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Abstract: An event camera is a novel bio-inspired sensor that effectively compensates for the short-
comings of current frame cameras, which include high latency, low dynamic range, motion blur,
etc. Rather than capturing images at a fixed frame rate, an event camera produces an asynchronous
signal by measuring the brightness change of each pixel. Consequently, an appropriate algorithm
framework that can handle the unique data types of event-based vision is required. In this paper,
we propose a dynamic object tracking framework using an event camera to achieve long-term stable
tracking of event objects. One of the key novel features of our approach is to adopt an adaptive
strategy that adjusts the spatiotemporal domain of event data. To achieve this, we reconstruct event
images from high-speed asynchronous streaming data via online learning. Additionally, we apply
the Siamese network to extract features from event data. In contrast to earlier models that only
extract hand-crafted features, our method provides powerful feature description and a more flexible
reconstruction strategy for event data. We assess our algorithm in three challenging scenarios: 6-DoF
(six degrees of freedom), translation, and rotation. Unlike fixed cameras in traditional object tracking
tasks, all three tracking scenarios involve the simultaneous violent rotation and shaking of both
the camera and objects. Results from extensive experiments suggest that our proposed approach
achieves superior accuracy and robustness compared to other state-of-the-art methods. Without
reducing time efficiency, our novel method exhibits a 30% increase in accuracy over other recent
models. Furthermore, results indicate that event cameras are capable of robust object tracking, which
is a task that conventional cameras cannot adequately perform, especially for super-fast motion
tracking and challenging lighting situations.

Keywords: event-based camera; object tracking; spatiotemporal method

1. Introduction

Event cameras have attracted more and more attention from researchers due to their
excellent capturing performance for moving targets [1–4]. An event-based camera, also
known as a neuromorphic camera or dynamic vision sensor (DVS), is a new type of sensor
closer to biological vision than conventional frame-based cameras. Therefore, it has advan-
tages such as low power consumption (1 mW), high dynamic range (140 db), extremely
high temporal resolution, and low latency (microsecond level) [5,6].

These capabilities enable event cameras to be widely used in autonomous driving
and intelligent transportation, drones, and so on [7–9]. Nevertheless, compared with the
large number of mature applications of conventional cameras, the related algorithms and
applications of event cameras are still very lacking. If we want event cameras to play a
significant role in real systems, we still have significant work to do. Fortunately, some
computer vision algorithms can be improved and applied to event cameras, especially
some algorithms based on video sequences, such as object tracking, optical flow, etc.
As shown in Figure 1, each event pixel (blue dot) captured by an event camera with a
different timestamp is distributed in a spatiotemporal domain; conventional computer
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vision algorithms cannot handle such discrete event data. This requires the reconstruction
of event data into frames that are similar to traditional image frames. The strategy of
reconstructing event data can bridge the gap between conventional computer vision and
event-based vision. Thus, a convolutional neural network can be effectively used to extract
features from the reconstructed event images.

Figure 1. This picture shows how the event camera captures event data. When a new event is
triggered, the event camera will only update the coordinates of the activation point instead of the full
image. Event data generally include four parts: timestamp, coordinate information (x, y), and polarity.
We can observe from the figure that each event data point is asynchronous. Event data is dense in the
temporal domain and sparse in the spatial domain. (Data source adapted with permission from [10].
December 2020, Elsevier).

In this paper, we proposed an event-driven spatiotemporal domain adaptation method
for dynamic object tracking. We name our proposed event-driven tracking frame-
work EVtracker.

Object tracking is a hot topic in the field of computer vision. Loosely speaking, given
the initial position of an object in the video, an object tracking algorithm can track the
constantly moving object in the video sequence. Compared with object detection and
object classification, object tracking pays more attention to the object’s trajectory in a time
series. Research on visual object trackers is a very active field. Each year, new object
tracking algorithms are proposed with demonstrated successes [11–14]. However, there
are still some challenging scenes that restrict the improvement of the visual tracking
algorithm, such as background clutters and motion blur [15,16]. Event cameras provide
new ideas for solving these challenges of visual tracking tasks [1,17,18]. In other words,
the event object tracking algorithm can provide a low-latency and wide-dynamic tracker.
We propose dynamic object tracking for event vision that integrates traditional visual
tracking algorithms and event cameras.

This paper introduces a long-term tracking method based on event cameras. We
propose a simple and effective method to balance the spatial and temporal domains of
event cameras. Due to the high update frequency of the event camera, the event camera has
a spatial sparsity and higher temporal resolution. Therefore, the event data is dense in the
temporal domain and sparse in the spatial domain, as shown in Figure 1. Our method is to
reconstruct the event data in the spatial domain by evaluating the quality of the features
of the object. Following the works of e-TLD [19] and e-LOT [20], we propose a novel
approach to reconstructing event data and tracking event objects. Compared with e-TLD
and e-LOT, our dynamically reconstructed event images are clearer with higher quality
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features, and we design and train more powerful deep networks instead of using their
hand-crafted features. The main contributions of our paper are summarized as follows:

• We developed a straightforward and effective tracking and detection framework
for long-term tracking from an event camera. We demonstrated in detail the many
advantages of using event cameras for object tracking;

• We propose a novel approach to dynamically reconstructing event images for ob-
ject tracking by evaluating feature quality. Experiments show that our method can
effectively adjust event data in the spatiotemporal domain under different scenarios;

• Our method can effectively balance spatial resolution and temporal resolution in the
tracking field; the experiments show that our proposed approach has better perfor-
mance than the existing state-of-the-art event-based tracker and frame-based tracker.

We have organized the rest of this article in the following way. Section 2 describes
the related work on event-based vision and visual object tracking. In this part, we review
related research and articles. Section 3 introduces our EVtracker and presents the details
of our proposed method for event-based vision. Section 4 shows our experiments and
ablations, and we discuss our proposed method. The paper ends with conclusions, and we
also present our future research in Section 5.

2. Related Work

In this section, we will first introduce event-based vision and its latest applications,
then introduce the related research on visual object tracking. Finally, we will review several
methods for tracking using event cameras.

2.1. Event-Based Vision

An event camera, also known as a dynamic vision sensor (DVS), is a sensor that
responds to local changes in brightness. Event cameras do not use synchronized shutters to
capture images like traditional frame cameras. Instead, each pixel within the event camera
operates independently and asynchronously, only activating when a change in brightness
occurs. Event cameras can effectively supplement the existing deficiencies of computer
vision and robot vision. In the survey paper [5], Guillermo Gallego et al. provided a
detailed and comprehensive description of the emerging field of event-based vision. They
summarized the working principles and the latest development in event cameras. This
review shows that researchers are using this revolutionary type of camera to reformulate
some tasks in computer vision, such as SLAM, object tracking, motion capture, optical
flow, etc. [21–25].

Research and applications related to event-based vision are constantly increasing [6,8,26,27].
Antoni et al. [28] propose an ultimate SLAM that integrates multiple sensors, such as event
cameras, in high-speed scenes. EventCap [29] proposes an approach to capture high-speed
human motions using a single event camera; this system can capture high-speed human poses
with low data bandwidth and power consumption. In the paper [30], the authors provide
an exciting algorithm that uses event cameras for star tracking. Since the original event
pixels are discrete and asynchronous, most of these algorithms use a parameter to generate
event images by gathering a fixed time window or a fixed number of event pixels. This is
very conducive to processing event camera data; however, fixed parameters cannot adapt
to changes in multiple scenes and the parameter values rely on human experience and
observations. These articles do not effectively balance the spatial and temporal distribution
of event data. Our paper provides a new framework for object tracking based on event
cameras that can dynamically adjust the spatiotemporal domain to synthesize event images
according to different scenes.

2.2. Visual Object Tracking

In the past decade, there have been various typical models of visual tracking. The L1
trackers [31,32] and compressive trackers [33,34] proposed sparse matrix operations for
tracking. TLD [35] combined the tracking model and detection model for long-term
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tracking. SPT [36–38] presented the tracking algorithm within a discriminative tracking
approach based on a super-pixel representation of the videos. Despite all of these trackers
demonstrating success with hand-crafted features in past years, the performances still can
be improved by using powerful feature descriptions.

In the last few years, convolutional neural networks (CNNs) have significantly im-
proved the performance of visual object tracking [13,39,40]. Siamese network-based track-
ers are constantly being proposed and improved, such as SiamFC [41], SiamRPN [42],
SiamMask [43], and SiamRPN++ [44]. These algorithms have attracted much attention
because of their excellent performance in various benchmarks. Siamese network-based
trackers formulate the tracking task as a patch matching problem; they provides two
branch networks with shared weights to establish target templates and search for candidate
targets, respectively. Their performance is still expected to be improved under motion
blur, illumination, and cluttered background. A high frame rate camera may be able to
overcome the motion blur problem, but at the same time, it brings the challenges of high
power consumption and high data redundancy. Moreover, high frame rate cameras are
sensitive to illumination. Our proposed approach provides a novel solution to the inherent
object tracking challenge. We hope that our approach can inspire more object tracking work
with event cameras.

2.3. Event Camera Based Tracking

Object tracking based on event cameras demonstrates the potential to solve tracking
challenges. Tracking algorithms based on event cameras are constantly being proposed to
be applied in different scenarios. Due to the good perception ability of the event camera
for moving scenes and complex lighting scenes, it is often used in challenging object-
tracking tasks. For instance, Afshar et al. [45] and Chin et al. [46] propose the use of event
cameras for object tracking in space scenes. Some other works focus on the use of event
cameras for object tracking in traffic scenes, e.g., autonomous driving, drones, autonomous
robots, etc. [47–50]. Cao et al. [51] propose an event object tracking method using a spiking
neural network and apply it in an autonomous robotic system. Although the spiking
neural network adapts well to asynchronous event streams, its performance is still limited.
Li et al. [52] propose an event-based object tracking method based on deep features and
correlation filtering. Liu et al. [53] and Wang et al. [54] adopt the strategy of fusing event
data and frames for the object tracking task. These methods simply convert the event
data into a fixed matrix and do not take advantage of the asynchrony and high temporal
resolution of the event camera.

Both e-TLD [19] and e-LOT [20] are very related to our proposed approach. e-LOT
proposes a long-term object tracking and detection framework for event cameras and a
distribution aware retinal transform as a generic visual descriptor of event data. This
feature descriptor is based on the log-polar. However, this descriptor can only be based
on a clean background, relies on hand design rather than being data-driven, and performs
poorly in complex scenes. e-TLD effectively extends the method of e-LOT and proposes
a data-driven long-term tracking framework, including a local sliding window-based
detector. It uses the detector to re-initialize the tracker after a failed track. To the best of
our knowledge, these methods have the following limitations: the description of the event
data of these methods is not good enough, the event image with a clear spatial structure
cannot be reconstructed well, the feature descriptions extracted by these methods are not
powerful enough and rely too much on hand-crafted features, and these methods do not
adopt the latest visual tracking algorithms for the event camera, relying on some outdated
algorithms [35].

Generally speaking, there are far fewer event-based camera tracking methods than tra-
ditional visual tracking. One of the main challenges is that the asynchronous event streams
cannot be dealt with by current convolutional networks, which are being designed based on
synchronous frames. In our paper, we use the spatiotemporal domain adaptation method
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to reconstruct event images with clear spatial structure. We also provide learned features
with strong characterization capabilities to describe the object based on event cameras.

3. Methodology

In this section, we will first introduce the motivation of our proposed method. We
will describe in detail our strategy for adjusting event data in the spatiotemporal domain.
After that, we will present our tracking algorithm: EVtracker for event cameras.

3.1. Motivation

A visual object tracker provides a way to track objects in video sequences. Compared
to other computer vision tasks such as object detection and image segmentation, object
tracking algorithms extract not only spatial features, but also features in the time series.
However, frame-based trackers only focus on spatial resolution and ignore temporal
resolution, which is due to the principle limitation of conventional cameras. Event cameras
show their unique potential in the object tracking task due to their high temporal resolution
and asynchronous data. Event cameras provide a novel solution to the inherent challenges
of object tracking. To better enable an event camera to serve the object tracking task, we
propose our approach to balancing the temporal and spatial distribution of event cameras.

In Table 1, we summarize the features of event cameras and frame cameras. Due to the
large difference between event and frame cameras in principle, their different characteristics
are reflected in the spatiotemporal domain, dynamic range, and update model. Event
cameras provide highly dynamic, high temporal resolution data at lower power and data
volume, with more detailed advantages [5].

In this paper, we provide a novel method that can dynamically adapt to different
challenges of object tracking tasks. Conventional cameras cannot adjust spatiotemporal
information according to the various scenes, while event cameras can do this well. Our
method uses these advantages to overcome tracking challenges such as motion blur, fast
motion, illumination variation, etc.

Table 1. The difference between event cameras and frame cameras.

Features Event Camera Frame Camera

Temporal domain Dense Sparse

Spatial domain Sparse Dense

Redundant data Low High

Dynamic range High Low

Update model Asynchronous Synchronous

Shutter No Yes

Power consumption Low High

A feature of an event camera is that it can capture each event pixel asynchronously.
Due to the high update frequency and low latency of an event camera, an event camera
has a higher temporal resolution. On the other hand, an event-based camera only cap-
tures the variation in log-scale intensity, so the event data is sparse in the spatial domain.
However, existing visual algorithms are good at processing spatial information. Most
event camera-based algorithms are processed by reconstructing event images, such as
human pose recognition based on event cameras [55] and object tracking based on event
cameras [52–54]. These methods adjust the spatiotemporal neighborhood by counting
a certain number of events or accumulating polarity and generating a two-dimensional
frame/image compatible with conventional visual computer vision algorithms [5]. How-
ever, they ignore that the flow of events constantly changes in different scenarios and the
feedback of conventional visual algorithms to event features. Thus, we would like to ask
a research question: Is it possible to dynamically adjust the two-dimensional description
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of event images according to different scenes? Therefore, reconstructing event images in
the spatial domain is a meaningful exploration of event vision. In response to this research
question, we propose a strategy for dynamically reconstructing event images in Section 3.2,
and adapt this method to long-term object tracking tasks in Section 3.3.

3.2. Spatiotemporal Domain Adaptation

In this part, we present the spatiotemporal domain adaptation method for event-based
object tracking. Our strategy is very straightforward and effective. If this two-dimensional
event image can provide high-quality features, it can be judged that this event image has
a clear two-dimensional event image. The quality of features can be evaluated through
a shallow network. Generally, an event pixel e is represented as a 4-tuple (x, y, ti, p),
where x and y denote the spatial coordinates of an event pixel, p represents the event’s
intensity, and ti is a timestamp. The sensor of the event camera independently measures
the change of the intensity Iti of each pixel and provides an asynchronous event flow with
microsecond resolution. When the variation in logarithmic brightness exceeds the threshold
C, | 5L |≥ C, we formulate this process as follows:

| L(Iti+5ti)− L(Iti) |≥ C, (1)

where 5ti is the time interval at the microsecond level. L is the log-scale of intensity
I: L(Iti) = log(Iti); when the light brightness increases or decreases, the event pixels will
be activated with an event polarity p ∈ {−1, 1}, where 1 and −1 represent the increase and
decrease of brightness, respectively.

From the above introduction, we can know that the event pixel is an independent
asynchronous update. However, only an image patch of event data has spatial features;
we define a spatial event frame P(h× w) to gather event pixels to form an event image,
where h and w are the height and width of the event sensor, respectively. In the existing
methods, one of the strategies for reconstructing event images is to collect the polarity of
event pixels one by one over time interval5T on the entire image patch, where5T is a
specific time interval for time windows [Tstart, Tend]; apart from this, another strategy is to
use a fixed number of event pixels N for an image patch. Although both strategies have
been proven successful in some applications through careful manual design, there are still
concerns about their reliability and robustness.

Therefore, we propose a novel strategy in which adaptive adjustments can be made to
5T and N according to the different scenes. There are two ways to represent each spatial
event frame: time-window P5T and fixed number of events PN . We map the polarity of the
event pixel to the image pixel range [0 : 255]. Our strategy is divided into two main parts:
initialization of online learning and dynamic adaptation in time series.

3.2.1. Initialization of Online Learning

Unlike other methods that use experience and hand-craft to define fixed 5T and
N [28,29,54], we first search for the initial5T by online learning. An event frame representation
is computed as:

P5T =
∫ Tend

Tstart
e(t)dt, (2)

where P is the aggregation of all asynchronous event pixels in the time windows [Tstart, Tend].
The optimal event frame P̂ is computed by the heatmap estimation

P̂ = arg max
5t∈[0:n]

( f (P5t)), (3)

where f represents the response of the feature, P5t represents the candidate description,
n is the number of samplings in a time series, and higher heatmap response means a
higher quality of the event image. Features are extracted and evaluated by a shallow
trained network f . The shallow network structure includes convolutional layers and
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CSPblocks(Cross-Stage Partial Connection Blocks); we borrowed CSPblocks from the
YOLOv4-tiny model [56]. After this shallow network is pre-trained with event data, this
network can effectively extract event image features, similar to traditional vision tasks. We
use online learning strategies to generate the initial5T, which evaluates the time window
of continuous accumulation5T until we find an optimal time window P1

5T = P̂5t. When
we obtain an optimal time window, it means we obtain a starting frame for object tracking.
We acquire an initial time interval5T for event image reconstruction, which is essential
for our subsequent strategy. At the same time, we can count the number of event pixels N
contained in this time window.

3.2.2. Dynamic Adaptation in Time Series

The object tracking algorithm is intended to track a specific target in a time series,
and the event image sequence needs to be continuously generated. We adopt a dynamic
adaptive strategy to generate new event images continuously. Our strategy is effective
based on the characteristics of the event camera. The movement speed of the object or
camera will affect the distribution of the event data in the space–time domain. In the same
event interval 5T, different movement speeds will produce different numbers of event
pixels N. Therefore, no matter whether a fixed time interval or a fixed number of event
pixels is used to reconstruct the event image, it cannot adapt to the changes in the scene.
We assume that the changes in the time series are progressive and continuous; when new
event data comes, we apply the parameters obtained in the previous stage to reconstruct
the event image and we obtain P2

5T and P2
N . Then, we use Equation (3) to evaluate them

and compare the evaluation results.

v = compare(P̂2
5T , P̂2

N), (4)

where v is the greater of P̂2
5T and P̂2

N . If P̂2
5T is optimal, we recount N, and if P̂2

N is optimal,
we update5T, where P̂2

5T and P̂2
N are the heatmap response of P2

5T and P2
N , respectively.

We use an alternate update strategy to continuously update5T and N in the time series.
We use dynamic time intervals and the number of event pixels to balance the event data in
the spatiotemporal domain. An overview of the reconstruction strategy is shown in Figure 2.
We convert the three-dimensional asynchronous event stream into a two-dimensional event
image, and our method can generate event images with better texture features regardless
of scene changes. It is important to note that our adaptive adjustment can adjust the
high-speed asynchronous event stream, which is impossible with traditional cameras.

Figure 2. Overview of our reconstruction strategy of the event image, Event streams represent
an event flow of asynchronous data that is updated on a time series. The event frame indicates
the candidate event image. The CNN indicates a shallow convolutional neural network to extract
features. By comparing features, a higher heatmap means that the quality of the features is better
and a better event image can be output. In this case, PN provides higher-quality event images with
better texture features.
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3.3. EVtracker

In this part, we mainly introduce our tracking strategy; we adopt the Siamese network
as the baseline of our event-based tracking algorithm. To track an event-based object
long-term, we follow the strategy of the articles [19,57] by setting up a detector to relocate
the target when the tracking fails, as shown in Figure 3.

Figure 3. This picture shows the real system using our proposed framework, event camera output
event flows, and a dynamic adaptive strategy to reconstruct the event stream into an event image in a
time series. Our tracking algorithm tracks the object in the event image sequence. When the tracking
fails, the detector is used to reinitialize the tracker.

3.3.1. Siamese Network Tracker

The Siamese network tracker is a baseline for many recent popular algorithms [58].
We propose a tracking framework based on a Siamese network, as shown in Figure 4. These
networks can implicitly encode the original event patch into feature space and then use a
specific tensor to fuse them to produce a single output. They usually compare the features
of two branches in the implicit embedding space. Similar to video sequence tracking, we
regard the learning of tracking targets in event vision as the learning of similarity problems.
One of the branches is called the template branch and we define its output features as
ϕ(py); it receives the target patch in the historical frame as input. The other is called the
search branch and its output feature is defined as ϕ(pz); it receives the image patch in
the current frame as input. The object tracking of an event camera is formulated by the
classification module and the regression module:

Hcls
h×w×2k = [ϕ(py)]cls ⊗ [ϕ(pz)]cls,

Hreg
h×w×4k = [ϕ(py)]reg ⊗ [ϕ(pz)]reg,

(5)

where Hcls
h×w×2k and Hreg

h×w×4k denote classification map and regression map, respectively,
⊗ represents the convolution operation, and 2k and 4k represents the number of channel
vectors they contain; these vectors measure the distance between the candidate anchor and
the ground truth. py and pz are the input event images of the template branch and the
search branch, respectively.

Figure 4. This picture shows an event camera-based tracker using the Siamese network, with feature
extraction of the target image and search image using a shared weight network.
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The classification function needs to distinguish the foreground and background of the
tracking object. Here, we provide a classification loss function as:

Lcls = −
1

∑
i=0

Cilog(Si), (6)

where Ci is the label of the classification and Si is the probability of the correct classification.
In the regression module we provide (xc, yc, wc, hc) to represent the tracking prediction box
and (xg, yg, wg, hg) represents the ground truth. The distance is normalized as:

δ[0] =
xg − xc

wc
, δ[1] =

yg − yc

hc
,

δ[2] = ln
wg

wc
, δ[3] = ln

hg

hc
,

(7)

The regression loss is provided as follows:

lreg =
3

∑
i=0

smoothL1(δ[i]), (8)

Then, the smooth L1 loss can be written as follows:

smoothL1(x) =
{

0.5x2, i f |x| < 1,
|x| − 0.5, otherwise.

(9)

The total loss function in object tracking can be expressed as:

Lloss = Lcls + λLreg (10)

where λ is a hyperparameter to balance classification loss and regression loss.

3.3.2. Re-Initialize Tracker

Our dynamic reconstruction strategy can solve the problem of fast motion and target
drift in object tracking well, though long-term tracking remains a challenge, as the target
may leave the field of view for a long duration. To be able to track the object in event-based
vision long term, we set up a detector D to update the target template. The detector can
perform a global search of the event image without requiring the previous position of the
target, so it can reinitialize the tracker when the tracking fails. However, judging tracking
failure is a challenging problem. One of the common strategies is to use a threshold θ
to estimate whether the tracking is successful, i.e., if the tracking fails, then the tracking
score is less than this threshold. Initially, we use the detector to extract features from the
first-frame ground truth bounding box. Afterward, we re-run the detector on the current
frame and compute the similarity score between each pair of detections. The higher the
similarity, the higher the probability that they are the same object, and the latest position
information of the target is updated in the tracking model. The similarity score is obtained
by evaluating the distance of the detector features. Therefore, when the tracking fails, we
run our detector for global detection; then we obtain candidate objects (D1, D2, D3, ...., Dj)
and evaluate the similarity of these candidates to the original tracking target template;
we have

pj = arg max
j∈[1:m]

(ε j(sim(Dj, pz))), (11)

where Dj represents the candidate target for detection, pz represents the tracking tar-
get template, sim(·) is calculating cosine similarity of features, and pj represents the re-
initialization target. To be able to suppress distractors, we set the weight parameter ε j,
which is obtained by calculating the center location Euclidean distance between the current
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frame detection candidate and the tracking position of the previous frame, so we have
ε j =

1
Eu(Dj ,Pt−1)

, where Eu(·, ·) represents the Euclidean distance for calculating the center

position. The smaller the distance, the larger the weight parameter ε j. Inspired by the
article [57], we use a combination of parameter judgment and regular updates to solve
the relocation problem after tracking drift. We provide a novel framework that integrates
tracking and detection to learn and solve long-term tracking problems.

4. Experiments

In this section, we provide four experiments to evaluate our method. First, to better
explain the advantages of the event camera, we designed an experiment to verify the ad-
vantage of event cameras in capturing fast-moving objects, as shown in Figure 5. Then, we
compare our method with recent state-of-the-art event-based tracking methods [19,20] and
state-of-the-art frame-based tracking algorithms [42–44] on a series of challenging datasets.
In addition, we designed an ablation study to analyze the effectiveness of our strategy. We
will make our code and demos available at: https://github.com/yexuezhaoge/EVtracker,
https://www.youtube.com/watch?v=0_PfpfxkCTQ (accessed on 11 June 2022).

(a) (b) (c)

Figure 5. (a) shows the original image when the fan is stationary, (b) shows the image taken with
an RGB camera; when the fan rotates at high speed, the picture can no longer be observed due
to motion blur. (c) shows the event data taken with an event camera when the fan rotates at high
speed; we visualize event data for comparison and a clear target structure without background is
captured. It can be observed from this comparison diagram that the event camera can effectively
avoid motion blur.

Success Plot and Precision Plot are currently popular tracking algorithm evaluation
metrics. We use these two evaluation metrics to evaluate the performance of our proposed
approach. All of the evaluation has been presented in benchmark paper [8,15]. The
first evaluation metric, Success Plot, indicates the percentage of frames when the overlap
between the prediction box of the tracking algorithm and the ground truth is higher than a

set value. The overlap is defined as overlap =
area(Rt

⋂
Rg)

area(Rt
⋃

Rg)
, where Rt is a tracked bounding

box and Rg is the bounding box provided by the ground truth. We set the overlap values at
a threshold of 0.5; the success plot is defined as the relative number of frames in the video
sequence when the overlap > 0.5.

The second evaluation metric, Precision Plot, demonstrates the percentage of frames
where the CLE between the tracked object position and the ground truth is smaller than a
pre-set threshold. CLE is computed as the Euclidean distance between the center locations
of the target and the manually labeled ground truth, as follows:

CLE =

√(
xg − xi

)2
+
(
yg − yi

)2 (12)

where (xg, yg) and (xi, yi) are, respectively, the x, y coordinates of the center locations of
the ground truth and the detected object in the i-th frame.

Implementation details: All the experiments with the proposed EVtracker were
executed on a server with an Intel Xeon(R) Silver 4114 CPU@2.20GHz × 40.

https://github.com/yexuezhaoge/EVtracker
https://www.youtube.com/watch?v=0_PfpfxkCTQ
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In our EVtracker, we adopt SiamRPN [42] as the baseline of our Siamese network;
we utilize the pre-trained AlexNet [59] for feature extraction in the tracking model. In
particular, detector d and feature extractor f share the same backbone, and features of
event data only need to be extracted once. Due to the lack of large-scale event datasets, we
annotated 3000 event data for model pre-training. We define threshold θ = 0.5 to determine
whether the tracking fails. We set the threshold of CLE to the default value of 20 pixels.
Because we are using shallow neural networks, the original input size of the event image is
240× 180, and our method does not require many computing resources. Feature evaluation
and object detection can share a shallow network and our proposed EVtracker can be run
in real time with a speed of 67 FPS. According to our experience, we set N = 30, 000 and
5T = 30 m in our ablation study. Figure 6 shows some visual results of our method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Tracking objects of different shapes and sizes. Each row shows the tracking of a single object;
(a–d) show the tracking results of the book; (e–h) show the tracking results of the cup; (i–l) show
the tracking results of the drone. It is shown here that our method can overcome the challenges of
dramatic scene changes, object out of view, etc., and has good robustness.
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4.1. Event Camera VS Frame Camera

To show the advantages of event cameras in object tracking, we designed a comparison
test in which we fixed a picture on the fan blade, then turned on the fan, let the fan rotate
at high speed, and used a frame camera and an event camera to shoot the picture. We
visualized the event data for the convenience of demonstration. Figure 5a shows the image
when the fan is stationary and Figure 5b shows the image taken with a frame camera when
the fan rotates at a high speed, though the picture can no longer be observed due to severe
motion blur. Figure 5c shows the image taken with an event camera when the fan rotates
at high speed. The event camera avoids motion blur, and a clear target structure without
background is captured by the event camera [60].

Our experiments demonstrate that event cameras have a great advantage in intense
motion tracking scenarios. Perhaps some ultra-high-speed frame rate cameras can also
capture fast-moving targets well; however, their data bandwidth and power consumption
are surprisingly large. In the meantime, this example shows one of the advantages of event
cameras to capture fast-moving objects with less data redundancy.

4.2. Comparison to State-of-the-Art

In order to better evaluate our proposed methods, we compare our proposed approach
with state-of-the-art event-based trackers [19,20] and frame-based trackers [42–44] on the
same dataset [61,62]. This dataset proposes a series of challenging scenarios for high-speed
robotics, under three motion settings: translation, rotation, and 6-DoF. This dataset is
very challenging for tracking algorithms; it contains rapid movement of the camera with
multiple degrees of freedom, scale changes, out-of-view, and occlusion.

Our proposed approach obtains better performance compared to e-LOT [20] and
e-TLD [19]. As shown in Table 2, our proposed method improves the accuracy of e-TLD
by 31.85%; more results are detailed in Table 3. In Figure 7, we visualized our results
and compared them with the e-TLD algorithm; we can observe that the event image
reconstructed by our method is clearer with higher-quality features.

As shown in Table 4, we compare our EVtracker with state-of-the-art (SOTA) frame-
based trackers [42–44] on the same dataset. For SOTA frame-based trackers, we use
their official long-term tracking model for testing. Since frame-based trackers cannot
directly handle asynchronous event streams, we need to adapt them. In this experiment,
we only adjusted the Siam family tracking algorithm for comparison. Specifically, we
reconstructed asynchronous event streams with fixed parameters(N = 30, 000) and retrained
their backbone. Since the test scenarios are very challenging and traditional methods lack
adaptability, conventional frame-based trackers cannot achieve good results.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. We compared our proposed EVtracker and e-TLD on challenging event data. (a,c) show
the visualization results of e-TLD; (b,d) show the visualization results of our EVtracker. Our method
can balance event resolution and spatial resolution of event data well, and the tracking results of our
method are more stable and robust than the results of e-TLD. The white and green boxes represent
the bounding box of the tracking.

Table 2. Comparison to recent SOTA algorithms using the Success Plot metric, and the best results
are highlighted bold-faced.

Methods 6-DoF Translation Rotation Avg.

e-LOT [20] 14.17 30.63 27.54 24.11

e-TLD [19] 39.27 70.10 43.80 51.05

EVtracker 75.88 90.24 82.59 82.90

Table 3. Comparison to recent SOTA algorithm e-LOT [20] and e-TLD [19] using the Success Plot Met-
ric, and the best results are highlighted bold-faced.

6-DoF Head Monitor Drone Cup Books Avg.

e-LOT [20] 6.12 23.84 2.44 31.56 6.92 14.17

e-TLD [19] 31.72 61.74 51.10 22.47 29.33 39.27

EVtracker 63.44 89.09 61.29 79.38 86.22 75.88

Translation Head Monitor Drone Cup Books Avg.

e-LOT [20] 14.50 17.69 20.21 74.00 26.47 30.63

e-TLD [19] 58.95 76.43 87.31 59.72 68.09 70.10

EVtracker 91.21 87.27 90.97 90.72 91.04 90.24

Rotation Head Monitor Drone Cup Books Avg.

e-LOT [20] 13.49 15.03 24.45 43.59 41.15 27.54

e-TLD [19] 18.32 48.78 53.31 47.77 50.83 43.80

EVtracker 85.07 82.04 74.02 85.35 86.48 82.59
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Table 4. Comparison to recent SOTA algorithms using the Success Plot metric and Precision Plot met-
ric, and the best results are highlighted bold-faced.

Methods Success Plot Precision Plot

SiamRPN [42] 20.91 25.89

SiamRPN++ [44] 31.34 36.48

SiamMask [43] 32.74 42.24

EVtracker 82.90 89.38

4.3. Ablation Study

To evaluate the effectiveness of our event frame reconstruction strategy for our tracking
algorithm, firstly, we analyzed different event image reconstruction strategies through
visual comparison. Then, we set the optimal hand-crafted parameters—5T and N—for
comparison in ablation experiments. Finally, we evaluated the specific objects of our
algorithm in different scenarios, as shown in Table 5. Based on the evaluation of these
details, we give our analysis and observations.

As shown in Figure 8a,b, the event image reconstruction method has been successfully
applied for other tasks [28,29]. We can easily observe that the event image is very blurry
due to the aggregation of too many event pixels in the two-dimensional space in Figure 8a.
Unlike in Figure 8a, the event pixels are too few to form a complete event image in Figure 8b.
Both Figure 8a,b are failures in the visual task because the event image cannot provide a
clear two-dimensional description. Effective event image reconstruction methods can solve
the contradiction between high temporal resolution and sparse space in event-based vision.
Here, we demonstrate the defect of using a fixed5T time-window and fixed N number of
events; although we can use experience to optimize them artificially, the sensitivity of the
parameters in different scenarios still exists. Our ablation experiments will prove that the
fixed parameters cannot reach the global optimum.

(a) (b) (c)

Figure 8. Here we use three strategies to reconstruct the event image. (a) shows the event frame
reconstructed using the strategy of [28], and (b) shows the event image reconstructed using the
strategy of [29]. (c) shows the event images reconstructed using our proposed strategy. In terms of
visual comparison, the accumulation of too many event pixels in event image (a) causes the object to
be blurred, while the event image (b) is too sparse to observe the object. Our event image has a clear
object structure and edges. The green box represents the tracking object initialized in the first frame.

We tried many different hand-crafted parameters and selected the two best-performing
hand-crafted parameters (N=30, 000 and5T = 30 m) for comparison in our ablation ex-
periments. As shown in Tables 6 and 7, we proposed adaptive strategies to improve
performance by 11.28%|7.02% and 13.45%|9.8%, respectively. Despite continuous hand-
crafted adjustment and testing, their performance still cannot achieve the global optimal.
As shown in Figure 9, we try to gather event data with a fixed time window; the visual-
ization results are shown in (a), (b), (c). Then, we try to gather event data with a fixed
number of event pixels; the visualization results are shown in (d) and (e) and ( f ), (g),
(h), (i). These three pictures show the visualization results of using our dynamic adaptive
strategy to gather event data and object tracking. From Figure 9, we can observe that the
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three images (a), (d), (g) all show a good initial state. However, due to the movement
of the object or camera in the task scene, the hand-crafted parameters cannot be adjusted
adaptively, as shown in Figure 9b,c,e,f, where (b) is too sparse due to low speed and (c),
(e), ( f ) are too dense due to high speed. Our proposed approach provided stable and
good output, as show in Figure 9g,h,i. The ablation study proved that our framework can
provide an effective event camera reconstruction strategy and object tracking approach.
Our dynamic adaptive reconstruction strategy can provide a high-quality event image for
event-based vision, and our tracking algorithm is robust and effective.

As shown in Table 5, we evaluated in detail the performance of our algorithm in
tracking different objects. We observed that the highest challenge scenario is 6-DoF in all
challenge scenarios, because it contains a rotation of six degrees of freedom. Among all
tracked objects, we found that the more complex features are more challenging, such as
drones. This is due to the lack of robustness of the event space feature. Compared with
traditional computer vision methods, the event data lacks large-scale pre-trained models,
and the event camera sensor resolution still needs improvement. Therefore, we can improve
our algorithm in the future by increasing the spatial resolution of the event camera and
using a robust pre-trained model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Here, we use three sets of visualized result images for analysis and comparison. (a–c) show
the visualization results of using time windows to gather event data. (d–f) show the visualization
results of gathering event data under the condition of a fixed number of event pixels. (g–i) show the
visualization results of using our dynamic adaptive strategy to gather event data and object tracking.
The green box represents the bounding box of the tracking.
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Table 5. Quantitative tracking results (%) of EVtracker.

6-DoF Head Monitor Drone Cup Books

Success Plot 63.44 89.09 61.29 79.38 86.22

Precision Plot 93.70 90.13 60.84 89.06 90.70

Translation Head Monitor Drone Cup Books

Success Plot 91.21 87.27 90.97 90.72 91.04

Precision Plot 98.81 86.02 96.40 98.22 98.83

Rotation Head Monitor Drone Cup Books

Success Plot 85.07 82.04 74.02 85.35 86.48

Precision Plot 94.23 83.37 78.27 95.06 87.10

ALL Head Monitor Drone Cup Books

Success Plot 79.91 86.13 75.43 85.15 87.91

Precision Plot 95.58 86.51 78.50 94.11 92.21

Table 6. Using the Success Plot metric for comparison in an ablation study, and the best results are
highlighted bold-faced.

Challenges N 5T Adaptivity

6-DoF 69.49 70.76 75.88

Rotation 60.71 87.51 90.24

Translation 84.64 50.10 82.59

Avg. 71.62 69.45 82.90

Table 7. Using the Precision Plot metric for comparison in an ablation study, and the best results are
highlighted bold-faced.

Challenges N 5T Adaptivity

6-DoF 79.05 82.21 84.88

Rotation 72.16 62.29 87.61

Translation 95.86 94.24 95.66

Avg. 82.36 79.58 89.38

4.4. Discussion

In this part, we provide discussions based on our experiments and analysis, and men-
tions the limitations of our method. There are two main reasons why our approach outper-
forms e-LOT and e-TLD: (1) our method uses more powerful deep learned features, while
those methods only use hand-crafted features; (2) our event image reconstruction strategy
is more effective than theirs, as shown in Figure 7, so our proposed approach performs
better. Our experiments have demonstrated that our method can dynamically adjust the
two-dimensional description of event images according to different scenes, and solve chal-
lenges in tracking tasks such as motion blur, fast motion, illumination variation, rotation,
etc. However, our method still has some limitations. Due to the lack of large-scale event
datasets, our network was only trained on small datasets; the features are therefore not
robust enough to adapt to all scenarios. Our current convolution networks are designed for
synchronous frames and cannot fully utilize all the advantages of event data. Designing
methods via few-shot learning and spiking neural networks may be promising approaches
to overcome these limitations.

5. Conclusions

In this paper, we propose a novel long-term object tracker for event cameras. We also
demonstrate the numerous advantages of employing event cameras for object tracking by
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testing the system with several challenging datasets. To highlight the difference in operating
principles between event cameras and conventional cameras, we designed interesting
experiments to demonstrate the advantages of event cameras. Additionally, we put forward
a strategy for event image reconstruction using feature evaluation. This approach effectively
and dynamically balances event data in the spatiotemporal domain and provides adequate
two-dimensional spatial information for tracking tasks. We optimized and improved the
Siamese network for long-term event-based tracking. Objects are repositioned after they
re-enter the field of view of the camera during long-term tracking. Findings from detailed
experiments show that our proposed approach yields better accuracy and robustness
than other similar methods. For tracking tasks, most current difficulties are caused by
the inability to balance the temporal and spatial resolution of images. For instance, low
temporal resolution leads to motion blur, uneven temporal and spatial light resolution
results in illumination issues, and long conventional camera exposure time causes pixel
stacking. Due to the limitations of sensor hardware, most object tracking algorithms
focus on extracting high-quality spatial features, but ignore temporal resolution. Based
on the high temporal resolution and dynamic capability of event cameras, our method
accomplishes challenging tracking tasks that cannot be performed by traditional cameras
in several crucial areas such as aerospace, autonomous driving, and drones. We believe
that our work will help to solve the inherent challenges that exist in conventional computer
vision research and unlock the application potential of event cameras. In future studies, we
will extend our target reconstruction algorithm to other areas of event vision, including
classification, segmentation, and detection.
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