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Abstract: Data augmentation techniques have recently gained more adoption in speech processing,
including speech emotion recognition. Although more data tend to be more effective, there may be
a trade-off in which more data will not provide a better model. This paper reports experiments on
investigating the effects of data augmentation in speech emotion recognition. The investigation aims
at finding the most useful type of data augmentation and the number of data augmentations for speech
emotion recognition in various conditions. The experiments are conducted on the Japanese Twitter-
based emotional speech and IEMOCAP datasets. The results show that for speaker-independent
data, two data augmentations with glottal source extraction and silence removal exhibited the best
performance among others, even with more data augmentation techniques. For the text-independent
data (including speaker and text-independent), more data augmentations tend to improve speech
emotion recognition performances. The results highlight the trade-off between the number of data
augmentations and the performance of speech emotion recognition showing the necessity to choose a
proper data augmentation technique for a specific condition.

Keywords: speech emotion recognition; affective computing; data augmentations; wav2vec 2.0; SVM

1. Introduction

The development of speech emotion recognition (SER) has been directed in either
finding the new features correlated to emotion or building classifiers suited for emotion
recognition problems. The initial survey on SER addressed features and classification
schemes as the most important aspects of designing SER besides the database or dataset [1].
A recent survey on SER [2] also has shown that features (including pre-processing step)
and classifiers are the most studied areas among others in SER.

Instead of proposing a new method, investigating the impact of data augmentation is
worth studying. For example, reference [3] found that building self-supervised learning
automatic speech recognition results in extremely large and diverse datasets. However,
for speech emotion recognition, the availability of the dataset is not as large as speech
recognition datasets. Therefore, research on data augmentation is a good opportunity to
investigate the impact of data augmentation on SER performance.

Data augmentation has been found useful in areas outside speech emotion recognition.
Ko et al. [4] evaluated a low-cost data augmentation technique by speed perturbation and
found that it improved the word error rate (WER) over other methods. Casanova et al. [5]
employed both transfer learning and data augmentation for improving COVID-19 detec-
tion from cough sounds. Similarly, data augmentation could improve SER performance
in specific ways. However, no study has been found regarding these impacts of data
augmentation on SER performance.

In view of the above assumption based on findings in the other research areas, this
paper proposes a systematic investigation of the effect of data augmentation on speech
emotion recognition. The authors find no systematic investigation has been conducted
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on the effect of data augmentation on speech emotion recognition. This paper concretely
contributes mainly to the following investigations:

• the data augmentation types that contribute to the performance of speech emotion
recognition;

• the number of data augmentations that optimally improves the performance of speech
emotion recognition.

The authors have experimented with two datasets and four data augmentation tech-
niques. The datasets are Japanese Twitter-based emotional speech (speaker-independent,
text-independent, and speaker+text-independent) and IEMOCAP (speaker-independent).
Four types of data augmentation include glottal source extraction, silence removal, im-
pulse response convolution, and noise addition. The number of data augmentations is
the number combination of four types of data augmentation above: one augmentation,
two augmentations, three augmentations, and four augmentations. Only augmentations
based on the raw audio signal are considered in this paper. Other augmentation types (e.g.,
spectrogram-based augmentation) are not adopted due to the difficulties of mixing these
types of data augmentation with raw audio signals.

2. Previous Work

Research on speech processing has been focused on developing new methods instead
of evaluating existing methods with different evaluation conditions. Nevertheless, eval-
uating the training conditions for such speech processing goals is a challenging task in
addition to developing the new methods.

In automatic speech recognition (ASR) research, which is the main task of speech
proceedings, an evaluation of audio augmentation for ASR has been conducted to observe
the effect of different speeds of the audio signal on ASR performance [4]. Using different
speed factor of 0.9, 1.0, and 1.1, which is low-cost and easy to adopt, the authors found
that the WER of ASR performance is improved by 4.3% in four tasks. Similar audio
augmentation techniques may also work to improve the performance of SER.

In [6], the authors evaluated training data selection between neutral and emotional
speech for speech recognition. The results showed that training a sufficient amount of
spontaneous data was more beneficial than a small amount of emotional speech. In
other words, emotional speech is harder to be recognized than neutral speech for speech
recognition. Horii et al. [7] analyzed the feature extraction method by convolution neural
network and obtained an accuracy of 62% on the JTES dataset.

Research on SER has been conducted actively on the English dataset. IEMOCAP [8]
is the most widely used dataset for speech emotion recognition. Evaluations on general
speech processing tasks, including SER, have been performed to evaluate the effectiveness
of self-supervised learning methods [9]. The evaluation showed the superiority of HuBERT
model on most tasks, including SER. HuBERT achieved a weighted accuracy of 67.72%
on the IEMOCAP dataset with five-fold cross-validation. Fusing acoustic with linguistic
features (from transcription) improved the overall accuracy to 77.51% on cross-validation
evaluation and 83.08% on Session 5 evaluation [10]. Adapting speaker awareness to build a
pre-trained model for universal speech representations [11] obtained an overall accuracy of
70.78% on the IEMOCAP cross-validation evaluation.

Research on Japanese SER has been actively developed since the construction of JTES
dataset [12]. Using this dataset, Lee [13] achieved an accuracy of 81.61% for speaker-
independent evaluation with deep neural network architecture. Nagase et al. [14] obtained
UA of 71.31% with acoustic features (speaker-independent), 66.34% with linguistic features,
and 91.22% with speaker+linguistic features (text-independent). Research on this Japanese
SER has been continued by evaluating different splitting criteria, feature extraction methods,
and classifiers.

In [15], the authors investigated the splitting criteria for training speech emotion
recognition on the JTES dataset, whether splitting the training data by speakers (speaker-
independent), by texts (text-independent), or both (speaket+text-independent). The results
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showed that splitting by speakers and text was the most difficult among others. It is difficult
for the SER model to infer new data with different linguistic information from training
data. The current model needs to be trained on the same linguistic information to obtain
sufficient performance.

In [16], the authors evaluated bidirectional LSTM methods based on multi-stream
attention with feature segmentation on JTES dataset. The authors highlighted that the
key to their SER performance improvements was data augmentation (max. UA for JTES
speaker+text-independent is 73.4%). However, no direct comparison of the same method
with and without data augmentation was found. This gap is left; however, it is important
to study the contribution of data augmentation on SER to direct future work.

This study aims to fill that gap. We wanted to compare the performance of emotion
recognition among different data augmentation types and the number of data augmen-
tations. As an additional analysis, we perform a benchmark on the JTES and IEMOCAP
datasets, which can be used as a comparison tool for the current study and future studies.

3. Methods
3.1. Dataset

JTES
Japanese Twitter-based emotional speech (JTES) corpus [12] is evaluated in this re-

search. The dataset contains 20,000 utterances from 100 speakers, four emotion categories,
and 50 sentences. The original sampling rate was 48 kHz but was resampled to 16 kHz
during the feature extraction process. From all samples in the dataset, we choose speaker-
independent (SI), text-independent (TI), and speaker and text-independent (STI) criteria
following the previous research [15,16]. The SI and TI criteria result in 16,000 utterances
for training and the rest 4000 utterances for the test (80/20 split). The STI criterion results
in 14,400 samples for training and 400 samples for the test. We excluded the speaker-
dependent (SD) criterion from the previous study [15] since SI is more challenging than
SD [17] and is a standard evaluation in most speech processing tasks, including SER. For
training data, we performed data augmentations in addition to the original data. For
the test data, we did not add any data augmentation technique. The test set is kept as it
is to enable benchmarking with previous methods. Details of the dataset, including its
visualization, can be found in the previous studies [12,15]. Figure 1 shows the flow of
training data selection to investigate the data augmentation on SER.

Training data
80 speakers (J)
8 speakers (E)

Types of 
augmentation

Number of 
augmentations

Glottal source extraction

Silence removal

Impulse response

Noise addition

1
2

3
4

Test data
20 speakers (J)
2 speakers (E)

Figure 1. Flow of data selection for training speaker-independent SER in the experiments of data aug-
mentation; J: Japanese (JTES); E: English (IEMOCAP); For text-independent, the split of training/test
is based on sentences instead of speakers.
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IEMOCAP
The interactive emotional dyadic motion capture (IEMOCAP) database is one of

the most common datasets for speech emotion recognition tasks. The dataset focuses
on understanding expressive human communication through a combination of verbal
and non-verbal channels from both speech and gestures. The original corpus contains
10,039 utterances/sentences with a 16 kHz sampling rate; this research utilized a subset of
that total utterance commonly evaluated for the four categories of emotion [18–20]. The
four emotion categories are neutral, happy, anger, and sadness. The excitement emotion
category is merged with the happy emotion. Details of dataset, including the visualization
and distribution, can be found in the previous studies [8,20–22]. From five sessions in the
dataset, Sessions 1–4 are allocated for training, while Session 5 is for a test. This leave-one-
session-out (LOSO) evaluation is speaker-independent since the speakers for each session
are different (two speakers per session). As in JTES, the augmentations are performed for
training but not for the test set.

3.2. Data Augmentations

Four data augmentations are applied to the original datasets. The choice of different
data augmentations is to determine the type of data augmentation that contributes to the
training of speech emotion recognition. Furthermore, these four data augmentations can be
combined to evaluate the optimal number of data augmentations for SER in this study. The
data augmentation techniques are described in the following sections.

3.2.1. Glottal Inverse Filtering (Glottal Source Extraction, glt)

Several studies [23–27] have investigated the characteristics of glottal flow regarding
different emotional states and have indicated that using glottal inverse filtering (GIF)-
based speech analysis, emotional cues can be obtained from speech signals. In this data
augmentation, we adopt a GIF method based on a constrained auto-regressive hidden
Markov model (CAR-HMM) [28]. The CAR-HMM extracts the glottal flow derivative from
a voiced speech by introducing some gain constraints to the AR filter. The glottal flow
derivative is defined by a glottal flow that is combined with lip radiation characteristics.
The gain constraints to the AR filter are introduced to avoid some characteristics of the
glottal flow derivative remaining in the estimated AR filter.

The CAR-HMM, as depicted in Figure 2, is a kind of source-filter model, where the
AR filter and the HMM, as depicted in (b) and (f), represent a vocal tract and a generative
model of a glottal flow derivative, respectively. The states in the HMM are concatenated
in a ring form so that the state transition circulates to represent the periodicity of the
voiced speech. Each state has an output probability distribution (PDF) of a single Gaussian
distribution defined by an expectation and a variance. Given a state transition sequence,
the expectations and variances of the output PDFs can align (for example) as depicted in
(d) and (e), respectively. The glottal flow derivative, as depicted in (c), is then defined
by the realized values of the aligned output PDFs. Finally, the CAR-HMM is assumed to
generate the voiced speech as depicted in (a) by filtering the glottal flow derivative with
the AR filter.

In the CAR-HMM-based speech analysis, the AR coefficients, the glottal flow deriva-
tives, and the corresponding HMM parameters must be estimated using a given voiced
speech. The iteratively-parameter estimation algorithm of the CAR-HMM is adopted to
obtain these values. The details have been described in [6]. In this augmentation, the
prediction order of the AR filter and the number of HMM states are set to be 16 and 20,
respectively. The AR filter’s gains at both the DC and the Nyquist frequency are constrained
to be 1.
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Figure 2. Source-filter model based on CAR-HMM. The AR filter and the HMM, as depicted in (b,f),
represent a vocal tract and a generative model of a glottal flow derivative, respectively. Given a
state transition sequence, the expectations and variances of each state’s output PDFs can align (for
example) as depicted in (d,e). The glottal flow derivative, as depicted in (c), is then defined by the
realized values of the aligned output PDFs. Finally, the CAR-HMM is assumed to generate the voiced
speech as depicted in (a) by filtering the glottal flow derivative with the AR filter.

3.2.2. Silence Removal (Speech Cleaned, spc)

In this data augmentation, we remove silence durations before the beginning point
and after the endpoint of each utterance (start-end silence removal).

3.2.3. Applying Impulse Response (ir)

In this data augmentation, we convolve original JTES audio data with a random
impulse response. Two impulse response datasets are evaluated [29,30]. The amplitude of
the impulse response is set to be 0.5 from the maximum amplitude of the corresponding
audio signal.

3.2.4. Noise Addition (noi)

In noise addition data augmentation, we mix original audio files in the JTES dataset with
noises from the Environmental Sound Classification dataset with 50 classes (ESC-50) [31].
The ESC-50 consists of 2000 noises in five major categories: animal, natural, human, interior,
and exterior sounds. The augmentation method randomly chooses one noise file and mix it
with the original audio file.

Figure 3 shows the example of data augmentations in the JTES dataset with data
augmentation techniques above. The most left is the original sample from the dataset. The
rest are augmented data by glottal source extraction (spc), silence removal (spc), applying
impulse response (ir), and adding noise (noi). It can be seen clearly the difference among
data. For instance, in glt and spc, the duration of the signal becomes shorter than in others,
while in ir and noi the shape of the signals is changed due to impulse response convolution
and noise addition.
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Figure 3. Plots of the original and augmented data from a sample in JTES dataset.

In addition to the four types of data augmentation techniques, we also evaluated the
performance of combinations of the four data augmentations above. The results of the
combinations are six arrangements for two data augmentations, four arrangements for
three augmentations, and one arrangement for four data augmentations. The number of
training data on each data augmentation is shown in Table 1.

Table 1. Number of data (utterances) in each number of data augmentation.

Number of Data Augmentations Number of Training Data
JTES-SI JTES-TI JTES-STI IEMOCAP

Without augmentation 16,000 16,000 14,400 4290
With one augmentation 32,000 32,000 28,800 8580
With two augmentations 48,000 48,000 43,200 12,870
With three augmentations 64,000 64,000 57,600 17,160
With four augmentations 80,000 80,000 72,000 21,450

Test data 2000 2000 400 1241

3.3. Acoustic Features

We employed a model for dimensional speech emotion recognition [32,33] based on
wav2vec 2.0 [34] to extract speech embeddings as acoustic features. This model is trained
on MSP-IMPROV dataset [35]. The size of the embedding is a vector of 1024-dimensional,
which is the number of hidden states in the model. The pre-trained model extracts speech
embeddings on both JTES and IEMOCAP datasets with the same configuration.

3.4. Classifier

A support vector machine (SVM) for classification (SVC) is chosen as the classifier.
SVM is one of the most common classifiers for SER tasks [36]. Other SER research employed
MLP [17], LSTM [16,37,38], or combinations of CNN with LSTM [19,39,40]. This study
chose SVM since it is the simplest classifier among them. This study focuses on investigating
the effect of different data augmentations instead of proposing a new classifier architecture.
The acoustic feature described in the previous subsection is standardized by removing
the mean and scaling to unit variance before it is fed into SVC. The SVC is implemented
through the scikit-learn library [41]. We left the configuration of SVC as default except for
the kernel coefficient. The kernel coefficient is set to 1/1024 (‘auto’). The same configuration
of SVC classifier applies to both JTES and IEMOCAP datasets.

3.5. Evaluation Metric

We evaluated the performances of data augmentations on SER with a single metric,
namely unweighted average recall (UAR). This metric is an average recall of predictions
over the true labels for each emotion category. This metric is also known as balanced
accuracy or unweighted accuracy (UA).
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The methodology, from the datasets to the evaluation metric, is shown in Figure 4.
The methods, excluding the datasets, are open to the public in the following repository:
https://github.com/bagustris/ser_aug (accessed on 12 July 2022).

SVC

IEMOCAP JTES

glt spc ir noi

Speech embeddings

UA

Datasets

Data
augmentations

Feature
extraction

Classification

Exp. #1 Exp. #2

Results

Figure 4. Flowchart of the main methodology from datasets to unweighted accuracy (UA).

4. Experiments

We conducted two experiments on the different data augmentations and apparatus
(computing systems) to generalize the performances of evaluated systems on different ma-
chines. The main aim of using two apparatus is to investigate the effect of adding random
impulse responses and noises to the original data aside from checking the consistency of
results for adding glottal source filtering and removing start-end silences.

4.1. Experiment 1 (Exp. #1)

In experiment 1, we evaluated all data augmentation techniques described previously
on a PC with Ubuntu 18.04 OS, AMD EPYC 7702P 64-Core CPU, 504 GB RAM, and two
NVIDIA GeForce RTX 3090 cards (24 GB/card). For impulse response addition, we used au-
dio files from the MIT Acoustical Reverberation Scene Statistics Survey [29]. For noise addition,
we used noise files from ESC-50: Dataset for Environmental Sound Classification [31].

4.2. Experiment 2 (Exp. #2)

In experiment 2, we evaluated all data augmentation techniques similarly to Exper-
iment 1 on an HPC (abci.ai) with CentOS Linux 7, Intel Xeon Gold 6148 CPU, 360 GB
RAM, and NVIDIA Tesla V100 (16 GB). For impulse response addition, we used audio
files from the EchoThief Impulse Response Library [30]. For noise addition, we used the
same noise files from ESC-50: Dataset for Environmental Sound Classification [31]. Note
although the noise dataset is the same, the results of data augmentation are different since
the audiomentation package version 0.19.0 [42], which was used to mix original data with
noise, chose the noise files randomly to mix in.

5. Results and Discussion

Tables 2–5 show the results of experiments. The results of two investigations—the
type and number of augmentations—can be inferred from each table. The results with one
augmentation depict the investigation of the type of data augmentation that contributes
to SER performances. The rest of the results depict the investigation of the effect of the

https://github.com/bagustris/ser_aug
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number of data augmentations. We measured those performances of the data augmentation
techniques on SER with the UA/UAR metric on 0–100% scale. These results on two
experiments are deterministic, meaning that the same scores are obtained for the same data
for different runs on the same apparatus.

Table 2. Unweighted average recall (UAR, %) of SER with different data augmentation techniques on
JTES-SI. orig = original JTES dataset, glt = glottal source extraction, spc = speech cleaned, ir = impulse
response, noi = noise addition. The highest scores for each experiment are in bold.

Data Exp. #1 Exp. #2

Without augmentation
orig 97.10 97.10

With one augmentation
orig + glt 96.45 96.45
orig + spc 97.20 97.20
orig + ir 97.73 97.43
orig + noi 97.55 97.60

With two augmentations
orig + glt + spc 96.90 96.90
orig + spc + ir 97.78 97.58
orig + ir + noi 97.85 97.83
orig + noi + glt 97.23 97.50
orig + glt + ir 97.33 97.10
orig + spc + noi 97.65 97.65

With three augmentations
orig + glt + spc + ir 97.53 97.40
orig + spc + ir + noi 97.98 97.95
orig + ir + noi + glt 97.78 97.78
orig + noi + glt + spc 97.60 97.68

With four augmentations
orig + glt + spc + ir + noi 98.05 97.90

Table 3. Unweighted average recall (UAR, %) of SER with different data augmentation techniques on
JTES-TI. orig = original JTES dataset, glt = glottal source extraction, spc = speech cleaned, ir = impulse
response, noi = noise addition. The highest scores for each experiment are in bold.

Data Exp. #1 Exp. #2

Without augmentation
orig 75.08 75.05

With one augmentation
orig + glt 76.43 76.45
orig + spc 76.23 76.23
orig + ir 75.30 74.70
orig + noi 75.38 75.20

With two augmentations
orig + glt + spc 76.75 76.75
orig + spc + ir 75.38 74.68
orig + ir + noi 75.30 74.73
orig + noi + glt 76.05 75.98
orig + glt + ir 75.50 75.10
orig + spc + noi 75.80 75.45

With three augmentations
orig + glt + spc + ir 75.70 74.75
orig + spc + ir + noi 75.48 74.25
orig + ir + noi + glt 75.43 75.00
orig + noi + glt + spc 75.93 75.00

With four augmentations
orig + glt + spc + ir + noi 75.63 74.50
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Table 4. Unweighted average recall (UAR, %) of SER with different data augmentation techniques
on JTES-STI. orig = original JTES dataset, glt = glottal source extraction, spc = speech cleaned,
ir = impulse response, noi = noise addition. The highest scores for each experiment are in bold.

Data Exp. #1 Exp. #2

Without augmentation
orig 74.50 74.50

With one augmentation
orig + glt 75.50 75.50
orig + spc 76.50 76.50
orig + ir 74.75 73.75
orig + noi 76.25 75.50

With two augmentations
orig + glt + spc 77.25 77.25
orig + spc + ir 76.00 74.50
orig + ir + noi 75.50 74.50
orig + noi + glt 75.25 75.25
orig + glt + ir 75.00 73.75
orig + spc + noi 75.75 74.75

With three augmentations
orig + glt + spc + ir 76.00 74.75
orig + spc + ir + noi 74.50 74.25
orig + ir + noi + glt 74.00 75.00
orig + noi + glt + spc 75.50 75.00

With four augmentations
orig + glt + spc + ir + noi 74.75 74.50

Table 5. Unweighted average recall (UAR, %) of SER with different data augmentation techniques on
IEMOCAP. orig = original IEMOCAP dataset, glt = glottal source extraction, spc = speech cleaned,
ir = impulse response, noi = noise addition. The highest scores for each experiment are in bold.

Data Exp. #1 Exp. #2

Without augmentation
orig 74.88 74.88

With one augmentation
orig + glt 74.23 74.23
orig + spc 75.44 75.44
orig + ir 75.03 74.80
orig + noi 75.43 75.07

With two augmentations
orig + glt + spc 75.66 75.66
orig + spc + ir 75.68 75.37
orig + ir + noi 75.15 75.46
orig + noi + glt 75.11 75.54
orig + glt + ir 75.01 74.5
orig + spc + noi 75.62 75.33

With three augmentations
orig + glt + spc + ir 75.73 75.39
orig + spc + ir + noi 76.16 75.87
orig + ir + noi + glt 75.16 74.54
orig + noi + glt + spc 76.03 75.71

With four augmentations
orig + glt + spc + ir + noi 76.39 75.80

5.1. JTES-SI

The first evaluation is the speaker-independent criterion, a standard criterion in most
speech processing tasks. The result shown in Table 2 exhibits higher performances than the
previous study [13]. Although the author has proposed a method for multilingual SER in
that paper, comparing monolingual SER with the same JTES dataset between that study and
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this study shows performance improvement, even for the results without augmentation in
this study. The key ingredient of our study is the utilization of deep learning-based acoustic
feature extraction, which used a pre-trained model from a specific emotional speech database
using wav2vec 2.0 rather than neutral speech. The previous study [13] used INTERSPEECH
2010 acoustic feature set, which is non-deep learning-based feature extraction.

For this SI evaluation, the best improvement has been achieved by the largest number of
data augmentations, i.e., four data augmentations with glt, spc, ir, and noi. The improvement
is about 1% from the baseline data without augmentation. The individual augmentation
(with one augmentation) shows degradation (orig + glt), and improvements with orig + ir
obtained the highest score for an additional type of augmentation. The trend in this SI
evaluation yields a presumption that more augmentation will improve SER performance.

5.2. JTES-TI

The text-independent evaluation is a new splitting criterion for SER [15,43]. Those
previous studies have shown that text-independent evaluation is more difficult and chal-
lenging than traditional speaker-independent evaluation, and this study supports that
finding. Compared to SI with 97.10% UA for baseline, TI obtained 75.08% of UA. In contrast
to a previous study that evaluated the same number of test set for comparing SI, TI, and
STI [15], this study evaluated a different number of test set between SI and TI to take
advantage of the number of samples/utterances. By evaluating 2000 samples as a test set,
this study revealed a similar pattern to the previous study on the same JTES dataset.

Different portions of the training/test split were also evaluated in this study (16,000/4000)
compared to the previous study [15] (19,600/400 and 14,400/400). However, the trends
look similar in both studies. Both SI and TI improved about 10% from that previous study.
The key factor, as explained above, is the different acoustic features used in this study with
a less sophisticated classifier (SVM in this study vs. MLP in the previous study).

The best data augmentation in this TI evaluation is obtained by glottal source filtering.
This approach leads to 1.35% of UA improvement. These results are opposite to the
previous JTES-SI evaluation in which glt obtained the worst score among other types of
augmentation. In this TI evaluation, more data augmentation does not tend to increase
the performance of SER. By using four data augmentations, the results are only improved
by about 0.5% from the baseline. The highest UA for this TI evaluation is obtained by
augmenting the original data with glt and spc (two augmentations), which yields the results
of 76.75% UA.

5.3. JTE-STI

For JTES-STI evaluations, we found that cleaning original speech signals by removing
silences is the most effective data augmentation technique by 2% UAR improvement. The
other two data augmentations, the glottal source extraction and noise addition, slightly
improved SER’s performance. Augmenting SER with the impulse response in experiment 2
decreases the performance; the reverberation by room shapes degrades the recognition rate
of emotional speech.

For the number of data augmentations in STI, we found that the number of data
augmentations with two augmentations is the most effective data augmentation technique
by 3% UAR improvement from the baseline without augmentation. Among six arrange-
ments of two data augmentations, augmented original JTES dataset with glottal source
extraction and silence removal consistently achieved the highest UAR on both experiment
1 and experiment 2. These results are also in line with the types of data augmentation
techniques (with one augmentation), in which data augmentation with silence removal
(speech cleaned, spc) topped the performance among other data augmentation types.

Compared to the previous work [15], we observed the different pattern for JTES-
SI, JTES-TI, and JTES-STI. In this work, the performance of JTES-STI and JTES-TI on
original data without augmentation is similar with JTES-TI (UAR = 75.08%), slightly higher
than JTES-STI (UAR = 74.5%). With augmentation, the results are inverted. JTES-STI



Sensors 2022, 22, 5941 11 of 14

(UAR = 77.25%) obtained slightly higher results than JTES-TI (UAR = 77.75%). The small
set of JTES-STI test data (400 samples) may affect the performance results. This study
evaluated 2000 samples of JTES-TI and 400 samples of JTES-STI for the test (see Table 1 for
details). Hence, it is not fair enough to compare JTES-STI directly and JTES TI here. There
may be no significant differences between text-independent and speaker+text-independent
evaluations; however, further study is needed to clarify this assumption.

5.4. IEMOCAP

IEMOCAP with speaker-independent evaluation leads to the results shown in Table 5.
As in the JTES evaluations, the improvement from the original data without augmentation
to four data augmentations is about 1.5% of UA. In this IEMOCAP-SI evaluation, more
data augmentations tend to improve SER performance as in JTES-SI evaluation.

By comparing individual data augmentations, it is not clear which type of data aug-
mentations performs better than others. Augmenting original data with start-end silence
removal and noise addition yields similar results to each other in experiment #1. These
results are consistent (no one type of data augmentation is superior to the others) with
previous results on JTES dataset evaluations in this study.

The highest result with four augmentations is achieved in experiment #1. The result
of experiment #2 for this number of data augmentation is only lower than that of three
data augmentations with spc + ir + noi (gap of 0.07%). By inspecting this number, we
can presume that more data augmentations tend to yield performance improvement. In
this study, this trend is observed for both JTES and IEMOCAP datasets with speaker-
independent evaluations.

5.5. Comparison to the Previous Studies

As an additional analysis, we performed a literature study conducted similarly on the
JTES dataset with a similar split scenario. We found that our results are competitive with the
results of the literature studies for both with and without data augmentation. Table 6 shows
the benchmark of our results with the literature studies. It is also clear from Table 6 that our
acoustic feature engineering contributes more than data augmentation techniques. Without
data augmentation, wav2vec 2.0 pre-trained on MSP-IMPROV dataset [35] achieved higher
UAR than other proposed methods. These results highlight the importance of using
pre-trained model wav2vec 2.0 trained on affective dataset over other techniques. Note
that reference [14] only reported speaker-independent only for their acoustic-only SER
while reference [39] reported text-dependent SER on the JTES dataset. A split scenario
with speaker+text-independent, as conducted in this study, is more difficult than speaker-
independent or text-independent according to the previous study [15].

Table 6. Comparison of JTES performances (Unweighted Accuracy, UA). The highest scores for each
split are in bold.

Reference Split Features Augmentation UA (%)

[15] SI emo_large No 87.88
[14] SI Mel-cepstrum No 71.31
[13] SI ComParE No 81.44
This study SI wav2vec 2.0 Yes 97.95

[15] TI emo_large No 64.36
This study TI wav2vec 2.0 Yes 76.75

[15] STI emo_large No 69.56
[16] STI HSFs of 5 frames Yes 73.40
[39] STI LLDs No 64.40
This study STI wav2vec 2.0 No 74.50
This study STI wav2vec 2.0 Yes 77.25



Sensors 2022, 22, 5941 12 of 14

A potential future research direction based on the findings in this study is to tune
wav2vec 2.0 on the Japanese language with emotional contents. wav2vec is sensitive to
language and could extract linguistic information within acoustic features [33]. Hence,
training speech embeddings in the Japanese spoken language could be a promising research
direction. This study evaluated wav2vec 2.0 pre-trained on the English emotional speech
dataset (MSP-IMPROV) and then used that model to extract acoustic features from the
Japanese dataset.

As for IEMOCAP, the benchmark is shown in Table 7. It shows that our results obtained
in this study are competitive with the state-of-the-art results for the IEMOCAP dataset. It is
worth noting that in [10], the authors combined acoustic and linguistic features that yielded
higher results. Compared to recent speech embeddings like HuBERT and UniSpeech-SAT,
our results without augmentation shows remarkable higher scores, highlighting the benefit
of training such models on specific affective speech database. The WA and UA scores of
HuBERT Large [9] were computed manually from the provided toolkit in addition to the
official scores for cross-validation (CV) evaluation [6].

Table 7. Comparison of IEMOCAP performances. The highest scores in this study are in bold.

Reference Test Set Features Aug. WA (%) UA (%)

[11] CV UniSpeech-SAT Large No 70.78 -
[9] CV HuBERT large No 67.56 -
[10] CV Audio25 + GloVe + BERT No 77.51 78.41
[10] Session 5 Audio25 + GloVe + BERT No 83.08 83.22
[9] Session 5 HuBERT large No 63.90 64.54
This study Session 5 wav2vec 2.0 No 74.13 74.88
This study Session 5 wav2vec 2.0 Yes 75.50 76.39

6. Conclusions

This paper reported the results of SER with different data augmentation techniques.
In conclusion, adding more data does not always improve SER performance. For speaker-
independent, adding more data tends to improve SER performance. For text-independent
data (including spaker+text independent), the most accurate model was achieved by using
only two data augmentations with glottal source filtering and start-end silence removal.
For the types of data augmentations that contribute to the performance of speech emotion
recognition, we found that no specific type of data augmentation performs superior to other
types of data augmentations. One type of data augmentation performs better when it is
combined with other types of data augmentations. We also conclude that text-independent
is more difficult and challenging than speaker-independent, as previous research revealed.
The result of a text-independent scenario that yields an assumption that smaller data
obtains better SER performance than larger data shows the necessity to choose a proper
data augmentation technique for text-independent SER.

Future research can be directed to enlarge the number of data augmentation techniques
and to observe if the performance of SER can be improved with different data augmentation
techniques reported in this paper. Training SER in a specific language arguably will
lead to performance improvement due to the impact of the linguistic-dependency. Other
augmentation techniques like SpecAugment could be explored for SER, which is not
currently evaluated due to data processing differences (spectrogram vs. waveform).
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