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Abstract: Respiratory monitoring is widely used in the field of health care. Traditional respiratory
monitoring methods bring much inconvenience to users. In recent years, a great number of respiratory
monitoring methods based on wireless technology have emerged, but multi-person respiratory
monitoring is still very challenging; therefore, this paper explores multi-person respiratory monitoring.
Firstly, the characteristics of human respiratory movement have been analyzed, and a suitable tag
deployment method for respiratory monitoring is proposed. Secondly, aiming at the ambiguity and
entanglement of radio frequency identification (RFID) phase data, a method of removal of phase
ambiguity and phase wrapping is given. Then, in order to monitor multi-person respiration in a noisy
environment, the frequency extraction method and waveform reconstruction method of multi-person
respiration are proposed. Finally, the feasibility of the method is verified by experiments.
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1. Introduction

Respiration is a vital physiological activity of the human body and respiration rate
is one of the key vital signs to measure the level of human health [1]. The respiration rate
can be affected by a variety of factors, such as physical conditions, emotional changes [2]
and even environmental stresses [3,4]. Therefore, respiration rate can reflect a great deal
of useful information on human health, and respiration monitoring is widely used in
healthcare applications. By installing the respiration monitoring equipment in a smart
home, the sleep states of the elderly can be measured at any time [5]. Furthermore,
respiration monitoring helps to determine whether the patient is suffering from apnea
during sleep and even other diseases such as asthma and chronic obstructive pulmonary
diseases [6]. It is also essential to monitor patients’ respiration in hospital wards [7].
In conclusion, respiratory monitoring is a hot research topic with great practical and
applied values.

Traditional methods of respiration monitoring are based on wearable devices [8],
and the person needs to wear special equipment such as a nose probe [9], chest-belt [10] or
waist-belt [11]. Some wearable devices even need to transmit data through wired means,
thus, the person can only move in a small area, which is extremely inconvenient. With the
rapid development of wireless sensing and mobile computing, researchers have found a
new possibility for respiration monitoring technology. If wireless technology is used to
monitor a human being’s respiratory condition, the data no longer needs to be transmitted
through a wired connection and the person will not need to wear the troublesome
monitoring equipment, making respiratory monitoring more convenient and faster.
At present, wireless technologies that have explored the direction of respiratory monitoring
mainly include Wi-Fi [12], Frequency Modulated Continuous Wave (FMCW) [13], Long
Range (LoRa) [14] and RFID [15]. Although the wireless-based respiration monitoring
method has been able to achieve the respiratory monitoring of a single human being object,
it is still challenging to achieve respiratory monitoring of multiple people simultaneously.
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The related work of respiratory monitoring based on wireless technology is summarized
as follows:

• The Wi-Fi-based respiratory monitoring method uses off-the-shelf Wi-Fi devices,
which are low-cost and easy to obtain. Because the Received Signal Strength (RSS) and
phase in the Channel State Information (CSI) are sensitive to the tiny displacement
of the chest and abdomen when the human body is respiring, the CSI can be used
for respiratory monitoring. UbiBreathe [12] achieves respiratory monitoring and
apnea detection for a single person using the RSS information in the CSI. In addition,
BreathTrack [16] proposed a sparse recovery method to extract the accurate phase
information from CSI and used it for respiratory monitoring. Although Wi-Fi-based
respiratory monitoring has good respiratory monitoring performance, Wi-Fi generally
suffers from a “dead zone” problem [15]. In addition, Wi-Fi is difficult to achieve
multi-person respiratory monitoring, because the signals reflected by the human being
are mixed together at the receiver and it is difficult to separate them.

• The FMCW-based respiratory monitoring method uses FMCW radar to send out a
continuous signal with a linear change in frequency and receive the signal reflected
by the human being object. Vital-Radio [17] uses the RF characteristics of FMCW
and Fast Fourier transform for respiratory monitoring, but it can only perform single-
person respiratory monitoring. DeepBreath [18] establishes a multi-reflected signal
interference model and uses independent component analysis (ICA) to achieve multi-
person respiratory monitoring. Although the FMCW-based respiratory monitoring can
achieve multi-person respiratory monitoring, it has the following limitations: (1) Cost.
In order to achieve high accuracy, it requires dedicated and expensive hardware
to acquire the essential wide frequency band (several GHz). (2) Computational
Complexity. Blind source separation and independent component analysis [19] need
to be solved, and this is an optimization problem. (3) Deployment. Antenna arrays
need to be deployed at different angles to obtain better coverage and high accuracy.

• The LoRa-based respiratory monitoring method needs to use Universal Software
Radio Peripheral (USRP) as a gateway to receive the signal sent by LoRa nodes. The
literature [14] uses a signal division method to extract the sensing signal for respiratory
monitoring. Due to the low power consumption and long-range characteristics of
LoRa communication technology, the system has a long respiration sensing range
(over 25 m) and low power consumption. However, due to its own narrowband
characteristics, LoRa is difficult to achieve multi-person respiratory monitoring.

Radio Frequency Identification (RFID) [20,21] is a widely used data communication
technology that allows contactless communication between the reader and the tag to
identify the human being. In recent years, there have been a few works using RFID
technology for respiratory monitoring [15,22]. A robust RFID-based RM is presented to
estimate accurate respiration rate and detect apnea in dynamic environments [23]. The
AutoTag system [24] is proposed as an unsupervised recurrent variational autoencoder-
based method for respiration rate estimation and abnormal breathing detection with off-the-
shelf RFID tags. However, a few works research multi-person respiration monitoring based
on RFID, and LungTrack [15] can only monitor two people’s respiration simultaneously
with as many as five RFID tags. Multi-person sensing is a tough and important issue in
the field of wireless sensing as signals reflected from different persons are combined at
the receiver and it is hard to separate different signal paths for each person. In addition,
multi-person respiration sensing is more applicable to real-life scenarios, and it provides
benefits to a significant fraction of the population, including couples that share the same
bed and new mothers who sleep with their infants [18]. In the paper, we use an RFID
reader to query multiple uniquely identified tags simultaneously, and starting from this
feature, we can conduct research on multi-person respiratory monitoring. Moreover, due
to the lightweight feature of the tag, attaching the tag to the human being does not cause
many inconveniences to the person. Instead, this feature can be used to better realize
multi-person respiratory monitoring.
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The main challenges faced in this paper include the following:

• Tag deployment issues. How to deploy the tags to achieve better respiratory
monitoring in various scenarios;

• Data processing and analysis issues. In the actual environment, there are often
random noise and multipath interference, so the data returned by the reader is not
accurate. How to process and analyze the data;

• Tag selection issues. If multiple tags are deployed on the human being, the reader
will return a set of data for each tag. How to select the tags.

The main contributions of this paper consist of the following two parts:

• Extraction of respiratory frequency and reconstruction of respiratory waveform in
a noisy environment. This paper exploits the characteristics of the raw RFID data
and uses data processing methods such as band-pass filtering, wavelet decomposition
and differential processing to achieve the extraction of respiratory frequency and
reconstruction of the respiratory waveform in a noisy environment. The following
two signal processing methods are first proposed by this paper: (1) We found
that differencing the extreme value sequence of the respiratory signal after wavelet
decomposition and filtering it according to the human respiratory characteristics can
effectively extract respiratory information and reconstruct the respiratory waveform.
(2) We propose a filtering method that is applicable to method (1).

• Respiratory monitoring of multi-person. Most of the current respiratory monitoring
research results can only monitor the respiratory of a single person at the same time,
while this system can efficiently monitor the respiratory of multiple people at the
same time. In addition, compared with other wearable sensors, our approach has
the following advantages: (1) Convenience. The RFID tag is very small (i.e., sub-cm2

range), and deploying tags on a human being’s body will not restrict the person’s
other activities at all. (2) Cost. The wearable sensors used in respiration monitoring
are expensive, but the RFID tag is low-cost (i.e., a few cents).

2. RFID Underlying Data

The RFID system consists of three parts: the reader, the antenna and the tag,
the structure of which is shown in Figure 1. The workflow of the RFID system is as
follows [25]: First, the digital baseband signal in the reader is modulated and sent out by
the transmitter through the antenna. Then, the tag is activated by the signal sent by the
reader and uses its own antenna to send out a backscatter signal. Finally, the receiver in the
reader receives the backscattered signal from the tag through the antenna and modulates it
into a digital baseband signal.

Reader

Antenna Tag

R

Digital 

Baseband 

Signal 

Transmitter 

Receiver 

T

R

Tag

Figure 1. RFID system architeacture.

The reader parses the backscattered signal from the tag into readable underlying data,
which mainly includes phase, Received Signal Strength Indicator (RSSI) and Doppler Shift.
Since the reader used in this paper is Impinj Speedway R420 [26,27], this section is based
on the Impinj Speedway R420 reader and introduces the characteristics of each underlying
data in detail [25,28].
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2.1. Phase

Phase is a quantity that describes the variation of the signal waveform. In practice,
the transmitter circuit of the reader, the receiver circuit of the reader and the backscattering
of the tag introduce additional phase shifts θt, θr and θtag, as shown in Figure 1. θt, θr and
θtag can be considered as constant values during one use of the reader. The final phase value
θ returned by the reader is related to the signal propagation distance R and electromagnetic
wave wavelength λ as follows:

θ = 2π · 2R
λ

+ θt + θr + θtag (1)

Each time a tag is queried by the reader, the reader returns the phase value of the tag.
The Impinj Speedway R420 reader introduces an ambiguity of π radian when processing
the phase, that is, the phase value returned by the reader may be the real phase θ or it may
be (θ + π) mod 2π. The underlying phase field of the Impinj Speedway R420 reader is a
12-bit binary number (0 ∼ 4095), each number is mapped to a specific phase value, and the
mapping relationship is given by:

ϕ = v× 2π

4096
(rad) (2)

where v is the underlying phase field of the reader and ϕ is the phase value mapped by v.
The accuracy of the phase value ϕres = 2π/4096 (rad) ≈ 0.0015 rad.

2.2. RSSI

RSSI reflects the power measurement value in dBm within the bandwidth of the
channel filter. RSSI can be calculated by the power of received signal PR according to
Equation (3). In the underlying implementation of the Impinj Speedway R420 reader,
the accuracy of RSSI is 0.5 dB.

RSSI = 10 lg
PR(mW)

1 mW
(3)

In an ideal environment, the relationship between RSSI and signal propagation
distance d is shown in Equation (4), where α is the path loss factor and d0 is the
reference distance.

RSSI(d) = RSSI(d0)− 10α lg
d
d0

(4)

An experiment was conducted in an actual environment to compare phase versus
distance and RSSI versus distance. In this experiment, we move six tags from 0.96 m
away from the antenna along a straight line to 1.36 m away from the antenna, 5 cm each
time, 20 times in total, and measure the phase and RSSI of each tag at each position,
the experimental environment is shown in Figure 2a,b. Then, we calculate the average
phase and RSSI for each position, and the results are shown in Figure 2c,d. It can be seen
that phase and the signal propagation distance still have an obvious linear relationship in
the actual environment, satisfying Equation (1). For RSSI, according to Equation (4), RSSI
should decrease with the increase of the signal propagation distance, but due to the noise
interference from the actual environment, the relationship between RSSI and the signal
propagation distance becomes haphazard. Therefore, the phase is more robust to ambient
noise than RSSI.

In summary, phase is better than RSSI in terms of numerical accuracy and immunity
to interference, so for respiratory monitoring, phase is a better choice than RSSI.
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Figure 2. Robustness comparison of phasing and RSSI.

2.3. Doppler Shift

When the tag is in motion, the frequency of the backscattered signal received by the
reader is shifted due to the signal propagation distance difference, as shown in Figure 3.
For RFID systems, the Doppler shift fDP is given by:

fDP =
2v
λ

cosα (5)

where v is the magnitude of the velocity of the tag movement, α is the angle between the
tag movement direction and the backscattered signal propagation direction, and λ is the
electromagnetic wave wavelength.

Reader Antenna 

Tag

𝛼 

v

Figure 3. Doppler shift principle.

For the Impinj Speedway R420 reader, the Doppler shift is calculated based on the
phase shift ∆θ during the packet sending time ∆T, as shown in Equation (6). In the
underlying implementation of the Impinj Speedway R420 reader, ∆θ ∈ [4◦, 720◦], according
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to Equation (6), it can be deduced that fDP ∈
[

1
180·∆T , 1

∆T

]
. Usually, the data packet sending

time ∆T is about 3 ms ∼ 6 ms, so the minimum value of fDP is about 1 Hz ∼ 1.7 Hz.
The underlying layer Doppler Shift field is a 16-bit binary number, the first 12 bits represent
the integer part, the last 4 bits represent the decimal part, and the unit is Hertz (Hz), so the
accuracy of the Doppler Shift fres = 2−4 Hz = 0.065 Hz.

fDP =
∆θ

4π∆T
(6)

For the Impinj Speedway R420 reader, Doppler Shift cannot be used for respiratory
monitoring, here is an example to prove it. The displacement of the chest during breathing
is approximately 0.5 cm [29], the human respiratory rate is approximately 12 to 16 breaths
per minute [30], and the frequency range of the reader we used is 920.625 MHz to
924.375 MHz [31]. Assuming that the tag is deployed on the chest, the chest is facing the
antenna, the displacement of the chest is ∆d = 0.5 cm, the respiratory rate is fr = 0.25 Hz,
and the frequency of reader is f = 920.625MHz. So the average moving speed of the tag is
υ = 2 fr∆d = 1.25× 10−3 m/s, the wavelength is λ = c

f ≈ 0.326 m (c is the propagation

speed of electromagnetic waves, c ≈ 3× 108 m/s), and the Doppler frequency shift caused
by the human breathing motion can be calculated as fDS ≈ 4.02× 10−3 Hz according to
Equation (5). Because fDS is much lower than the minimum value that the reader can
detect, and the Doppler Shift accuracy of the reader is relatively low, the Doppler Shift
cannot be used for respiratory monitoring.

2.4. Summary

In summary, for the Impinj Speedway R420 reader, firstly, the range and accuracy of
the Doppler shift are not suitable for monitoring respiration, secondly, the phase has higher
accuracy and better robustness compared to RSSI, so the phase is chosen for respiration
monitoring in this paper. The accuracy and range of each underlying data are shown in
Table 1.

Table 1. Comparison of underlying data.

Underlying Data Name Data Accuracy Data Range

Phase 0.0015 rad/0.088◦ [0, 2π]/[0◦, 360◦]
RSSI 0.5 dB [−110 dBm, 0]

Doppler shift 0.0625 Hz
[

1
180·∆T , 1

∆T

]
3. Multi-Person Respiratory Monitoring Method
3.1. Tag Deployment

A three-dimensional analysis of chest and abdomen movements during respiring in
healthy subjects was performed in the literature [32]. It can be concluded that respiratory
movements of the chest and abdomen were different for healthy subjects of different
ages and genders, and when the healthy subjects were in different positions. Different
people have three types of breathing, thoracic breathing, abdominal breathing, and thoracic
and abdominal breathing. In summary, it is difficult to cover all conditions with one tag
for respiratory monitoring, therefore, we should deploy two tags on both the chest and
abdomen of the human being, recording the respiratory movements of the two body parts,
which can accommodate all breathing patterns and makes our method more robust.

Due to the inability to establish a correlation between respiratory signals and each
human being, existing respiratory monitoring methods based on wireless technology
are difficult to achieve multi-person respiratory monitoring, and respiratory monitoring
based on lora technology cannot monitor multiple objects at the same time due to its own
narrowband characteristics. As the aim of this paper is to explore multi-person respiration
monitoring, there are multiple people in the experimental environment and two tags are
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deployed on each person. To establish the above correlation, it is necessary to identify
which body part of which person’s respiratory status is represented by each tag. To solve
this problem, we need to map the tag’s Electronic Product Code (EPC) to the person’s
number id and the deployed body part bp, that is EPC −→ 〈id, bp〉. To establish this
mapping, the ID number and the deployed body part are pre-written into the tag’s EPC.

The Impinj Speedway R420 reader and tag used in this paper adopt the UHF Gen2
standard [33]. Tags under the UHF Gen2 standard are equipped with non-volatile memory.
The memory is divided into four independent addressable areas, including Reserved
Memory, EPC Memory, Tag Identifier (TID) Memory and User Memory. For non-volatile
memory, 16 bits are 1 word, and each storage area is accessed in units of words [34]. The EPC
data that needs to be modified in this paper is stored in the EPC memory. The structure of
the EPC Memory is shown in Figure 4, where the Protocol control field defines the data
encoding format and the EPC length of the tag. The EPC modification process of the tag
is shown in Figure 5, where the legal check includes checking whether the length of the
new EPC is greater than the length of the EPC data storage area and checking whether
the length of the new EPC is an integer multiple of 16. In addition, if the EPC length is
changed, the part (the previous bit) that defines the EPC length in the Protocol control field
needs to be reset.

CRC PC bits EPC word 1 to N-1EPC word 0 EPC word N

EPC data

16-bit cyclic 

redundancy 

check field

Protocol

control

field

0 1 2 ... N+2

Figure 4. EPC Memory Structure.

Get the 

PC field

Is the new

 EPC legal? 

The EPC length 

has not changed? 

Modify the 

PC field 

Modify 

the EPC
Begin

Y Y

N

End

N

Figure 5. EPC Modification Process.

3.2. Frequency Extraction and Waveform Reconstruction

How to process and analyze the raw phase data returned by the reader and highlight
the respiratory status of the human being is an important function of the algorithm. This
section will introduce the processing and analysis process of the raw phase data in detail,
as shown in Figure 6, which is mainly divided into three parts: data pre-processing,
respiratory frequency extraction and waveform reconstruction.
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Raw phase data 

Respiratory Rate Extraction
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Initial Data
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Phase 
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DC Component 

Removal

Bandpass 
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Figure 6. Data Processing Flow.

3.2.1. Data Pre-Processing

The pre-processing of the raw phase data consists of two steps, phase ambiguity
removal and phase unwrapping, aimed at solving the problem of the phase ambiguity
problem introduced by the RFID system hardware and the carrier phase winding problem
during signal propagation.

As mentioned in Section 2.1, the phase data returned by the Impinj Speedway R420
reader is introduced with a π radian ambiguity, which will seriously affect the processing
and analysis of the phase data in this paper. Therefore, we solve the π radian ambiguity
problem first, and the method is shown in Algorithm 1.

Algorithm 1: Disambiguation of Phase Data

input :Phase data sequence Φ = {φ0, φ1, . . . , φn}, threshold ∆ = 1
output :Disambiguated phase data sequences Φ′ = {φ′0, φ′1, . . . , φ′n}

1 for i← 2 to n do
2 if π − ∆ ≤ φi + 2π − φi−1 ≤ π + ∆ then
3 φ′i = φi + π;
4 else
5 if π − ∆ ≤ |φi − φi−1| ≤ π + ∆ then
6 if φi − φi−1 < 0 then
7 φ′i = φi + π;
8 else
9 φ′i = φi − π;

The π radian phase ambiguity is detected based on whether or not there is a π radian
jump in the phase value at the current moment, and if so, the π radian phase ambiguity
has occurred at the current moment. In this paper, the phase π ambiguity is divided into
the following two cases:

(1) The true phase value θi at the current moment satisfies θi + π > 2π , then the phase
value returned by the reader at this time is ϕi = (θi + π)− 2π = θi − π .

(2) The true phase value θi at the current moment satisfies θi + π ≤ 2π, then the phase
value returned by the reader at this time is ϕi = θi + π.

For case (1), it is judged whether the phase data has the π radian ambiguity according
to whether the value of ϕi + π − ϕi−1 is within the interval [π − ∆, π + ∆]. If the π radian
ambiguity occurs, ϕi should be ϕi + π.
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For case (2), it is judged whether the phase data has the π radian ambiguity according
to whether the value of |ϕi − ϕi−1| is within the interval [π − ∆, π + ∆]. If the π radian
ambiguity occurs, the ϕi is calculated as follows:{

ϕi = ϕi + π ϕi < ϕi−1

ϕi = ϕi − π ϕi > ϕi−1
(7)

where ϕi−1 is the previous moment phase value, in this paper ∆ represents a smaller value
(threshold) and an appropriate ∆ can be selected according to the actual situation. Based
on a large amount of empirical results, in this work, ∆ is set to 1.8, where the effect of phase
ambiguity removal is better at this time. To prove the effectiveness of the algorithm, we
used it to filter the actual human respiratory signal in Section 4.2.1 and selected only a small
fraction of the result to improve observability. The effect of π radian phase disambiguation
is shown in Figure 7.
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Figure 7. Phase data before and after radian disambiguation.

The second step is to perform phase unwrapping for the phase wrapping problem.
The phase wrapping problem refers to the fact that the carrier phase jumps when it reaches
the period boundary, thus creating ambiguity. For example, the carrier phase jumps from
2π to 0 or from 0 to 2π. The method for phase unwrapping is shown in Algorithm 2.

Algorithm 2: Phase Unwrapping

input :Phase data sequence Φ = {φ0, φ1, . . . , φn}, threshold ∆ = 1
output :Phase sequence after unwrapping Φ′ = {φ′0, φ′1, . . . , φ′n}

1 for i← 2 to n do
2 if 2π − ∆ ≤ |φi − φi−1| ≤ 2π + ∆ then
3 if φi − φi−1 < 0 then
4 φ′i = φi + 2π;
5 else
6 φ′i = φi − 2π;

The idea of the algorithm is as follows. Under the premise that the human body’s
breathing motion will not cause a large jump in the carrier phase, when the phase wrapping
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phenomenon occurs, the phase value ϕi at the current time and the phase value ϕi−1 at
the previous time should satisfy 2π − ∆ ≤ |ϕi − ϕi−1| ≤ 2π + ∆. If the phase wrapping
is detected, ϕi is calculated according to Equation (8) for unwrapping. We also selected a
small fraction of the actual human respiratory signal in Section 4.2.1 for testing, and the
unwrapping effect is shown in Figure 8.{

ϕi = ϕi + 2π ϕi < ϕi−1

ϕi = ϕi − 2π ϕi > ϕi−1
(8)

At this point, the π radian phase ambiguity problem introduced by the RFID system
hardware and the wrapping problem of the carrier phase during signal propagation has
all been solved. Now, the pre-processed phase data can be used to extract the respiration
frequency and monitor the respiration condition of the human being.
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Figure 8. Phase data before and after phase unwrapping.

3.2.2. Respiratory Rate Extraction

The standard respiratory frequency analysis is divided into two main types: frequency-
domain analysis and time-domain analysis [35]. The frequency-domain performs a Fourier
transform of the respiratory signal, and the respiratory frequency estimate is the frequency corre-
sponding to the maximum power in a reasonable respiratory frequency range (4∼ 60 bpm) [36].
The time-domain analysis identifies reliable breathing as the period of the signal between two
pairs of maxima, only one of which is below zero [37]. In this paper, respiratory rate extraction
is divided into three steps: DC (zero frequency) component removal, Butterworth bandpass
filtering and Fast Fourier Transform (FFT).

When the reader receives the backscattered signal from the tag, the receiver circuit will
introduce a DC component into the respiratory signal [38]. The DC component will affect
the subsequent processing of the phase data in this paper. For example, the DC component
will cause abnormal values in the initial part of the filtering results of the Butterworth
bandpass filter used in this paper as shown in Figure 9, and the waveform in Figure 9a is
plotted with the initial phase data returned by the pre-processing of Algorithms 1 and 2.
The experimental scenario is shown in Section 4.2.1, the tag is deployed on the chest and the
distance between the human being and antenna is 1.8 m. It can be deduced from Fourier
transform that the DC component in the breathing signal is the mean value of the signal
sequence. Therefore, subtracting the mean value of the signal sequence from each sample
value in the signal sequence can remove the DC component in the respiratory signal.
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Figure 9. Effect of DC components on 2nd order Butterworth bandpass filtering.

We found in our experiments that although the DC component has been removed,
there is still a large amount of low-frequency noise around the DC component. This
phenomenon can be seen in Figure 10b, and the initial phase data is also the result of
Algorithms 1 and 2. Due to the large low-frequency noise near the DC component, we
cannot get the desired result only by removing the DC component. If we want to extract the
low-frequency respiratory information, it is necessary to use a band-pass filter to remove
both low-frequency noise and high-frequency noise in the respiratory signal. We select the
Butterworth bandpass filter as it has a magnitude response that is maximally flat in the
passband and monotonic overall. This smoothness comes at the price of decreased rolloff
steepness, while Elliptic and Chebyshev filters generally provide steeper rolloff for a given
filter order. Since the human respiratory rate is about 0.2 Hz ∼ 0.27 Hz [30], the passband
range is set to 0.1 Hz ∼ 1 Hz [15,36] in order to ensure that the spectrum in the respiratory
rate range will not be lost. Figure 10 shows the initial phase data, the 1st to 4th order
Butterworth bandpass filtering results of the initial phase data and their spectrums.
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(a) Initial phase data.
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(b) Initial phase data spectrum.
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(c) 1st-order Butterworth bandpass filtering.
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(d) 1st-order Butterworth bandpass filtered spectrum

Figure 10. Cont.
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(e) 2nd-order Butterworth bandpass filtering.
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(f) 2nd-order Butterworth bandpass filtered spectrum
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(g) 3rd-order Butterworth bandpass filtering.
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(h) 3rd-order Butterworth bandpass filtered spectrum
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(i) 4th-order Butterworth bandpass filtering.
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(j) 4th-order Butterworth bandpass filtered spectrum

Figure 10. Raw data with 1st to 4th order Butterworth bandpass filtering and corresponding spectrum.

It can be seen from Figure 10 that the 2nd-order Butterworth bandpass filter has been
able to reduce the low-frequency noise in the respiratory signal well and highlight the
respiratory rate. Starting from the 5th-order Butterworth bandpass filter, the filtered data
will be distorted. In summary, if the order of the Butterworth bandpass filter is too high,
the data will be distorted. For the Butterworth filter, the frequency response curve in the
passband is maximally flat and ripple-free, while it decreases to zero in the stopband [39].
Moreover, the higher the order of the Butterworth filter, the faster the decay of the frequency
response curve in the stopband. As can be seen from the Figure 10d,f,h,j, the frequency
response of the respiratory signal within 0 to 0.1 Hz (the cut-off frequency) becomes smaller
and smaller as the order of the Butterworth bandpass filter increases. We found in our
experiments that the second-order Butterworth bandpass filter can already eliminate the
low-frequency noise well enough compared to the first-order Butterworth bandpass filter
as can be seen from Figure 10d,f. At this point, increasing the order of the Butterworth
bandpass filter again will not result in a significant improvement as shown in Figure 10f,h,j,



Sensors 2022, 22, 6166 13 of 25

but will instead increase the computational complexity of the system. Therefore, this paper
selects the 2nd-order Butterworth bandpass filter to extract the respiratory rate.

FFT is the main method for extracting respiration rate, and the frequency that
corresponds to the maximum power is the respiratory rate we want. To obtain the
respiratory rate of the human being, this paper performs FFT on the filtering results
of the 2nd-order Butterworth filter. As shown in Figure 11, the frequency 0.234616 Hz with
the largest amplitude in the spectrum is the respiratory rate of the human being.
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Figure 11. Respiratory rate extraction.

So far, this chapter has completed the extraction of the human being’s respiratory rate
through the following three steps: removing the DC component in the respiratory signal,
2nd-order Butterworth bandpass filtering and FFT.

3.2.3. Waveform Reconstruction

In the actual environment, the waveform of the phase data may not be ideal, and it
is difficult to display the respiratory state of the human being in real time. This section
proposes a method to reconstruct the respiratory waveform, which consists of wavelet
decomposition, differential processing and curve fitting.

First, wavelet decomposition [40] is performed on the result of 2nd-order Butterworth
bandpass filtering. Wavelet decomposition can effectively remove the high-frequency
components in the respiratory signal, extract the low-frequency components of interest in
this paper, and analyze the respiratory status of the human being. Wavelet decomposition
is to express the signal as a linear combination of wavelet functions in the signal space L2,
and L2 can be written in the following form:

L2 = ν0
⊕

ω0
⊕

ω1
⊕

, ...,
⊕

ωn (9)

where ν0 is the initial scale function space, ω0, ω1, . . . , ωn are the subspaces from the 0th-
order wavelet to the nth-order wavelet tensor, and

⊕
is Exclusive OR function. With each

wavelet decomposition, the scale function is reduced by 1 order, and the resolution of the
respiratory signal in the frequency domain is reduced to 1/2 of the original. The wavelet
decomposition process is given by:

s(t) = ∑
k

c(k)ϕ(t−k)︸ ︷︷ ︸
ν0

+
4

∑
j=0

∑
k

dj(k)2
j
2

ψ(2jt− k)︸ ︷︷ ︸
ν0
⊕

ω0
⊕

ω1
⊕

,...,
⊕

ωn

(10)

where dj(k) is the wavelet function term, ϕ(t) is the scale function, and ψ(t) is the wavelet
function generated by ϕ(t) and some set of coefficients h(n) defined as follows:

ψ(t) = ∑
n

h(n)
√

2ϕ(2t− n) (11)

In RFID technology, the sampling frequency of the reader is affected by a variety of
factors, such as the distance between the reader antenna and the tag, the orientation of the
tag and the type of tag, etc. The sampling frequency of the reader is not a constant value.
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In this paper, the number of layers n of wavelet decomposition should be selected according
to the specific sampling frequency Fs of the reader. For the human respiratory signal, this
paper has found that the reconstruction waveform is more ideal when the frequency
resolution of wavelet decomposition is within 0.6 Hz ∼ 2.0 Hz. Because the human
respiratory rate is approximately 12 to 16 bpm [30], in order not to miss the information
related to human respiration, we chose a value of 18 bpm (0.3 Hz), which is slightly larger
than 16 bpm and easy to calculate, as the lower bound. According to the Shannon Sampling
Theorem [41], in order to recover the complete respiratory signal, our sampling frequency
Fs ≥ 2× 0.3 Hz = 0.6 Hz. In addition, in order to prevent the mixing of high-frequency
noise, our sampling frequency Fs ≤ 2× 1.0 = 2.0 Hz because the human respiratory rate
generally does not exceed 60 bpm (1.0 Hz). Therefore, the number of layers n of wavelet
decomposition should satisfy Equation (12). The calculation of n can be deduced as shown
in Equation (13), where Z represents the integer field. The reason for taking the maximum
value is that we prefer the frequency after wavelet decomposition to be closer to 0.3 Hz
(18 bpm) which is a relatively common respiratory rate. For easy understanding, we have
given an example in Figure 12, the sampling frequency of the reader Fs = 23.1674 Hz
which can be calculated from the timestamps and the number of samples. According to
Equation (13), n = 5, and the wavelet decomposition result is shown in Figure 12f. When
n < 5, there is high-frequency noise in the waveform as can be seen in Figure 12a–e. When
n > 5, the respiratory information will be lost as can be seen in Figure 12g,h.

Fs

2n ∈ [0.6 Hz, 2.0 Hz] (12)

n ∈ Ω, Ω =

{
e
∣∣∣∣⌈log2

Fs

2.0 Hz

⌉
≤ e ≤

⌊
log2

Fs

0.6 Hz

⌋
, e ∈ Z

}
(13)

n = arg min
n∈Ω, f (n)≥0

f (n), f (n) =
Fs

2n − 2Frr (14)

The Daubechies wavelet [42] has better regularity, the smooth error introduced by this
wavelet is relatively small. The db1 wavelet (Haar wavelet) does not have symmetry and
will produce some phase distortion when performing signal analysis and reconstruction.
In addition, the smoothness of the Daubechies wavelet increases as the order increases,
but the computational effort increases. Considering the above reasons, we use the
Daubechies 2 (db2) wavelet in this paper. The initial phase data returned by bandpass
filtering (input for wavelet decomposition) and the result of 5-layer wavelet decomposition
are shown in Figure 12. It can be seen that for the 5-layer wavelet decomposition, all
the high-frequency details of the respiratory waveform have been removed and only the
low-frequency contours are retained. Based on this phenomenon, the idea of reconstructing
the respiratory waveform in this paper is to find the maximum values and minimum
values of the 5-layer wavelet decomposition result, consider the resulting extreme values
sequence as the peaks and troughs of the respiratory waveform, and use this extreme values
sequence to reconstruct the respiratory waveform. In Figure 12b, the maximum values and
the minimum values of the 5-layer wavelet decomposition result are represented by blue N
and red H, respectively.

The magnitude of the phase change during a respiratory activity should not be
too small. Based on this principle, the current extreme values used to reconstruct the
respiratory waveform should satisfy Equation (15), and this paper filters the extreme values
sequence accordingly.

|ei − ei−1| ≥ α(ēmax − ēmin) (15)

where ei is the current extreme value, ei−1 is the previous extreme value, ēmax is the average
of the maximum values, ēmin is the average of the minimum values, and α is a constant of
proportionality (α is 0.5 in this paper).
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(a) The phase data returned by bandpass filtering.
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(b) The result of 1-layer wavelet decomposition.
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(c) The result of 2-layer wavelet decomposition.
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(d) The result of 3-layer wavelet decomposition.
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(e) The result of 4-layer wavelet decomposition.

0 10 20 30 40 50 60 70 80

Time(second)

-2

0

2

P
h
a
s
e
(r

a
d
)

(f) The result of 5-layer wavelet decomposition.
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(g) The result of 6-layer wavelet decomposition.
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(h) The result of 7-layer wavelet decomposition.

Figure 12. The phase data returned by bandpass filtering vs the results of 1∼7 layer wavelet
decomposition.

Then, a differential processing is performed on the extreme value sequence Φ =
{e0, e1, . . . , en−1}. The differential processing can reduce the irregular fluctuation of the
phase data and highlight the change trend of the phase. The result of differential processing
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is D = {d0, d1, . . . , dn−2}, where di = ei+1 − ei. In a respiratory activity, for the adjacent
peaks and troughs in the phase sequence, the phase value at the peak should be greater
than the phase value at the trough. Based on this principle, any two adjacent values of
the differential processing results should satisfy Equation (16), and this paper filters the
differential processing result accordingly.

di
di−1

= −1 (16)

Finally, Cubic Spline Interpolations [43] is applied to the result of the differential
processing to obtain the final reconstructed respiratory waveform. The final result is shown
in Figure 13, which shows that the reconstructed respiratory signal can show the respiratory
status of the human being more clearly.

At this point, this chapter has completed the reconstruction of the respiratory
waveform of the human being through wavelet decomposition, differential processing and
Cubic Spline Interpolation.
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(a) The raw phase data.
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(b) Differential processing.
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(c) Cubic Spline Interpolation.

Figure 13. Differential processing and Cubic Spline Interpolation.

3.3. Tag Selection

Section 3.1 has introduced the deployment of two tags on each person in this paper,
so the reader will return two sets of phase sequences for each person, which leads to the
issues of tag selection and processing. This chapter will discuss how the tags are selected
and processed.

Assuming that the result of differential processing is D = {d0, d1, . . . , dn−2}, and L
represents the total number of elements in D. The selection of tags should satisfy the
following two principles:

2 fmin∆t < L (17)

1
L

L−1

∑
i=0
|di| > ∆ (18)

For the first principle (Equation (17)), the length of the differential processing result
should not be too small per unit of time, and it should match the actual respiratory rate of
the human body (0.2 Hz ∼ 0.33 Hz). In this paper, fmin is set to 0.05 Hz, that is to say, if the
monitored respiratory rate is lower than 0.05 Hz, this result will be considered unrealistic
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and this tag will not be selected in this paper. ∆t is the time of respiratory monitoring.
fmin∆t needs to be multiplied by 2, because there will be two extreme values in the phase
waveform (a peak and a trough).

For the second principle (Equation (18)), the mean value of the sum of the absolute
values of the differential processing result should not be too small, if the mean value is too
small, it means that the phase waveform does not have large fluctuations, in other words,
the tag does not monitor the respiratory status of the human being. It is possible that this is
because the deployment position of the tag is not the main position of the human being’s
respiratory movement, then we should check another tag at this time, if the other tag also
does not monitor the human being’s respiratory status, this indicates that the person is
experiencing apnea and the system should alarm.

4. Experiments
4.1. Hardware Environment

The hardware environment consists of four parts: an Impinj Speedway R420 Reader,
some UHF 915M ALIEN AZ-9640inlay long-range passive RFID tags, a VIKITEK VA094
directional antenna for the reader and a laptop with a processor of Intel(R) Core(TM)
i7-6500U CPU @ 2.50 GHz 2.60 and 8G of RAM, as shown in Figure 14.

Antenna

Reader

Tag Laptop

Figure 14. Hardware.

4.2. Experimental Results

In this section, the respiratory accuracy Accuracy is calculated based on the
Equation (19), where R is the actual respiratory rate and R̂ is respiratory rate measurement.
For ground truth R, one observer counted the number of breaths by visually observing the
breathing activities. We also asked the volunteers to self-annotate the number of breaths per
minute. If the two records matched one another, we used the obtained number as ground
truth [44–46]. During the signal acquisition, each sample point 〈phase, RSSI, timestamp〉
returned from the reader contains timestamp information in milliseconds, and through the
timestamps t1 and t2 of the first and last sampling point, we can calculate the acquisition
time as t1 − t2 (ms), and the person will note down the number of times he/she respires as
N. Then, we can calculate the respiratory rate measurement as R̂ = N

1000(t1−t2)
(Hz)

Accuracy = 1− |R̂− R|
R

(19)

4.2.1. Effect of Distance on Respiratory Monitoring

In this section, comparison experiments on respiratory monitoring were carried out
at different distances between the reader and the human being, In this experiment, we
deployed tags on the chest and abdomen of the human being, respectively, as shown in
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Figure 15a and the experimental scenario is shown in Figure 15b, the human being is facing
the antenna and the distance between the human being and the antenna varies from 0.6 m
to 2.4 m, each time by 0.6 m. The transmitting frequency of the antenna is 920.625 Hz.
The data during the experiment is shown in Table 2 and the statistical results are shown in
Figure 16.

Tag 2

Tag 1

(a) Tag deployment.

Tag 1

Tag 2

Antenna

(b) Experimental scenario.

Figure 15. Experimental scenario for the distance comparison experiment.

Table 2. Respiratory rate monitoring results at different distances.

Distance Body Position Breathing Rate
Measurement

Actual
Breathing Rate Accuracy

0.6 m Chest 0.388803 Hz 0.3889 Hz 99.98%
Abdomen 0.395226Hz 98.37%

1.2 m Chest 0.428644 Hz 0.4052 Hz 94.21%
Abdomen 0.414011 Hz 97.83%

1.8 m Chest 0.382443 Hz 0.3693 Hz 96.44%
Abdomen 0.387746Hz 95.01%

2.4 m Chest 0.403683 Hz 0.3670 Hz 90.00%
Abdomen 0.417687 Hz 86.19%
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Figure 16. Results of respiratory rate statistics at different distances.
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As can be seen from Figure 16, respiratory monitoring is better at distances of 0.6 m, 1.2 m
and 1.8 m between the reader and the human being (Accuracy > 90%), and the accuracy of
respiratory monitoring decreases when the distance is 2.4 m (Accuracy 6 90%). In conclusion,
the accuracy of respiratory monitoring decreases with the increase in distance.

4.2.2. Multi-Person Respiratory Monitoring

In this section, respiratory monitoring was carried out on three volunteers simultane-
ously, with a distance of 1.2 m between the reader and the human beings. The experimental
scenario is shown in Figure 17. Three volunteers sat side by side, facing the antenna,
and the tag deployment method is also shown in Figure 15a. The transmitting frequency of
the antenna is 920.625 Hz. The data during the experiment are shown in Table 3, and the
statistical results are shown in Figure 18.

We also conduct an experiment in a sleeping scenario, where two volunteers are
sleeping in one bed with a distance of 0.5 m and the RFID reader is put at the foot of the
bed. The accuracy is 92.53% for volunteer A and 94.36% for volunteer B.

As can be seen from the figures, the respiratory monitoring accuracy is greater than 90%
and the method in this paper can achieve better respiratory monitoring for multi-person.

Antenna

Volunteer 1 Volunteer  2 Volunteer 3

1.2m

Figure 17. Multi-person respiratory monitoring experiment scenario.

Table 3. Multi-person respiratory monitoring results.

Volunteer Body Position Breathing Rate
Measurement

Actual
Breathing Rate Accuracy

2 Chest 0.4073239 Hz 0.4043 Hz 99.25%
Abdomen 0.4053693Hz 99.73%

3 Chest 0.3367861 Hz 0.3332 Hz 99.87%
Abdomen 0.3321456Hz 98.47%

1 Chest 0.3350213 Hz 0.3567 Hz 94.97%
Abdomen 0.3812563 Hz 91.34%
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Figure 18. Results of multi-person respiratory monitoring statistics.

4.2.3. Impact of Angular Shift of the Volunteer

This section is going to explore the effect of the angular shift of the volunteer on the
accuracy of respiration monitoring. We asked Volunteer 2 in Section 4.2.2 to sit in front
of the RFID reader with different angular shifts, and the diagram is shown in Figure 19.
As mentioned in Section 4.2.2, we obtain an accuracy of 99.25 % from chest variations
and an accuracy of 99.37 % from abdomen variations. Figure 19, respectively, shows the
accuracies from chest and abdomen variations under different angular shifts. It can be
inferred from this figure that with a larger angular shift, the accuracy gets worse. Compared
with accuracies when the volunteer and the reader are in a direct line, accuracies decrease
10.02% and 9.17 % when the volunteer is a 60-degree shift from the reader. Experimental
results also inspire us to explore the solution of realizing respiration monitoring under
different positions in future work.
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(a) Chest results
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Figure 19. Impact of angular shift of the volunteer.

4.2.4. Apnea

This paper explores apnea. The volunteer first breathed for a period of time, then held
his breath for a period of time, and finally breathed again. It was found that Butterworth
bandpass filtering would have an effect on the results, which are shown in Figure 20.



Sensors 2022, 22, 6166 21 of 25

The extreme value processing results for the chest and abdomen tags are shown in
Figure 20a,c. It can be seen that Butterworth bandpass filtering introduces a segment of the
abnormal waveform at the beginning of apnea, for example, at the beginning of 11.2354 s to
27.758 s in Figure 20a, and the differential processing results for the chest and abdomen tags
are shown in Figure 20b,d. Although Butterworth bandpass filtering causes interference,
apnea can still be monitored according to Equation (17), and the calculated results are
shown in Table 4.
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Figure 20. Apnea monitoring using Butterworth bandpass filtering.

Table 4. Apnea monitoring results using Butterworth bandpass filtering.

Body Location ∆t (s)
2 fmin∆t

(Respirating
Times)

L (Number of
Extreme Values) Apnea

Chest 16.5226 1.6523 1 X
Abdomen 15.8621 1.5862 1 X
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Without the Butterworth bandpass filtering, no abnormal waveforms appear at the
beginning of apnea, and the experimental results are shown in Figure 21. The calculated
results are shown in Table 5. For the chest tag, the number of extremes in the apnea
time period is 0 due to the absence of Butterworth bandpass filtering, which is more
accurate compared to when Butterworth bandpass filtering is used. For the abdominal
tag, although there is one extreme value in the apnea time period due to environmental
interference, the apnea condition is monitored.

Table 5. Apnea monitoring results without Butterworth bandpass filtering.

Body Location ∆t (s)
2 fmin∆t

(Respirating
Times)

L (Number of
Extreme Values) Apnea

Chest 16.5226 1.6523 0 X
Abdomen 15.2011 1.5201 1 X

In conclusion, the method proposed in this paper is able to monitor apnea. For the
apnea monitoring function, the performance is better when the Butterworth bandpass filter
is not used.
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Figure 21. Apnea monitoring without Butterworth bandpass filtering.
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5. Discussion

In this section, we briefly discuss the limitations and potential future work.

5.1. Non-Los Respiration Monitoring

In our paper, we can achieve multi-person respiration monitoring with RFID
technology in an LoS environment. However, the designed approach relies on the direct
transmission path from RFID tags to the reader, which hinders its applications in a non-Los
environment. In future work, we will further improve our method to make the system
suitable for non-LoS respiration monitoring.

5.2. Widen Sensing Scopes

The experimental results show that different positions and angular shifts of volunteers
may affect the respiration monitoring accuracy. In particular, it can achieve a 60-degree shift
with the accuracy of 90.2%, which is a main limitation of the proposed system. In future
work, we may explore the placement of RFID devices to enlarge the coverage of good
sensing positions. In addition, we can also design a rotatable port for the reader to overcome
the limitation of angular shift.

6. Conclusions

This paper presents an RFID-based multi-person respiratory monitoring method.
Firstly, our design deploys the tags on the chest and abdomen of the human being to monitor
respiratory motion guided by the characteristics of human respiratory motion. Secondly,
this paper solves the phase ambiguity problem introduced by the RFID reader hardware
and the wrapping problem of RFID phase data. Thirdly, we use a 2nd-order Butterworth
bandpass filter and FFT to extract the respiratory rate of the human being. Furthermore, this
paper uses wavelet decomposition and differential processing to reconstruct the respiratory
waveform returned by the 2nd-order Butterworth bandpass filter. Finally, experiments
were carried out to verify the validity of our method. We believe our method can provide
new ideas in the field of respiratory monitoring.
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