are represented all the combinations whose mean is not statistically
different (p > 0.05) from that one in blue. In red are represented all the combinations whose mean is
statistically different (p < 0.05) from the one in blue.



Sensors 2022, 22, 6360 16 of 17

We noticed that the combination window length equal to 25% of the total signal length
and overlap equal to 25% of the window length itself produced the minimum error that was
significantly different from other three combinations. Since similar results were obtained in
the analysis of the median frequency, we selected this particular combination (WL = 25%,
OV = 25%) of settings for the Welch method and compared this one with the orders of the
autoregressive model.
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