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Abstract: Resource constraints in the Industrial Internet of Things (IIoT) result in brute-force attacks,
transforming them into a botnet to launch Distributed Denial of Service Attacks. The delayed
detection of botnet formation presents challenges in controlling the spread of malicious scripts in
other devices and increases the probability of a high-volume cyberattack. In this paper, we propose
a secure Blockchain-enabled Digital Framework for the early detection of Bot formation in a Smart
Factory environment. A Digital Twin (DT) is designed for a group of devices on the edge layer to
collect device data and inspect packet headers using Deep Learning for connections with external
unique IP addresses with open connections. Data are synchronized between the DT and a Packet
Auditor (PA) for detecting corrupt device data transmission. Smart Contracts authenticate the DT and
PA, ensuring malicious nodes do not participate in data synchronization. Botnet spread is prevented
using DT certificate revocation. A comparative analysis of the proposed framework with existing
studies demonstrates that the synchronization of data between the DT and PA ensures data integrity
for the Botnet detection model training. Data privacy is maintained by inspecting only Packet headers,
thereby not requiring the decryption of encrypted data.
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1. Introduction

The Industrial Internet of Things is modernizing Smart Cities with its capacity to assist in
the rapid decision-making process of optimizing the manufacturing methods and facilitating
the flow of goods. The management of raw materials, manufacture of goods, assembly-line
production, final packaging and warehousing of goods are interconnected using heteroge-
neous devices [1,2]. Smart Factories are enriched by the automation of the production cycle
delivering reduced times to produce goods, increase business profits, and promote further op-
portunities in innovation for greater flexibility and improved efficiency [3–5]. Device-to-Device
communications further enable a comprehensive overview of the industrial environment
where sensors collaborate with each other, sharing data for the further optimized performance
of industrial machines. Decision-making processes are further expedited by reducing the time
to compute data from Cloud to Fog/Edge environments [6–8].

The Industrial Revolution (IR) from IR 3.0 to IR 4.0 supported by IIoT has greatly fueled
the growth of Smart Cities with a rapid response to the growing demands of its economy [9–11].
However, the transition to Industry 4.0 has increased the risks to network security due to
weak and ineffective security protocols in IIoT devices. The reduced computation capacity
and battery power restrict the implementation of strong security methods directly on the
devices [12–14]. Moreover, the heterogeneity of devices implemented in a single Smart Factory
restricts a common security protocol implementation for the system-wide network. Botnet
attacks present a dual risk to the Industry 4.0 network [15,16]. Firstly, the compromise of
devices using brute-force attack methods risk exposure of private data to unauthorized entities.
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Furthermore, the security of data is compromised, as cyber attackers modify and inject corrupt
data, affecting the network’s performance. Secondly, Distributed Denial of Attacks (DDoS)
further risks the entire network’s operational performance, resulting in failure device data
computation, data modeling, and analysis for operational performance [17,18].

Cloud-based Intrusion Detections Systems using Artificial Intelligence (AI) detect and
identify anomalies in the IIoT traffic, but they are generally ineffective for time-sensitive
applications such as Manufacturing Factories that rely on high efficiency to outmatch
consumer demands [19]. DT technology has recently been explored for the early detection
of malicious behavior in the network traffic originating from the physical IIoT devices.
DTs are virtual twins of physical devices and synchronize data amongst each other using
bi-directional communication channel. Modifications made to the physical devices are
mirrored in their DTs and vice versa [20,21]. Furthermore, their integration with AI models
encourages advanced modeling techniques for the early detection of malicious behavior
such as botnet activity before devices are fully weaponized to launch full-scale DDoS
attacks on the network servers.

In this paper, we propose a Blockchain-enabled Digital Twin Framework for the
early detection of botnet activity in an IIoT environment. The Framework integrates DT,
physical IIoT devices, Deep Learning model, Blockchain, and Smart Contracts for securing
the data flow of a Smart Factory environment. The framework implements a private
blockchain managed by a security vendor to register DTs, and a virtual node, PA, which
is responsible for securely synchronizing the DT data with physical devices using Smart
Contracts. Network traffic monitoring using Deep Learning inspects and analyzes both
encrypted and unencrypted traffic using packet headers. The model inspects for the early
detection of botnet behavior, alerting the security vendor to modify network policies and
isolate other Digital Twins from the infected group of devices.

The motivation for writing this paper is to address the growing concerns of botnet-
based cyberattacks on the Industry 4.0 network. The main contributions of this paper
include the following.

• A DT environment of the IIoT enables implementation of robust security protocols
that leverage resources from the edge datacenters.

• A private blockchain registers DTs as transactions in Blocks preventing malicious nodes from
injecting corrupt data into the data stream, affecting the data integrity of the collected data.

• A virtual node, PA, is registered with the Private Blockchain and captures the network
using a boundary set by the security vendor to detect Replay attacks on DTs.

• DT synchronization is established securely with the PA to identify if any packets
between the physical IoT and the virtual twin are dropped. The protocol detects
man-in-the-middle attackers between physical–virtual twins.

• The Deep Learning botnet-detection model inspects unique IP addresses and half-open
connections, indicating an open communication channel between the device and the
botnet Command and Control server.

• A comparative analysis with existing research shows that the proposed framework
provides data security, integrity, privacy, device availability, and non-repudiation.

The remainder of this paper is organized as follows. Section 2 discusses the existing
state-of-the-art studies in securing Industrial networks against cyberattacks. In Section 3,
we present the overview of the proposed system and discuss its workflow process in detail.
In Section 4, we perform a comparative analysis of the proposed scheme with recent studies.
The weaknesses of other schemes and future research areas are discussed, and, finally, in
Section 5, we conclude our paper.

2. Related Work

Botnet detection has been extensively researched in recent years; however, they do
not fulfill the growing requirements of the growing IIoT environment. In this section, we
discuss the various state-of-the-art related works and present the key areas of consideration
for a secure and reliable framework designed for the early detection of botnet activity.
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2.1. Existing Research

Several botnet-detection studies for IoT devices focus on implementing an AI model
using both centralized and distributed classification methods. A Zero-day botnet-detection
method for IoT–Edge devices is presented by Popoola et al. [22], implementing a Federated
Learning approach for traffic-anomaly detection. Several local models are trained directly
on IoT–Edge devices using the Deep Neural Network model to ensure data privacy con-
cerns. After several rounds of training on local devices, the global model is updated using
the aggregated results of local models. A Bot–IoT dataset is used to simulate a botnet sce-
nario achieving high detection rates but requires a long training time compared with other
centralized training models. A two-fold machine learning approach by Hussain et al. [23]
focused on identifying botnet behavior prior to a cyberattack against the network. A dataset
generated from three publicly available datasets includes 33 scan types and 60 DDoS attacks.
Using a dual machine learning approach, the first ResNet-18 model scans local IoT devices
for scanning activity indicative of botnet behavior. The second ResNet-19 model focuses
on identifying DDoS attacks and alert the system of a botnet-based attack. Though the
research indicates that early botnet behavior detection is essential for network security,
its dual machine learning approach still relies on identifying a DDoS attack for a botnet
detection behavior. An automated approach for botnet detection in IoT devices is presented
by Trajanovski [24] integrates honeypots with a sandbox environment. The objective is to
analyze devices with varying software and hardware configurations and prevent attackers
by performing anti-forensics and anti-analysis techniques. Identified attacking devices
are blacklisted from connecting with the network. Several Command-and-Control servers
use botnets as broadcast devices for a cyberattack, which may include critical devices for
a Healthcare, Manufacturing, or an Internet of Vehicles environment. The blacklisting of
devices is unsuitable for modern Smart City environments. A visualized botnet detection
framework proposed by Vinayakumar et al. [25] focuses on identifying botnets in a Smart
City environment. A two-level deep learning model first identifies the most frequent
DNS queries performed on Ethernet connections in conjunction with a threshold value.
A Deep-Learning-based Domain generation algorithm classifies benign and malicious
domain addresses.

Blockchain-based anomaly-detection solutions in IoT environments focus on securing
the network using distributed and scalable solutions. Hayat et al. [26] implemented
a Machine-Learning-based DDoS attack-mitigation method by initially registering all
devices in the decentralized network. The study suggests ejecting malicious devices
failing to authenticate with the Blockchain network. Each interacting device requires
prior registration with the network before inter-communicating with other devices. The
proposed approach does not address that several botnets are pre-registered IoT devices
with the Blockchain network; thus, an attacker is already an existing network member. The
study by Lekssays et al. [27] suggests that modern botnets implement a P2P architecture
to increase their chance of infecting a wider area of IoT devices. The authors proposed
a dynamic botnet-detection method using Blockchain for establishing trust between IoT
devices and internet service providers. The privacy of various actors is preserved by
associating pseudo-IDs for each member. The detection model requires a consensus among
all blockchain members to eject the device from the network upon the detection of malicious
activity. Sun et al. [28] proposed a lightweight permissioned Blockchain network for IoT
devices where each device is assigned a public key based on its identity attributes to
filter authorized devices from invalid requests. To avoid the delay in data processing in
the decentralized environment, a policy decision point algorithm identifies Blockchains’
node-making real-time off-chain decisions. Xu et al. [29] proposed a Bi-directional attack
proof Blockchain using chameleon hash functions for the IoT environment. The Committee
Members Auction consensus algorithm provides high scalability and attack resistance of
the decentralized network. Secret sharing distributes secret keys to network members via
Smart Contracts, ensuring only authorized members participate in the network.
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2.2. Comparison Study

In this sub-section, we describe the open challenges of the existing research and
compare them with the contributions of the proposed Blockchain-enabled Secure Digital
Twin framework. We examine how the proposed framework further improves the data
security of the IIoT environment with Deep Learning models

First, we discuss and compare the contributions of studies that focus on botnet detec-
tion by implementing AI- and Honeypot-based systems with the proposed framework. The
Federated-Learning-based framework proposed in [22] relies on training data as local mod-
els on the IoT devices, preventing user data transfer on edge networks for data privacy. The
objective of this study depends on retaining the raw IoT data on the device layer, preventing
external entities from accessing user data. IoT devices with low computational resources
are incapable of running resource-taxing deep learning models; thus, the feasibility of the
study remains unanswered. Furthermore, the research does not evaluate the performance
impact of directly implementing computationally expensive deep learning models directly
on resource constraint IoT devices. The two-fold machine learning approach in [23] initi-
ates DDoS attack detection after the IoT devices are compromised. The study’s objective
is focused on increasing the DDoS’s attack-detection accuracy and does not address the
security or privacy of IoT devices and data. The IoT botnet-detection framework presented
in [24] does not inspect IoT devices for growing malicious behavior and instead relies on
a honeypot environment for active botnet behavior detection. The study’s objective is to
avoid the attacker’s detection of a Honeypot environment and not to prevent its existence
and growth. The Visualized botnet-detection system proposed in [25] relies on training the
deep learning model using DNS data on a centralized server. The transmission of IoT data
from IoT devices presents data security, integrity, and privacy risks. A man-in-the-middle
attack easily compromises the deep learning model using poisoning attacks.

The proposed framework implements the botnet-detection deep learning model on
the edge layer, utilizing the vast available computational resources compared to the device
layer. Training on the edge layer reduces the risk of the poor performance of the deep
learning model training on IoT devices as present in [22]. Even though the proposed
framework implements a centralized deep learning approach, the PA-DT synchronization
reduces the risks of poisoning attacks affecting the botnet-detection system. Implementing
the DT synchronization with the PA reduces the risks of poisoning attacks present in
the studies [23,25]. The synchronization protocol of DT-PA prevents the compromise in
the deep learning training dataset and maintains the detection accuracy of the botnet
training model. Furthermore, the synchronization protocol identifies any man-in-the-
middle attacks, thus enabling the early detection of cyberattacks on the IIoT environment.
In the proposed framework, DT certificates enable a botnet-spread-prevention policy in
the IIoT environment managed by the security vendor. Upon identification of an infected
DT, the security vendor revokes its corresponding IoT devices from communicating with
other DTs. The honeypot-based study in [24] relies on botnet behavior detection. Still, it
does not present a method to contain the spread of the malicious scripts transmitted from
compromised IoT devices to benign devices. A security vendor is forced to either let the
IoT devices function without any security policy or shut down all devices until a security
firmware is patched, thus impacting operational performance in the IIoT environment.

Finally, the remaining research focuses on deploying blockchain technology as the
primary security model for the secure authentication of IoT devices and secure storage
of IoT data. The Blockchain-based Multilevel DDoS Mitigation mechanism proposed
in [26] requires each device to possess a signature for communicating with the server and
avoid being blocked from communicating. Signature verification of each device using
Smart Contracts with Blockchain introduces delays due to frequent transaction requests
in a real-time scenario. Thus, the model is unsuitable for IIoT environments such as
Smart Factories, Healthcare, and Smart Energy-based environments. The PAutoBotCatcher
framework presented in [27] registers devices in the blockchain following whitelist and
blacklist mechanisms. The framework successfully blacklists all infected devices using
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their IP addresses; however, a man-in-middle-attack using a spoofed IP address is able to
transmit flooding attacks on the server. As the new IP address is blacklisted, the attacker
dynamically changes their address and resumes the attack. The Blockchain-based IoT access
system presented in [28] proposes a localized, decentralized ledger for establishing which
IoT devices have access to offload data for computation at the edge layer. The research
focuses on preventing unauthorized entities from accessing the system server. However,
the lack of an active traffic flow detection protocol prevents the system from identifying
the growing botnet activity, resulting in registered and authenticated devices launching
DDoS attacks. The Bidirectional-linked Blockchain system presented in [29] prevents cyber
attackers from taking control of the blockchain network using secret keys. The study’s main
objective is to present a robust defense for the system server but does not secure the IoT
devices directly. A committee-member-based consensus mechanism selects which users
are selected to join the network. A lack of security measures between the edge layer and
the device-layer-compromised devices enables malicious users to transmit corrupt data to
the system server.

In the proposed framework, IoT devices do not individually connect with the server
but do so using a DT, where each DT is allotted an authentication certificate. A single DT
enables a collective cluster of associated IoT devices from communicating with the network.
The DT-based certificate approach addresses the challenge present in [26] of frequent
authentications, resulting in network congestion due to poor transactions/minute in the
Blockchain system. The time-boundary-based DT-PT synchronization protocol actively
identifies compromised IoT devices by inspecting transmitted packets. The vulnerability of
an attacker using a spoofed address present in [27] is identified early by the security vendor
before a large-scale cyberattack takes place. The study in [28] establishes access control
for IoT devices using blockchain but lacks a robust traffic-anomaly detection-protocol.
Addressing this vulnerability, the proposed framework implements a dual traffic-anomaly-
detection process, the DT-PA synchronization protocol and the deep-learning-based botnet-
detection model. The dual-anomaly-detection approach actively identifies man-in-the-
middle attacks such as Delay-and-Replay attacks and detects DDoS attacks using Deep
Learning. Traffic flows to the network. The active DT-PA synchronization protocol identifies
registered IoT devices in a DT transmitting their attack packets and limits the growth of
botnet behavior by revoking the DT certificate, thus addressing the vulnerability found
in [29], where registered devices continue to transmit attack packets.

2.3. Key Considerations

A botnet-detection framework for IIoT devices in Smart Factories requires a secure
data synchronization method and the quick identification of malicious activity in the
network. The following five key considerations are essential to our proposed framework
and their comparative analysis is illustrated in Table 1.

• Data Security—Data transmission from IoT devices to virtual twins at the edge layer re-
quire authorization measures preventing malicious entities from accessing confidential
Industrial data. A framework based on sharing data ownership to untrusted entities
requires an authentication mechanism to ensure only trusted nodes have access.

• Data Integrity—Deep Learning models require accurate captured data to train and
detect botnet open channels in the IoT devices. A botnet-detection framework requires
a data verification protocol to verify if data in transmission are modified. Modification
of data at the virtual twins through man-in-the-middle attacks reduces the reliability
in the accurate detection of True positives and True negatives.

• Data Privacy—Industrial data secrets shared via IP packets risk being exposed when
analyzed using Deep Learning methods. A privacy-preserving framework focusing on
Packet Header information reduce the risk of data exposure to unauthorized entities.

• Availability—Devices identified with botnet activity risk infecting other sensors using
brute-force methods. Successful detection of infected devices should be isolated from
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spreading botnet scripts to other benign devices. The availability of benign devices is
essential not to halt the entire industrial network operation.

• Non-Repudiation—Malicious packet data shared by infected devices are required to be
securely stored in tamper-proof environments such as Blockchain. Infected devices ID
and IP address are essential for record-keeping for future security firmware updates.

Table 1. Comparative Analysis of the proposed scheme with related research.

References Mechanism Data Security Data Integrity Data Privacy Availability Non-
Repudiation

Popoola et al.
[22] (2021)

Federated
Learning

Model is trained
locally on devices

Poison attacks
affect data
integrity

Only local model
gradients trained
at the device are
shared with the

network

Device
availability is not
addressed in this

study

Non-repudiation
is not addressed

in this study

Hussain et al.
[23] (2021)

Dual Machine
Learning

Data transmitted
to centralized

server is exposed
to man-in-the-

middle
attacks

Machine
Learning models

train using
compromised

data

Data in
transmission is

exposed to man-
in-the-middle

attacks

Arithmetic
operations are

performed over
an untrusted
cloud server

exposing
computation

process

Records of
infected device

are not
maintained

Trajanovski et al.
[24] (2021) Honeypot

Delayed
identification of
compromised

devices does not
address data

security

Delayed
identification of
compromised

devices does not
address data

integrity

Delayed
identification of
compromised

devices does not
address data

privacy

The research does
not address

device
availability

Records of
infected device

are not
maintained

Vinayakumar
et al. [25] (2020)

Deep Learning
using DNS Query

Man-in-the-
middle attacks

compromise data
upload for model

training

Man-in-the-
middle attacks

transmit corrupt
data in

transmission

Pseudo IDs
preserve the

privacy of users

The research does
not address

device availability
requirement

Records of
infected device

are not
maintained

Hayat et al.
[26] (2022)

Machine
Learning and

Blockchain

Data is securely
stored in

Blockchain

Malicious devices
are preregistered
in the Blockchain

network,
transmitting

compromised
data to the
Machine

Learning model

Privacy of users
are maintained by

verifying
identities at both
the Edge and the
cloud layer using
dual signatures
and identifiers

Malicious devices
are ejected from

the network

The study does
not address
recording of

compromised
devices.

Lekssays et al.
[27] (2021) Blockchain

Data is securely
stored in

Blockchain

Blockchain
validates devices

allowed to
transmit data

Privacy of data is
not addressed in

the study

The study does
not prevent
spreading of
botnet script

The study does
not address
recording of

compromised
devices

Sun et al.
[28] (2021)

Blockchain and
Encryption

Data storage in
Blockchain

prevents data
manipulation

Public key-based
authentication

prevents corrupt
data upload

The study does
not address Data

Privacy

The study does
not prevent
spreading of
botnet script

Device
information is

stored in
Blockchain for

traceability

Xu et al.
[29] (2021)

Blockchain and
Smart Contracts

Consensus
algorithm ensures

stored data
security

Infected IoT bots
transmit data for

anomaly
detection

Secret keys
provided to
authorized

members access
data.

The study does
not prevent
spreading of
botnet script

Device
information is

stored in
Blockchain for

traceability

Proposed scheme Digital Twin and
Blockchain

Authorized and
registered Digital
Twins share data

Synchronization
between the

Digital Twin and
Packet Auditor

verifies data
transmission

Inspection of
Packet Headers

enables
inspection of
encrypted IP

packets

Certificate
revocation of
Digital Twins

prevents Botnet
from spreading

IP address of
infected devices
are stored in the

Blockchain
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3. Proposed Framework

This section presents the overview and the components used in the Digital Twin
enabled DDoS attack-prevention framework for IoT enabled Smart Cities. The device layer
consists of several physical entities such as Factories, Hospitals, and Vehicles that operate
independently supported by embedded sensors. A DT of each entity is maintained at the
edge layer to monitor the network flow. A security vendor is responsible for maintaining
the security of the DT and operates a Deep Learning model to analyze the DT behavior for
anomalous behavior. Attack-detection at the DT improves the scalability of the network and
reduces attack-detection time. The fine-grain inspection of each device’s traffic increases
the computational load over time, such as when a hospital or factory adds the number of
sensor devices in its network based on its demand.

A Consortium Blockchain network maintained by the security vendor is responsible
for recording the identified malicious activity indicative of growing Botnet activity on
the Blockchain. As the botnet targets are not necessarily on the same cloud server of the
infected entity, the security vendor is required to submit the alert to other security vendors
and a Cyber-Crime unit of the developing botnet activity. Furthermore, in the workflow
sub-section, we illustrate and present the detailed process flow of the botnet-detection
process, DT ranking, Blockchain data storage, and the Smart Contract initiated to alert
other security vendors. Table 2 illustrates the abbreviations used in the framework.

Table 2. Notation table for abbreviations used in the framework.

No. Term Description

1. DT Digital Twin
2. DT1 Production Floor Digital Twin
3. DT2 Raw Material Management Digital Twin
4. DT3 Assembly Line Digital Twin
5. DT4 Packaging and Warehousing Digital Twin
6. HTTPS Hypertext Transfer Protocol Secure
7. SSL Secure Socket Layer
9. UDP User Datagram Protocol
10. IP Internet Protocol
11. PA Packet Auditor
12. PAID Packet Auditor ID
13. Txn Transaction
14. CertDT Digital Twin Certificate
15. PPubK Packet Auditor Public Key
16. PPrvK Packet Auditor Private Key
17. DTpubK Digital Twin Public Key
18. DTprvK Digital Twin Private Key
19. Pro fDT Digital Twin Profile
20. DID Device ID
21. IPsrcn IP Packet Source
22. IPdstn IP Packet Destination
23. tstmpn Timestamp of captured packet
24. bdupper Upper Time Boundary
25. bdlower Lower Time Boundary
26. PT Physical Twin
27. DL Deep Learning
28. ACK Acknowledgement Packet
29. SYN Synchronize Packet
30. C&C Command and Control
31. LSTM Long-Short-Term Memory

3.1. Overview of the Proposed Framework

The proposed scheme consists of the several elements participating in the botnet-detection
process, DT ranking and Profile generation, and network alert of botnet-generation process.
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• IoT devices are identified as physical devices that gather and upload data to the cloud
for processing. Each device is responsible for generating data from varying sources
such as machinery, transport vehicles, assembly lines, and private devices in homes
and offices. Devices are heterogeneous with varying security protocols, computing
power, and battery power.

• Using the example of a Smart Factory, different manufacturing processes, such as
raw material management, assembly line production, and packaging, deploy several
sensors. Each process deploys several sensors that communicate data with other
processes. The DT of each separate process, such as assembly-line production, is
designed on the edge layer that synchronizes and mirrors data flowing in the local
network. A DT provides a surveillance for all devices and access points within its
cluster. Data collected at this layer trains the local Deep Learning model to actively
search for botnet-spread behavior. Computation power is provided by local edge-
based datacenters to the DT, thus reducing the necessity of running Deep Learning
models on IoT devices with low computational power and battery capacity.

• A Security Vendor monitors the DT using the Deep Learning model and maintains
the ranking profile for each DT under their supervision. In this paper, we assume the
Security Vendor is responsible for maintaining and monitoring the network security
of four different DTs of a Smart Factory environment.

• Security Vendors manage a private blockchain for storing the rank of each DT identi-
fied with a high risk of botnet activity. Each security vendor operates separately and
monitors several organizations, such as a group of Hospitals or Factories.

• Individual security vendors initiate Smart Contracts for alerting other security man-
agers of a possible security attack. Records are submitted of each contract as a transac-
tion in the Blockchain to ensure the chain of custody.

As illustrated in Figure 1 and presented in Algorithm 1, the proposed framework is
based on the following process.

Figure 1. Blockchain-enabled Secure Digital Twin framework overview.

Step 1. IoT devices in the factories collect data from the machinery and share with the edge
for computation and analysis.

Step 2. DTs present at the edge layer synchronize data with their respective departments
in a factory, such as the production floor (DT1), raw-materials management (DT2),
assembly line (DT3), and packaging and warehousing (DT4). Each department is
represented by an application which collects raw data from IoT devices and forwards
to the edge for processing. For example, the production floor collects all data from the
sensors deployed in the manufacturing and processing of goods.

Step 3. Ensuring only authorized DTs are allowed to send data, they are registered in the
private blockchain. A separate PA is registered, which facilitates data-synchronization
between the DT and IoT devices.
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Step 4. DT and the PA synchronize data to ensure industry traffic is not intercepted by
unauthorized entities. Data collected by the DT are used for training the model for
botnet detection and requires security from man-in-the-middle attacks.

Step 5. DTs represent the network topology, traffic load, and the benign and malicious
traffic flowing in their network. Data are captured at this junction to analyze and
identify botnet activity.

Step 6. TCP/UDP packet headers are collected to analyze unencrypted packet data. IP
packets such as Hypertext Transfer Protocol Secure (HTTPS) are Secure Socket Layer
(SSL) encrypted and thus the Botnet detection identified using packet headers inspects
both HTTP and HTTPS traffic.

Step 7. Features are collected from the DTs that include both TCP and UDP packets. Packet
time to arrive, open or closed connections, and the IP addresses used are collected
for analysis.

Step 8. In this study, to simulate a botnet detection, malicious packet flow is introduced in
DT1. DT2, DT3, and DT4 are benign virtual cluster of devices and are potential targets
of growing botnet activity.

Step 9. Successful classification of DT1 with botnet activity, the security vendor initiates
prevention measures for the growing botnet activity. All traffic from the infected
device DT is isolated from inter-communicating with devices from the benign DTs
and prevents the botnet activity’s spread. As each DT includes all devices and local
gateway access points such as routers, all outbound traffic at DT1 is excluded from
sending packets to DT2, DT3, and DT4.

Step 10. Each Smart Contract is recorded in the Blockchain to maintain the chain of custody
during investigations into the source of attacks and device security
firmware management.

Algorithm 1 The proposed Blockchain-enabled Secure Digital Twin Framework

Input: Device1−n, DT1−4, PA, TCP/UDP packets

1. Initialization Phase:
2. Distribute devices

(
Device1−p , Device1−q, Device1−r) based on factory processes.

3. Assign factory process 1 – 4 to DT1−4
4. Split Devices to DT1, DT2, DT3, and DT4.
5. Register DTn (Devicesn) in the private blockchain and assign certificate
6. DT1−n transmits and shares data with other DT1−n
7. Synchronize data between DT1−4 and PA to determine

8. if
(

DTpackets = PApackets

)
9. return network secure
10. else
11. return register IP addresses and DTn in private blockchain
12. end if
13. Collect TCP/UDP packet headers
14. Train deep learning model using collected packets
15. Assign IoT devices their group based on their process
16. if botnet activity = false
17. return network secure
18. else
19. return register IP addresses and infected DTn in private blockchain
20. revoke compromised DTn certificate to prevent inter DT communication
21. end if
22. End
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IoT devices include varying types of embedded sensors with differing battery and
computational resources. A common DT ensures security protocols are feasible across all
devices despite device heterogeneity. IP headers provide data from both from encrypted
and unencrypted packets. The Blockchain network prevents malicious nodes from sending
false data to the network, raising multiple false alarms preventing security vendors from
learning true attack scenarios.

3.2. Workflow of the Proposed Scheme

This section describes the process flow of the proposed scheme based on four phases.
First, DT and a PA are registered with the Blockchain to ensure only authorized virtual
twins receive data from IoT devices. Secondly, an authorized PA ensures the secure
synchronization and capture of IoT packet data for DT synchronization. Thirdly, traffic
inspection of packets using Deep Learning are analyzed for botnet activity. Lastly, DT
isolates inter-DT communication to prevent the growth of the botnet traffic and initiates
the collection of infected data using a certificate generated by the PA for each DT.

3.2.1. Packet Auditor and Digital Twin Registration

Each PA and DT are first registered with the Blockchain network to prevent malicious
nodes from transmitting false alarms to the security vendor. We assume the PA is a secure
virtual node and monitored by the Security Vendor. As illustrated in Figure 2, PA and DT
registration process flow is as follows.

Figure 2. Packet Auditor and Digital Twin registration.

Step 1. The security vendor generates a new and unique Packet Auditor ID (PAID) using
a nonce value for randomness and the first five values of the hash value generated
based on the number of devices paired with the DT.

Step 2. A transaction (Txn1) is created in the Blockchain network using the new PAID. The
PAID is first encrypted using a public key generated (PPubK).

Txn1 = PPubK(PAID) (1)

Step 3. The private blockchain node verifies if the network has an existing PA registered. If
a PAID exists, the transaction will not proceed.

Step 4. If PAID is not found, then the new PAID is registered using a Smart Contract. A
new block in the network is created, and, as such, other blocks in the Blockchain are
aware of it.

Step 5. Once registered a certificate (CertDT) is generated for each DT associated with
the PA, a second transaction is created (Txn2) to register the new certificate using
the Private Key (PPrvK) belonging to the PA. A certificate ensures that all future
intercommunicating DTs can validate if the other DT is not a malicious virtual twin
and not part of the network.

Txn2 = DTpubK (PPrvK(PAID)) (2)
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Step 6. Once Txn2 is processed using the public key of the DT (DTpubK), DT1 obtains the
certificate using its private key (DTprvK).

Step 7. The certificate is distributed to DT1. Each new certificate using the PPrvK of PA
generates Txnn for DTn.

Step 8. The public keys of the DTs are stored in the Blockchain to prevent a malicious node
from spoofing as a valid DT and attempting to access or corrupt private data.

Step 9. The PA is further responsible for recording the IP addresses of each IoT device
included in DTn and registering them on the Blockchain. This step prevents an
attacker from joining their malicious node as part of a valid DTn.

The secure registration of each DT and the PA enables the security vendor to establish
that data transmission in the DT are from valid nodes. The recording of IP addresses
prevents an external entity from adding nodes into the DT and transmitting corrupt data.
Furthermore, the secure and immutable records stored in the private blockchain prevents
an external entity from interacting with other IoT devices and injecting scripts.

3.2.2. Digital Twin Synchronization

As both PA and DT are registered in the Blockchain in the network, the synchronization
between DT and IoT devices is monitored. The objective of the synchronization monitoring
is to periodically verify if data in transmission between the DT and its devices are not
modified in transmission. Any modification is indicative that private data have been
intercepted and monitored by unauthorized entities. The process to synchronize data
between the DT and PA is based on two phases. In the first phase, the PA captures the data
lifecycle of the devices within a DT. Secondly, the DT shares its packet flow captured at a
defined state and requests the PA to synchronize and validate the data.

As shown in Algorithm 2, the process flow for the first phase, capturing data life cycle
is based on the flowing steps.

Step 1. The PA generates a new profile for each DT included in its network. Each DT in a
factory undergoes various phases of the product-development lifecycle, and a vast
amount of data is generated. Profiles stored in the DT are kept on a temporary phase
and not stored on the Blockchain. Once a DT synchronizes the data with the PA, the
profiles are removed. However, in the event of an attack detection, the PA captures
profiles and actively stores them in the private blockchain and establish records of
malicious activity for future investigation.

Step 2. The PA is supported by cloud resources; however, capturing real-time data on
the PA incurs a very high storage cost and thus a boundary is established which is
followed by both the PA and DT during synchronization.

Step 3. For each DT, a new profile (Pro fDT) is generated, where the timestamp of captured
packets (tstmpi), their Device IDs (DID), and the IP addresses of packet sources
(IPsrci) and destinations (IPdsti) are collected as part of an individual Profile. Here, i
represents the captured packets.

Pro fDT = DID(IPsrcn, IPdstn, tstmpn) (3)

The Pro fDT is a collection of the basic information of each packet collected. The packet
payload is not collected and stored due to storage concerns and operational costs.

Step 4 The data collection time boundary is selected by the security vendor to reduce
the amount of data collected. Each boundary limit varies in days, hours, and min-
utes, where packet data are collected. Each time-boundary consists of an upper
(bdupper) and lower boundary (bdlower) to ensure a precise data collection period and
storage limitations.

DTn = (bdupper, bdlower (Pro fDT) (4)
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Each boundary limit set by the security vendor by the PA is also applicable on the
DT for accurate synchronization. The security vendor is responsible for initiating the
synchronization process, after which all Pro fDT in the PA are removed.

Algorithm 2 Digital Twin synchronization

Input: Pro fDT , DTn, DID, IPsrcn, IPdstn, tstmpn, bdupper, bdlower, PA, CertDT, DTprvK ,
DTpubK , PAID, PPrvK , PPubK

1. Begin:
2. Design new Pro fDT :
3. Select time boundary
4. Vendor = bdupper(hh : mm : ss), bdlower(hh : mm : ss)
5. Assign time boundary to Pro fDT
6. for (DT = 1 to DTn ) do
7. Pro fDT (bdupper, bdlower) = Vendor (bdupper, bdlower)
8. End for
9. Authenticate:
10. Encrypt DT Certificate
11. Encrypt CertDT with DTprvK

12. DTn(DTprvK(CertDT))→ Blockchain Decrypt and Verify DT Certificate
13. if DTn(DTpubK(CertDT)) = True
14. return DT authentication successful
15. else
16. CertDT not found. Authentication failed
17. end if
18. Encrypt PA ID
19. Encrypt PAID with PPrvK
20. PA( PPrvK))→ Blockchain
21. Decrypt and Verify PA ID
22. if PA (PPubK (PAID) = True
23. return PA authentication successful; initiate DT Sync
24. else
25. PAID not found. Authentication failed
26. end if
27. Initate Sync
28. Verify DTn (Pro fDT) with the PA
29. if Pro fDT (bdupper, bdlower) = Vendor (bdupper, bdlower)
30. return Initiate Sync
31. if PA(DID(IPsrcn, IPdstn, tstmpn)) = DT (DID(IPsrcn, IPdstn, tstmpn))
32. return packets match
33. DT (DID(IPsrcn, IPdstn, tstmpn))→ Blockchain
34. else
35. Profiles mismatch. Update security vendor.
36. DT (DID(IPsrcn, IPdstn, tstmpn))))→ Blockchain
37. end if
38. else
39. return Pro fDT profile mismatch. Update security vendor
40. end if
41. End

The PA temporarily stores the data until the DT successfully synchronizes its collected
data. In the second phase, the DT synchronization process is initiated. The process flow for
synchronizing the packet data between the DT with the PA, as illustrated in Figure 3, are
as follows.



Sensors 2022, 22, 6133 13 of 25

Step 1. Prior to the synchronization process, DT initiates a sync request by transmitting
its CertDT signed by its DTprvK. We assume entities in the network operate in an
untrusted environment, where each node is suspected to be a malicious node.

Step 2. The private blockchain network verifies the CertDT using the stored DTpubK. If
the certificate is found valid, a Smart Contract is initiated between the DT and the
PA. If, however, the DTpubK fails to verify the certificate, it is assumed to be an
invalid request.

Step 3. The PA submits its PAID signed using its PPrvK. The Blockchain network verifies the
PAID using the stored PPubK. If the PAID is found valid, the Smart Contract’s security
conditions are fulfilled, and the synchronization process initiates.

Step 4. The Pro fDT stored in the DT and the Pro fDT stored in the PA share the same time
limit of captured data, and, thus, the DT is required to only share the DTn along with
the time boundaries, bdupper, bdlower, that are the start and end timestamps, when
packets are recorded.

Step 5. The PA analyzes the DTn to locate the correct profile and verifies if the bdupper, bdlower
matches with its stored DTn. If it matches, the PA transmits the DTn with the DT and
fulfills its Smart Contract condition.

Step 6. The DT based on each DID data flowing in its network matches the Device IDs
shared by the PA, such that,

PA(DID(IPsrcn, IPdstn, tstmpn))= DT (DID(IPsrcn, IPdstn, tstmpn)). (5)

Step 7. If the bdupper, bdlower does not match in the DTn, then an invalid request is sent
as a reply to the DT, the Smart Contract is closed. If the boundaries match, data
synchronization proceeds normally.

Step 8. Packet flow between the DT and the PA is synchronized, and data are verified.
Step 9. The results of the contract are registered in the Blockchain as a transaction, and the

outcome of the synchronization is recorded.

Figure 3. Digital Twin synchronization.

If the packet data matched, the synchronization-state protocol is successful, and
the process will repeat itself. If, however, the timestamps varied due to differing time
boundaries, the framework records a malicious activity in the DT. The timestamp between
the packets received by the PA from the IoT device and those recorded by the DT indicates
a Delay attack.

3.2.3. Network Traffic Monitoring

The packet Inspection of both TCP and UDP packets include features that are both
unencrypted compared to their payloads and do not require deep inspections of payloads
to reduce the time to train the Deep Learning (DL) model. Feature extractions are identified
to include packets from IP addresses that are unique, i.e., devices transmitting data to
unknown sources that are indicative of two outcomes, the attack target server is external
to the factory’s cloud server, or the devices are communicating with external IoT nodes to
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inject malicious scripts. Bots transmit malicious scripts to different IP addresses that are
not part of the local network and target vulnerable sensors belonging to other networks,
such as Healthcare, Logistics, and Office Buildings. The framework focuses on inspecting
random IP addresses for inspection, which are expected to exhibit higher malware traffic
than legitimate traffic flow. Furthermore, the number of random IP addresses is higher, as
bots do not transmit scripts to the same IP address repeatedly to avoid detection and to
infect several devices in the shortest time and initiate a DdoS attack as soon as possible.

Other features selected for inspection include the monitoring of the half-open connec-
tions between devices as bots open several connections with other devices with invalid
requests without receiving a reply to ACK messages. Such methods indicate a possible
TCP SYN flood attack, where an attacker attempts to make a server unavailable by flooding
it with several requests, leaving all ports of the target in half-open state. Furthermore, we
include the maximum, minimum, and average size of packets in our feature classification,
as several malwares transmit fewer headers compared to benign packets. Smaller packets
require more packets to be transmitted, resulting in a flood-based attack on the target server.
The Maximum Transmission Packet size is set at 1500 bytes, whereas attacks packets send
packets of 90 bytes [30], increasing the count of the packets transmitted. Lastly, the time dif-
ference in packet transmissions is inspected, as reduced time intervals indicate an increased
count of packets transmitted to the destination server compared with legitimate traffic.

Botnets maintain an open connection of TCP traffic with the Command and Control
(CnC) server by exchanging PUSH and ACK messages, a behavior exhibited by the Mirai
botnet actively sending commands and tracking the count of devices included in the bot-
net [31]. The detection of infected devices is identified, demonstrating frequent connections
with unique IP addresses, indicative of two scenarios, a connection with an attack target or
a connection with the C&C server. We correlate the results of devices that have frequent
half-open connections with unique IP addresses as the source of the C&C server.

In this paper, we implement the Long-Short-Term Memory (LSTM), a variant of the
Recurrent Neural Network ideal for a large collection of packet data and where the data
captured have high similarity. Since the amount of traffic originating from IoT devices
is considered large in size, we implement the LSTM model for the botnet training. The
advantage of LSTM over other models is where they maintain a memory cell that preserves
the earlier sequential input data and manage long-term dependencies. The model consisting
of input, forget, and output gates collects long-term dependencies and uses a sigmoid
function to filter data at each gate.

3.2.4. Device Isolation

In the final phase of the framework, infected devices are recognized by their IP
addresses. The Security Vendor is alerted to the presence of a botnet and issues a network
policy update for device isolation. The process flow for device isolation, as presented in
Algorithm 3, is as follows.

Step 1. The IP addresses of infected devices are recorded and analyzed with the records
stored in the Blockchain along with their associated DT. The certificate of the DT is
used to isolate the device from communicating with other DTs.

Step 2. The Security Vendor initiates a network-wide policy update by initiating a Smart
Contract with DTs (DT2, DT3, and DT4). Each DT is required to prove their validity
by sharing their certificates, which have been signed using their private keys DTprvK.

Step 3. The Blockchain network verifies the certificate of each DT using their respective
DTpubK. Failure to verify the validity of the Certificate results in the connection
being terminated.

Step 4. Once the proof of identity is validated, the security vendor issues a revoke command
of DT1’s certificate, preventing any inter-device communication to prevent the spread
of botnet scripts.

Step 5. The revocation of the DT1’s certificate is stored in the Blockchain along with the
policy update issued to other DTs.
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Algorithm 3 Device Isolation

Input: Pro fDT , DTn, CertDT, DTprvK , DTpubK , Security Vendor

1. Begin:
2. Revoke DTn:
3. for (DT = 1 to DTn ) do
4. Encrypt DT Certificate
5. Encrypt CertDT with DTprvK

6. DTn(DTprvK(CertDT))→ Blockchain Decrypt and Verify DT Certificate
7. if DTn(DTpubK(CertDT)) = True
8. return DT authentication successful
9. if DTn((CertDT)) = True // Verify if DTn is compromised
10. return revoke DTn((CertDT))
11. DTn((CertDT))→ Blockchain // Record revoked Certificate in Blockchain
12. else
13. return DTn((CertDT)) is verified
14. end if
15. else
16. return CertDT not found. Authentication failed
17. end if
18. end for
19. End

The revocation of the DT’s certificate mirrors the policy on the physical devices, and,
as such, all physical devices associated with DT1 are blocked from communicating with
DT2, DT3, and DT4. The secure recording of the actions taken by the framework on the
private blockchain network ensures the maintenance of the chain of custody of all steps
taken by the security vendor to secure the factory environment from future cyberattacks.

4. Analysis

In this section, we evaluate the performance of the proposed Blockchain-enabled
Secure Digital Twin Framework for early botnet-behavior-detection with existing studies.
We first analyze the performance of the PA- and DT-synchronization protocol for early
detection of man-in-the-middle attacks. The performance is evaluated based on latency and
accuracy of the synchronization protocol and compared with a baseline model. Secondly,
we study the impact of an ongoing cyberattack on the transaction processing speed for
increased validation of PA and DT and compare it with the existing studies. Finally, we
analyze the impact of a DdoS attack on the Blockchain nodes affecting the transaction
processing speed. We analyze the attack resistance on the PoA algorithm used in the
proposed framework’s private blockchain and compare it with existing studies. Finally,
using the feature selection based on the traffic identified from the PA-DT synchronization,
we compare the botnet-detection model’s accuracy, precision, recall, and F1 scores with
existing studies.

4.1. Evaluation Environment

The proposed framework is evaluated using a system running an Ubuntu 18.0.4 oper-
ating system using a 4.0 Ghz i7 processor and 64 GB RAM. Smart Contracts are designed
using Solidity for authenticating DT and PA. The Private Blockchain is designed using the
Proof of Authority consensus model where the block validator is limited to only the security
vendor. We removed the requirement for the mining of blocks using complex cryptographic
puzzles and enabled the security vendor to be the sole authority to approve new block
mining. Physical IoT devices are represented using 5 Raspberry PI B+ with 2 GB RAM with
1.5 Ghz processor. A sixth Raspberry device represents the smart factory manufacturing
process application, receiving traffic from other IoT devices. Using VirtualBox, we make
a DT of the 6th Raspberry Device, the Physical Twin (PT) of which represents the DT on



Sensors 2022, 22, 6133 16 of 25

the edge layer. Data is mirrored between each PT IoT device and its virtual counterpart,
DT, for maintaining synchronization. The PA uses a Docker Container with Wireshark to
monitor collected packet data.

The Botnet-detection protocol is evaluated using the Bot–IoT Dataset [32–37] generated
by the Cyber Range Lab of UNSW Canberra. The traffic dataset contains a total of 72 million
records consisting of both benign and malicious botnet traffic. Attack types are focused
on the most frequent of cyberattacks, DDoS and DoS attacks. The dataset is based on an
80:20 split based on training and testing sets, respectively. As stated in Section 3.2.3 of
Network Traffic Monitoring, we focus on the count of half-open TCP connections and the
maximum and the minimum counts of packets based on the uniqueness of their IP address.
We include these connections on the premise that they are more likely to connect with
external servers and launch cyberattacks. Furthermore, the feature selection also includes
the mean count of packets for each unique IP address. Other features include the mean
packet length to identify if the attacker attempts to launch a flooding attack using a small
packet size. The feature selection is based on identifying the relevant features and excluding
redundant data that serves no benefit in the botnet detection. Overfitting is a challenge,
and the LSTM model implements a dropout value of 0.2 and uses two hidden layers. The
count of hidden nodes increases from 23 to 64 and finally to 128. The evaluation of the
model is based on 100 rounds to demonstrate its performance using the identified features.

4.2. Digital Twin and Packet Auditor Analysis

We first measure the impact on performance during the DT synchronization with
the PT, which helps us evaluate the real-time application of DTs for other time-sensitive
applications such as Healthcare. Second, we observe the latency and CPU consumption
in packet synchronization between the DT and PA and compare it with a baseline model
that detects packet exchanges in real-time. In this stage, we introduce malicious packets
in the data stream of DT to evaluate the duration of identifying transmission of malicious
information by the PA.

As illustrated in Figure 4a, the delay in terms of the recording of the packet stream on
the DT is minimal compared to the real-time traffic in PT. An average delay of 0.002 millisec-
onds (ms) enables the DT to mirror real-time operations for time-sensitive tasks. Table 3
outlines the performance of the PA-DT synchronization protocol.

Figure 4. (a) DT Synchronization with PT; (b) CPU utilization.

Table 3. Analysis of DT− PT Synchronization Latency.

Parameters Models 1000 2000 3000 4000 5000 6000

Latency
(ms)

PT 6.844 6.845 6.853 6.868 6.875 6.882
DT 6.846 6.847 6.856 6.870 6.877 6.884

From Figure 4b, we observe that the CPU utilization of the PT and DT during state
synchronization is nearly the same. Both DT and PT are set to use the same amount of CPU
resources as the 1.5 Ghz processor based on the Raspberry PI B + device. Table 4 illustrates
the analysis of the DT-PT synchronization CPU consumption.
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Table 4. Analysis of DT− PT Synchronization CPU consumption.

Parameters Time
(ms) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

CPU Consumption (%)
PT 19.74 22.65 23.67 24.34 26.42 29.76 31.54 33.78 35.70 37.89 42.55 45.22

DT 19.00 22.00 23.00 24.00 26.00 29.00 31.00 33.00 35.00 37.43 41.77 44.65

We set the Pro fDT using Equation (4) to analyze the captured data by the PA and
compare with the data stream captured by the DT. As both DT and PA are separate entities,
PA is designed using cloud resources using a Container with Wireshark operating. The
application captures data and checks to verify if Equation (5) is true. For the sake of the
experiment, we set eight different Pro fDT , i.e., the duration of the upper boundary is set
at 0 days, 0 h, 10 min, and 0 s. The lower boundary is set at 0 days, 0 h, 1 min, and 0 s.
The remaining Pro fDT values are set consecutively till 0 days, 0 h, 2 min, and 0 s, and the
lower boundary remains unchanged. Malicious traffic is injected in the DT data stream,
increasing the flow of the packet to cause a flooding attack.

As shown in Figure 5a, we observe that, the larger the selected upper boundary, the
higher the time difference in analyzing the collected packets from the DT increases. To
offset the performance impact, the security vendor has the ability to modify both the upper
and lower boundary limits as stated in Equation (3),

DTn = (bdupper, bdlower (Pro fDT).

Figure 5. (a) PA packet analysis; (b) CPU utilization of PA.

We compared the performance of the PA with a baseline model using real-time packet
analysis between the PA and the DT. The detection time between the baseline model and the
proposed framework are nearly identical, where the real-time model outperforms packet
analysis by 0.003 s. Table 5 outlines the performance of all eight Pro fDT , where the lowest
difference recorded is 0.002 s, and the highest time difference is 0.005 s. We attribute the
higher performance of the baseline model due to the active detection of variation in packets.
In Figure 5b, we observe a high consumption of CPU resources in the baseline model, where
the average difference is 6.73% between the models. The proposed framework outperforms
the baseline model due to the lower and upper boundary limits that define when the PA
packet analysis process is initialized.
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Table 5. Analysis of Pro fDT in Latency and CPU consumption.

Parameters Models 1 2 3 4 5 6 7 8

Latency (s)
Baseline model 2.078 2.205 2.427 2.647 2.738 2.886 3.117 3.428

Proposed
Framework 2.1 2.21 2.43 2.65 2.74 2.89 3.12 3.43

CPU Con-
sumption

(%)

Baseline model 22 23 25 26.6 27.9 29 31 33

Proposed
Framework 15 17 17.6 19 21 22 25 27

From the evaluation of the Latency and CPU consumption of both the DT-PT mirror
transmission and the PA analysis of the packet inspection with the DT, we observe that the
proposed framework consumes fewer network resources in terms of CPU utilization and
has low latency in maintaining a virtual profile of the Smart Factory PT on the edge layer
for real-time operations. Furthermore, the proposed framework identifies malicious scripts
or poison attacks during DT-PT transmission, thus ensuring data security and integrity.

4.3. Blockchain Scalability and Attack Resistance

In this section, we observe the private blockchain’s performance in terms of scalability
in managing the growing count of the authentication requests of PA inspection by the
security vendor. Secondly, we analyze the transaction speed and the attack resistance of the
consensus model during active DDoS attacks.

The private blockchain in the proposed framework deploys the Proof of Authority
consensus model, where the Security Vendor is the sole validator of the transactions and
blocks. As the process is automated, it does not require manual approval from the validator
to approve each to be block mined and transaction processed. However, the validator does
have the manual override option to prevent the formation of new locks in the event of a
DDoS attack or a 51% attack on the network. From Figure 6, we analyze the transaction
frequency when the Smart Factory is under a cyberattack and the Security Vendor requires
frequent recording of authentication approvals for recording new PA-DT packet audit
analysis. The PoA maintains a steady average transaction speed of 20 s to process and
record each request of PA and DT authentication requests in the block. We attribute the
improvement in performance of the PoA over existing studies that implement the Practical
Byzantine Fault Tolerance [27,28] and the Committee Members Auction [29] consensus
models, due to the restriction of using only a single Validator. Furthermore, we kept the
block size at 300 kb enabling the storage of more transactions per block and reducing
the requirement to mine more blocks. Smaller block sizes require higher transactions
per second. As the number of transaction requests increases to 200, the time consumed
to approve transactions remains steady at 20 s. The Practical Byzantine Fault Tolerance
implemented by Lekssays et al. [27] and Sun et al. [28] require 440 s. The Committee
Members Auction implemented by Xu et al. [29] performed better than other models due
to its 2 s mandatory waiting time; however, it performed poorly compared to PoA due to
its higher number of validators.

The Blockchain network under a cyberattack such as a DDoS attack or 51% attack
enables an attacker to acquire control over the authentication-processing requests and
gain access to user data stored in Blocks. Furthermore, an attacker adds to and approves
malicious transactions in the blocks, corrupting the data required by the Security Vendor to
maintain records of cyberattacks on the networks and which IoT devices are infected with
bot scripts.
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Figure 6. Comparison with existing studies based on block transaction speed.

As illustrated in Figure 7, we observe the attack resistance of the PoA consensus
model in comparison with related studies. We observe the PoA has a steady transaction
speed despite the growing number of block nodes being compromised due to the blocks
being pre-validated. The generation and approval of blocks are granted to only a single
validator, the security vendor. In the event that the number of compromised nodes grows,
the validator excludes them from the list of approved blocks allowing the network to
process transactions at a steady average rate of 21 transactions per second. Other proposed
models. such as those proposed by Xu et al. [29], Sun et al. [28], and Lekssays et al. [27],
have high resistance to DDoS attacks; however, they are compromised when the count of
nodes exceeds the count of valid nodes.

Figure 7. Comparison analysis of consensus algorithms to DDoS attacks.

4.4. Botnet Detection

Our botnet-detection LSTM model is based on the Accuracy, Precision, Recall, and
F1 scores. Accuracy refers to packets correctly identified as benign or attack traffic and is
based on the following equation:

True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

(6)
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Precision represents the model’s ability to correctly label benign traffic as True Negative
and is represented by the following equation:

True Positive
True Positive + False Positive

(7)

Recall is the model’s ability to correctly identify positives as True Positives and avoid
incorrectly labelling them as Negative.

True Positive
True Positive + False Negative

(8)

The F1 score is represented as the mean between the precision and the recall values
and is represented by the following equation:

2× precision ∗ recall
precision + recall

(9)

Figure 8 illustrates the performance comparison of the LSTM compared with existing
studies. The LSTM model performs more accurately, which is attributed to the feature-
selection process focusing on the mean packet arrival rate and the half-open connections.
The accuracy of the LSTM is measured the highest at 99.97% after the completion of the
100th round of training. The CNN model presented by Vinayakumar et al. [25] performed
the lowest in terms of accuracy, demonstrating the performance impact of converting
features into a visualized format for anomaly detection. Popoola et al. [22] proposed a
Federated Learning model approach, and, for comparison, we measured the final global
model’s performance. Each model used a different dataset, highlighting the impact of
feature selection on the model’s performance. Table 6 presents the Precision, Recall, and F1
score comparison for quantitative analysis with existing studies.

Figure 8. Comparison analysis of accuracy in botnet detection with Popoola.

Table 6. Quantitative Analysis of the Botnet-detection model with existing research.

Models Accuracy Precision Recall F1 Score

Proposed model 99.97 99.32 97.54 98.11
Popoola et al. [22] 99.93 99.08 96.97 97.96
Hussain et al. [23] 98.85 98.95 98.66 98.81

Vinayakumar et al. [25] 89.90 93.94 90.5 91.9

In our proposed LSTM model, the dataset is classified into test and training datasets.
We implemented class weights for the two classes, benign and attack, during the training
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of our model. Class imbalance is determined by the assigned weights, and, in our model,
weights were allocated based on the number of instances. High weightage is allocated
to minority classes, i.e., those with fewer instances. Accuracy obtained the highest by
100th round, and further rounds of training did not increase the accuracy any further. The
dropout value is retained at 0.2, and the number of hidden nodes increases from 23 to
64 and then to 128. The model implements a single input layer, two hidden layers, and a
single output layer. Adding any further hidden layer did not improve the result. We select
the output function as a sigmoid and tanh as the activation function. The LSTM model
bases the accuracy of DDoS attacks on the count of packets with unique IP addresses. The
accuracy, precision, recall, and F1 scores are determined using Equations (6)–(9). The study
in [22] implements the Federated Deep Learning model, where the accuracy, precision,
recall, and F1 score are analyzed using the similar BoT–IoT dataset as used in our LSTM
botnet-detection model. However, the poor class imbalance in their training dataset of the
deep neural network model results in lower performance of the precision, recall, and the
F1 score. The study in [23] trains the Resnet-18 model based on several datasets; however,
for fair comparison in our evaluation, we consider the results for the BoT–IoT dataset. The
performance of their model is acquired from their research results. The dataset is divided
into a similar 80:20 split. Finally, the study in [25] focuses on collecting DNS data using the
Amrita dataset. The DNS-based approach, though, differs from the proposed LSTM model
and other related work, it signifies that the impact of packet inspection yields better results.
The DNS-based approach resulted in the lowest accuracy, precision, recall, and F1 scores
compared to the proposed framework and related studies using the Bot–IoT dataset.

5. Discussion

In this section, we analyze the security of the Proposed Framework based on the five
key areas of consideration for a reliable and robust framework for Digital-Twin-enabled
IIoT environment from cyberattacks. Several existing studies either partially do not or
entirely do not satisfy all five key areas of consideration for a secure IIoT framework from
cyberattacks. Botnet detection in [22–25] relies on AI for securing IIoT networks from
cyberattacks. Popoola et al. [22] implemented a Federated-Learning-based approach that
guarantees Data security and Privacy by training models locally on the IoT-Edge devices.
The lack of raw device data transmission to a centralized server removes the risk of man-in-
the-middle-based attacks. Furthermore, the privacy of data is safeguarded as only local
model updates are shared with external nodes, reducing the risk of unauthorized access to
industrial data. However, Data integrity and Device Availability are chiefly unaddressed
concerns, as IoT devices are of high risk to botnet attacks resulting in Poisoning attacks.
Local uploaded models are trained using inaccurate data, reducing the effectiveness and
reliability of the Federated-Learning-based botnet-detection method. Hussain et al. [23]
implemented a dual machine learning approach, where the first model, ResNet-18, scans
devices for botnet activity and the second, ResNet-19, model analyzes network traffic for
DDoS attacks. The method does not meet any of the key areas of consideration, as data is
flowing from IoT devices to centralized servers from model training and testing, and there
are no proposed measures for identifying Delay and Replay attacks. Data security, Integrity,
and Privacy are easily compromised. Device Availability is not ensured, as their proposed
method relies first on identifying a DDoS attack first, and then scans devices for botnet
behavior. C&C servers compromise devices and control device availability to the network,
i.e., an attacker shuts down the device and wipes all sensor data. Trajanovski et al. [24]
proposed an automated framework for botnet identification relying on a sandboxed Honey-
pot environment for trapping cyber attackers and blacklisting compromised devices. The
framework addresses the identification of compromised devices after an attack takes place
and thus does not ensure data security, integrity, privacy of sensor data, or the availability
of devices after an attack is detected. The reactive approach in place of a proactive approach
reduces its ability to secure IIoT environments from cyber-attacks. VinayaKumar et al. [25]
presented a botnet-detection framework using Deep Learning to inspect Domain Name
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System logs for advanced persistent botnets. The deep learning model is exposed to man-in-
the-middle attacks, resulting in data modification; therefore, Data security and integrity are
compromised. Furthermore, the availability of devices is not addressed in the framework,
as compromised devices continue to transmit data to the deep learning model and the
Smart City servers.

Blockchain-based related studies [26–29] partially address Data Integrity concerns by
registering all authorized devices with the decentralized network. The vulnerability of
compromised new devices registered to the network reduces their ability to ensure Data
security. However, each of these proposed models addresses non-repudiation, as each
device is authorized and is traceable when anomalous traffic is detected. Hayat et al. [26]
presented a botnet prevention method, where compromised devices are removed from
the list of registered devices. The presented architecture relies on a Cloud-based model
for data storage that introduces delays in the response time to attacks. Furthermore,
the exposure to a single-point-of-failure vulnerability in Cloud data storage affects Data
Privacy and Security concerns. Lekssays et al. [27] proposed a botnet detector for early
botnet detection before an attack is initiated. The study focuses on maintaining users’
privacy using pseudo identities when initiating scans for malicious activity. However, the
study does not discuss IoT device security, resulting in unaddressed device-availability
concerns. Sun et al. [28] presented a Blockchain-based anomaly-detection system using
device identity and attribute-based detection systems. The study focuses on preventing
DoS attacks on the Blockchain network due to repeated access requests. A permissioned
blockchain provides access control for communication requests; however, a lack of security
measures exposes registered IoT devices to being infected with malicious scripts. The
proposed system fails to prevent attackers from launching DoS attacks using registered
devices. Xu et al. [29] proposed a bidirectional-linked Blockchain using a Committee
Members Auction consensus algorithm for blockchain security. The vulnerability of the
consensus algorithm in securing nodes is when an attacker initiates DDoS attacks on 51% of
all available nodes. The studies in [27–29] have robust inter-device secure communication
protocols using Blockchain networks for authentication. However, none of the studies
address device availability concerns to prevent an infected device from installing malicious
scripts on other devices.

Next-generation IIoT environments such as Smart Factories are increasingly adopting
Digital Twin-based networks for the virtualized improvement of the conceptual design of
products, their development, and the overall production process and reducing the overall
costs of final physical implementations. The security of these DTs from cyber-attacks
resulting from Botnet formation is an existing challenge. The proposed Blockchain-enabled
Secure Digital Twin Framework focuses on securing the data-collection process from
unauthorized entities for a reliable and robust botnet-detection model. The security of DTs
is addressed to prevent incorrect and expensive conceptualization of the virtual model
implemented in the physical production process, incurring a high financial burden on the
factory to redesign and re-implement the DT.

In the proposed framework, each DT and the PA is registered on the Blockchain
network to ensure data collection is achieved from an authorized set of IoT devices. Each
authorized DT validates itself to the decentralized network before transmitting data to the
Deep Learning model for botnet detection. Each data point transmitted is further verified
by synchronizing the packet data collected by both DT and the PA, reducing the risk of
man-in-the-middle attacks and ensuring data security and Integrity. The collection of
packet data by the Deep Learning model includes only Packet Headers enabling analysis
of encrypted data without requiring them to be decrypted. Deep Packet Inspection of
encrypted packets is not required, ensuring Data Privacy is maintained. The detection of an
infected DT is prevented from inter-digital communication by revocation of the certificate.
Devices that are part of an infected digital twin are blocked from transmitting data to
other machines to prevent the spread of the botnet script and ensure the availability of
non-compromised IoT devices. Lastly, recording IP addresses in the Blockchain network
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allows the network to accurately establish and label all infected devices that are part of a
DT as compromised and requires a firmware update procedure to remove the botnet script
and close software security vulnerabilities.

Smart City services, such as Healthcare, Infrastructure management, Retail, and
Energy management deploy DT to analyze, predict, and optimize the performance of the
physical-world environment. Industries focus on adopting a proactive approach using
real-time monitoring for future uptime and downtime to ensure minimal loss to quality
of service. Cyberattacks are a constant concern for the Smart City infrastructure, where
user-data integrity and privacy are chief concerns. The vulnerability of sensors to botnet
attacks is ever growing. The proposed Blockchain-enabled Secure Digital Twin Framework
allows industries to adopt a proactive approach and detect weakness in the network early,
before a Man-in-the-Middle or DDoS attack takes place. Using the example of a Hospital
in a Smart Healthcare environment, the design of the DTs of different patients, where
each patient is connected using various sensors, enables the prediction of patient health,
such as drug reaction. Sensors transmit data to their respective DT for data analysis using
AI models. Man-in-the-middle attacks either prevent packet arrival at the edge layer or
intercept and transmit corrupt data to poison the AI models. As devices are pre-registered
in the Blockchain network, an attacker delays packet-data transmission or injects malicious
data spoofing as the registered device. A separate PA collects patient data on a defined
period set by the Healthcare IT department or the selected security vendor and compares
the packets collected by the Digital Twins. The continuous monitoring of packets enables a
Hospital to ensure that all AI models are trained using accurate patient data. If device data
is altered in the transmission between the physical device and the DT, the IT manager or
security vendor is alerted to a possible attack and logs the malicious Digital Twin along
with its associated IP addresses of infected IoT devices in the Blockchain network. A second
attack parameter involves a botnet formation where an attacker attempts to flood packets to
the Digital Twin and cause a Denial of Service at the Edge layer. Using PA, the framework
prevents poisoned data from being used to train the botnet model. As patient data privacy
is a chief concern, only packet headers are monitored to prevent the need for decrypting
packets. Infected Digital Twins are isolated from communicating with other Digital Twins
and prevent the spread of botnet growth. The IT administrator or Security Vendor assigns
a security firmware update to secure the physical devices from future botnet attacks. The
proposed framework is especially important for future Smart City services, as the next
IR 4.0 is shifting towards DT for optimizing their services. A proactive Blockchain- and
DT-enabled cybersecurity framework supports future networks with a proactive approach
to identify both man-in-the-middle and botnet attacks and take steps for network security
before other devices are compromised.

6. Conclusions

This paper presented a Blockchain-enabled Digital Twin Framework for securing IIoT
environments against Cyberattacks. Digital Twins of the Smart Factory are designed on
the edge layer; they synchronize data with their respective IoT devices. A Smart Contract
is designed to secure the registration and authentication of all network entities with the
private blockchain network. Digital Twins and Packet Auditor securely authenticate and
validate with the Blockchain network and synchronize data, ensuring packet data are not
modified in transmission. The process flow of each process was discussed in detail. The
Deep Learning-based model inspects traffic of both encrypted and unencrypted packets
and identifies devices infected with malware. The device isolation policy prevents the
infection of other Digital Twins, preventing the growth of botnet activity. Future work will
focus on designing IP-tracing methods to accurately identify command and control servers
connecting with devices using a multi-hop method. In our future work, we aim to study
the impact of Mobile Digital Twins for Logistics and general Transportation services using
a Cloud–Edge architecture with support for extended mobility.
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