
Citation: Lakhan, A.; Mohammed,

M.A.; Abdulkareem, K.H.; Jaber,

M.M.; Nedoma, J.; Martinek, R.; Zmij,

P. Delay Optimal Schemes for

Internet of Things Applications in

Heterogeneous Edge Cloud

Computing Networks. Sensors 2022,

22, 5937. https://doi.org/10.3390/

s22165937

Academic Editor: Antonio Guerrieri

Received: 9 July 2022

Accepted: 5 August 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Delay Optimal Schemes for Internet of Things Applications in
Heterogeneous Edge Cloud Computing Networks
Abdullah Lakhan 1,2 , Mazin Abed Mohammed 3 , Karrar Hameed Abdulkareem 4,5 , Mustafa Musa Jaber 6,7,
Jan Nedoma 8,* , Radek Martinek 9 and Petr Zmij 10

1 Department of Cybersecurity and Computer Science, Dawood University of Engineering and Technology,
Karachi City 74800, Sindh, Pakistan

2 Institute of Artificial intelligence and Blockchain, Guangzhou University, Waihuan West Road,
University Town, Guangzhou 510006, China

3 College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
4 College of Agriculture, Al-Muthanna University, Samawah 66001, Iraq
5 College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
6 Department of Computer Science, Dijlah University College, Baghdad 00964, Iraq
7 Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq
8 Department of Telecommunications, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic
9 Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava,

708 00 Ostrava, Czech Republic
10 Industrial Engineering—Brose Group, Prumyslovy Park 302, 742 21 Koprivnice, Czech Republic
* Correspondence: jan.nedoma@vsb.cz

Abstract: Over the last decade, the usage of Internet of Things (IoT) enabled applications, such as
healthcare, intelligent vehicles, and smart homes, has increased progressively. These IoT applications
generate delayed- sensitive data and requires quick resources for execution. Recently, software-
defined networks (SDN) offer an edge computing paradigm (e.g., fog computing) to run these
applications with minimum end-to-end delays. Offloading and scheduling are promising schemes of
edge computing to run delay-sensitive IoT applications while satisfying their requirements. However,
in the dynamic environment, existing offloading and scheduling techniques are not ideal and decrease
the performance of such applications. This article formulates joint and scheduling problems into
combinatorial integer linear programming (CILP). We propose a joint task offloading and scheduling
(JTOS) framework based on the problem. JTOS consists of task offloading, sequencing, scheduling,
searching, and failure components. The study’s goal is to minimize the hybrid delay of all applications.
The performance evaluation shows that JTOS outperforms all existing baseline methods in hybrid
delay for all applications in the dynamic environment. The performance evaluation shows that JTOS
reduces the processing delay by 39% and the communication delay by 35% for IoT applications
compared to existing schemes.

Keywords: JTOS; CLIP; SDN; task scheduling; framework; dynamic environment

1. Introduction

These days, the usage of industrial automation applications in the Internet of Things
(IoT) enabled paradigm has been growing progressively in practice. Industrial automation
applications are smart homes, smart agriculture, smart healthcare, and smart transport
with different data analytics sensors that offload their data to the cloud server for execution.
Recently, Internet of Things (IoT) applications, such as healthcare, autonomous vehicles,
and smart homes, are increasing progressively. IoT brings the efficient resource environ-
ment for the industrial automation applications with the collaboration of fog and cloud
networks. With millions of sensors and intelligent devices, various applications can be
developed that generate vast amounts of data and have stringent latency requirements.

Sensors 2022, 22, 5937. https://doi.org/10.3390/s22165937 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22165937
https://doi.org/10.3390/s22165937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1833-1364
https://orcid.org/0000-0001-9030-8102
https://orcid.org/0000-0001-7302-2049
https://orcid.org/0000-0001-7459-2043
https://orcid.org/0000-0003-2054-143X
https://doi.org/10.3390/s22165937
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22165937?type=check_update&version=3

Sensors 2022, 22, 5937 2 of 30

These applications include smart grids, innovative healthcare, intelligent vehicles, intel-
ligent buildings, and many more. Typically, in cloud computing, data are sent to remote
data centers for computing and storage. However, with the advent of IoT platforms, novel
applications and use cases have emerged with bandwidth and latency requirements that
cannot be met by traditional cloud computing. Hence, a new computing paradigm was
created to cater to applications with low latency requirements. Fog computing extends
cloud computing by bringing the storage and computing facility to the edge of the network,
reducing bandwidth requirement and latency. Fog computing, also called edge computing,
does not replace cloud computing. Fog nodes are used for short-term analytics with limited
data. Resource-intensive computing and long-term analytics take place at cloud data cen-
ters. The Open Fog Consortium (OFC) is an open-source multi-vendors hybrid architecture
that allows the IoT applications that leverage fog and cloud architectures mutually [1].

Core mobile cloud computing (MCC) offers unlimited shareable services to the
users [2]. However, it is often incurred with long end-to-end latency due to the mul-
tiple hops away from users. Fog computing is a subset of cloud computing that enables
cloud services at the edge of users’ networks with ultra-low latency [3]. Typically, IoT
sensors and devices are resource constrained and generate huge amounts of data that are
processed by applications [4]. IoT-based applications comprise various tasks that can be
computed or data-intensive. Due to the high demand for computing and other resources,
compute-intensive tasks are offloaded. Task offloading is a method which transfers all
compute-intensive parts of an application either to the fog or public cloud for processing [5].

The major challenge in task offloading is to decide whether the task is to be sent
to the fog or cloud for processing [6]. Though the decision is based on several factors,
bandwidth, data, and latency remain the most critical. Further, the heterogeneous nature
of IoT applications’ data, along with the high quality of service (QoS) requirements in
terms of latency and efficiency, makes the decision of task offloading more complex [7].
In order to meet latency requirements, the tasks are offloaded jointly in heterogeneous
computing nodes to solve scheduling. Task offloading problems for IoT applications have
been widely addressed separately by many researchers. For instance, these studies [8–14]
investigated the delay optimal offloading problem in the mobile edge cloud (MEC). The
aim is to reduce device energy consumption and accelerate application performance on
resource-constrained devices. Furthermore, the authors [15–18] addressed the issue of
task scheduling in the MEC. The goal is to schedule edge cloud resources to improve
application performance and decrease the energy consumption of cloud nodes. The joint
optimization problem has been investigated by these studies [6,7] to address task offloading
and resource allocation problems mutually for IoT applications. However, the work
mentioned earlier did not focus on task offloading and task scheduling problems jointly to
meet the requirements of latency-sensitive tasks in the fog cloud networks. Therefore, there
is a need for a framework that can optimize IoT application performance by considering
both task offloading and scheduling problems in fog cloud networks.

This article formulates delay-efficient joint offloading and scheduling as combinatorial
integer linear programming (CLIP) problems in heterogeneous fog cloud networks for
industrial automation applications. All the problem constraints are linear integers and
objective functions to be minimized for each task. The industrial automation applications
based on IoT are smart homes, augmented reality (A.G), E-Business (E-Factories), and
E-Healthcare; they offload their workloads to the fog cloud for the processing in the system.
Furthermore, heterogeneous fog cloud networks are the combination of different capacity
fog computing and core cloud computing. This research aims to minimize the total delays
(i.e., network delay and cloud delay) of a task during offloading and scheduling. Each
IoT application consists of independent tasks. Each task includes workload attributes and
deadline constraints. The fog clouds are dispersed and connected with users via the base
station (BS). All BSs are linked via switches and managed by a software-defined network
(SDN) control [8].

Sensors 2022, 22, 5937 3 of 30

The considerations in our article are quite different from the existing ones in several
aspects:

• Generally, former studies [7–14] made offloading decisions based on single criteria,
such as either mobile battery power threshold or application total time limitation.
Whereas, in a dynamic environment, a single threshold value-based offloading deci-
sion is not accurate; thus, we consider the multi-criteria task offloading-based decisions
more accurate, and they incur lower overhead during the task offloading decision.

• Existing task scheduling problems generally involve soft deadlines in the homoge-
neous edge only or core cloud-only resources [15–23]. Nonetheless, the frameworks
proposed in those research works consider mutually heterogeneous fog cloud re-
sources for IoT applications. Furthermore, each task has a hard deadline and must
meet the stringent latency requirements during offloading and scheduling.

• The high-level placement policy of the proposed fog-cloud architecture for real-time
and delay-sensitive applications is different from earlier works’ architectures regarding
offloading decisions and task prioritizing for scheduling.

The state of the art formulated the network delay and computational delay for IoT
tasks. The key objective is to minimize the delay of tasks in the system. There are many
types of delays in the fog cloud network. For instance, network delay, communication
delay, wait for delay, and processing delay. However, these studies only considered static
offloading and static scheduling in their solutions without considering the mobility factors
and dynamic aspects of functions in the system. Therefore, real-time, multi-parameter
aware offloading and scheduling in dynamic environments are widely ignored in the
state-of-the-art studies. This study focuses on two types for each task, such as network
delay and computational delay. The network will optimize by the offloading technique,
and computational delay will optimize by dynamic scheduling in the study.

The Major contributions of this article are summarized below:

1 The problem considered the hybrid delay, a combination of network delay and com-
putation delay under a dynamic environment where transient failure in resources
always occurs. This study suggests an architecture that shows how to solve the joint
offloading and scheduling problem in different steps. The study considered the fol-
lowing steps: offloading, sequencing, scheduling, and transient failure awareness for
IoT applications. The architecture aims to construct an environment to facilitate appli-
cations to run with distributed resources in the network. The architecture components
or steps are discussed in the proposed solution in detail.

2 The fuzzy multi-criteria task offloading method is proposed, which makes an optimal
offloading decision that adopts changes during the offloading decision process, ensur-
ing that the network context changes do not degrade the task offloading performance.

3 The work devises latency efficient task sequence in which their competent order
arranges all tasks, thereby meeting all application requirements.

4 The task scheduling method with topological sorting, searching, and transient failure
methods proposed by the study to deal with the robustness of the applications during
scheduling in the network.

This study formulated the CLIP problem for IoT, which is different from existing
studies in the following way. This work formulated the joint optimization as the CLIP
problem, which is a well-known NP-Hard problem. To solve the joint optimization problem,
the JTOS framework is proposed. For offloading and scheduling, the prediction of delay
and QoS of applications are satisfied during the process. We consider the round-trip delay
between users and BS and BS to computing nodes in the network delay. Existing studies
only considered either user to node delay or user to BS delay. This study introduced a
novel transient failure method, which can handle any transient failure tasks during the
process. The previous works focused on the failure of tasks based on checkpointing and
or primary backup method. These methods cannot handle transient failure and consume
much more resources of the nodes during the recovery of tasks from the failure state.

Sensors 2022, 22, 5937 4 of 30

The rest of the article is organized as follows. Section 2 elaborates related work,
followed by Section 3, which describes the proposed description and formalizes the problem
under study. A heuristic is proposed for the considered problem in Section 4 that describes
the proposed algorithm: JTOS. Section 5 discusses the experiments and results, whereas
Section 6 concludes the article.

2. Related Work

Recently, the usage of IoT with different computing nodes (e.g., fog/edge computing)
is increasing day by day [24]. Many partitioning, offloading, and scheduling frameworks,
architectures, and methods have been suggested to improve the energy, cost, and delay of
applications and solve the CLIP problem. In the literature, many efforts have been made to
solve the different IoT application problems. We analyze the actions of existing studies in
the table to solve the CLIP problem (Table 1).

Table 1. Existing offloading methods.

Research Parameters Decision Profiling Environment Problem Objective

[1] Single Para. Static Network Fixed ILP Min.Energy

[2] Single Para. Static Program Fixed LP Min.Energy

[3] Single Para. Static REST API Fixed MLP Min Computation

[4] Two Para. Dynamic RPC Adaptive Concave Max.Utilization

[5] Multi-Para. Dynamic Monitoring Adaptive Quadratic Max. Throughput

[6,7] Multi-Para. Dynamic Resource Adaptive Integer-Constraints Min.Delay

[8–10] Multi-Para. Dynamic Monitoring Adaptive Quadratic Min.Energy

[8,11] Multi-Para Hybrid Monitoring Mobility ILP Min Rent

[12–14] Many-Para. Hybrid SDN-Controller Mobility ILP Min.Cost

[15–17] Many-Para. Hybrid SDN-Controller Mobility LP Min.Budget

[18,19] Many-Para. Hybrid OS Mobility ILP Min.renting cost

[20,21] Many-Para. Hybrid OS Mobility ILP Min.Energy

[1,3,5,8,11] GA Many Fog-Cloud VMs Olog(m× n) Offloading

[2,4,6,10,12] PSO Many Edge/Cloud VMs Olog(m× n)2 Joint-ORA

[13–19] Heuristics Many Edge VMs M× N × N Offloading

[20–23,25,26] DRL Many Edge-Cloud Containers M×M× N Scheduling

Debashis et al. [1] suggested a multi-leveling offloading method to solve the parti-
tioning and offloading problem in distributed mobile cloud architecture. The goal was to
minimize the power and latency of the application during the process in the architecture.
The study considered the single parameter offloading (e.g., battery energy/delay), static
offloading, network profiling technology, and fixed resources (e.g., mobile and cloud re-
sources) and solved as integer linear programming. However, due to the long distance
between mobile users and the cloud, the offloading faced end-to-end latency issues during
the process. Shahryari et al. [2] investigated energy-delay-aware offloading for latency-
sensitive applications. The study formulated this problem as linear programming with
non-linear constraints. The single parameter offloading (e.g., battery energy/delay), static
offloading, program technology, and fixed resources (e.g., mobile and fog resources) have
been considered. However, due to the high ratio of user requests, the resource-constraint
fog node faced an overloading situation during the offloading process. Aruba et al. [3]
formulated a scheduling convex optimization problem for the IoT in a fog cloud network
to minimize the lateness of the applications. The study considered two types of workload,
including latency-sensitive and delay-tolerant with multi-parameters (e.g., workload size
and offloading time) in the static resource environment. The study presented the win-
dow algorithm for application profiling which may decide whether the workload of the

Sensors 2022, 22, 5937 5 of 30

application offloads or not in the distributed fog cloud network. Lin and Fan et al. [4,5]
suggested a SDN-based fog cloud network for IoT applications. The offloading and re-
source allocation-aware schemes are widely suggested to minimize the end-to-end delay of
applications. The combinatorial optimization (e.g., Concave) and linear programming (e.g.,
Quadratic) based objectives were optimized. The multi-parameters (e.g., local execution,
network execution, and computing execution delay were taken into consideration) during
offloading and resource allocation. The network changes are also considered an adaptive
environment where offloading is performed based on new available values instead of old
network contents.

The authors in [6–10] investigated joint offloading and resource placement problems
for IoT applications in distributed fog/cloudlet cloud networks. These studies considered
the dynamic and adaptive environment where network contents and resource placement
can change at runtime. The proposed scheduler and offloader engine adopt any runtime
changes during the initial process. Based on the experience, a new offloading decision will
be more optimal than the existing one. The offloading decision is dynamic concerning
resource placement and offloading, where remote procedure call methods are formulated
as the integer constraints and the quadratic problem. The objective function was a convex
function, i.e., minimize delay, and all variables are convex linear integers in the consid-
ered problem.

The authors in [8,11–14] investigated resource provisioning and cost-aware offloading
and scheduling problems for IoT applications in the distributed mobile fog cloud network.
The SDN controller was implemented to facilitate mobility features of applications during
roaming among networks. The dynamic environment and hybrid static and dynamic
offloading decisions were taken into consideration. The resource cost, budget, rent and
application delay, and energy objectives were optimized as joint linear integer programming
optimization problems. All coarse-grained workloads are scheduled under their maximum
threshold level to avoid any violence of users. The authors in [15–19] suggested that
frameworks and architectures solve deadline-aware offloading and scheduling problems
for IoT applications. They formulated problems as integer linear programming where all
objective functions and constraints are linear and integer variables. The budget, energy,
renting cost, scheduling cost, and offloading delay objectives are optimized via different
optimization methods. The orchestrator controller (e.g., SDN and system components)
are implemented to offer mobility-aware services to the IoT vehicle applications during
their roaming features. The dynamic offloading decision (e.g., static and dynamic) and
dynamic workload assignment in fog cloud network were considered during the problem
formulation. Table 1 shows the efforts of existing studies in the area.

Furthermore, the authors in [1,3,5,8,11] proposed optimization algorithms based on a
genetic algorithm (GA) with many components (e.g., resource searching, resource allocation
and offloading) for IoT applications. The suggested that mixture architectures are based
on fog-cloud nodes with virtual machine implementation to serve users’ requests. The
proposed methods contained average time complexity during the process of applications
in the network. The linear and global searches are parts of GA during the execution of
applications. The works [2,4,6,10,12] devised optimization techniques based on particle
swarm optimization (PSO) meta-heuristics with many components (e.g., resource searching,
composition, allocation, and migration). The fog-cloud was implemented with virtual
machines to process the workload of applications with their constraints. To obtain the
complexity of the algorithms, the lightweight and linear search-based iterative model was
devised by studies. The studies [13–19] devised different optimization heuristics based
on Bundle branch-bound, Subgradient linear search, Interior-Points, and Cutting-plane
Hungarian with different types of searching methods. These methods search for the best
resource among edge/fog cloud nodes before allocating tasks to them. The time complexity
is lower because these studies implemented linear search, where all optimal solutions select
randomly based on integer parameters.

Sensors 2022, 22, 5937 6 of 30

Recently, the complexities of IoT applications are increasing day by day. For instance,
healthcare applications contain real-time tasks, which require continuous attention from
network and computation nodes. Due to the uncertainty of the network due to mobility
and traffic, the ratio of failure tasks, delay, and deadline can occur widely. The uncertainty
and fluctuation in computing nodes can lead to the violence of the quality of service of
applications in the system. Therefore, all existing conventional heuristics cannot adapt
to any dynamic changes and do not support the complex requirements of applications.
Recently, dynamic environment aware deep reinforcement learning (DRL) aware heuristics
were proposed [20–23,25–27] to solve the complex IoT problems. The DRL approaches can
work better in a dynamic environment via different states where all states are independent.
These approaches are achieving long-term goals in terms of offloading and resource alloca-
tions. However, many issues remain in both conventional methods and machine learning
approaches when solving the joint offloading and scheduling problem for IoT applications.

3. Proposed Solution

This section aims to discuss the importance and all steps of the proposed architecture.
As mentioned above, this study considers the joint offloading and scheduling optimization
problem as a CLIP for IoT applications in the distributed network. The proposed architec-
ture consists of three main layers: IoT application layer, agent layer, and resource layer, as
shown in Figure 1. All layers are managed and controlled by the agent layer.

The application layer consists of different applications, where each application is
composed of various independent tasks. However, resource-constrained local devices
(e.g., limited battery, computational capability, and storage) cannot run all tasks locally
on devices. Therefore, a Fuzzy multi-criteria method (FMCM) is implemented at the
application layer, which boosts the performance of all applications via an offloading process
based on QoS requirements (e.g., deadline and hybrid delay). Initially, FMCM generates
an offloading result based on QoS requirements and sends it to the agent layer. Then, the
agent layer allows devices to offload their tasks to the system for efficient execution.

The agent layer accepts offloaded tasks based on their offloading result for further
execution. Initially, all tasks are sorted into topological order based on their deadlines and
total delay. The main reason behind sorting is that all tasks have different sizes, deadlines,
and resource requirements. Therefore, delay-sensitive tasks with the lowest deadline must
have high priority compared to delay-tolerant tasks with long deadlines. Furthermore,
based on sorting order, all tasks are scheduled onto different computing nodes based on
their offloading results. In the dynamic environment, in different timezones, the ratio of
user traffic is different; therefore, due to the ingests percentages of users in peak hours (8 am
to 4 pm), the transient failure of resources often occurs in the system. The transient failure
aware (e.g., detection, retry, and familiar failure schemes) handles all transient failure tasks
and runs all applications robustly without losing their generosity. The orchestrator, multi-
layers SDN scheduler controller is the primary controller in the agent layer, responsible for
managing load balancing and connectivity of all computing nodes and all layers, and it
helps to monitor resource status in the network.

The resource layer combination of fog nodes and cloud nodes is connected with the
SDN controller and BSs. Here, the SDN controller allows devices to make the offloading
request to the associated BSs and ensures that BSs are directly connected with computing
nodes for further processing. For instance, BS 1 was directly connected with the fog node
k1 to process task v1 and v6. Whereas BS 2 connected with fog k2 and processed the tasks
v3 and v2. The delay-tolerant tasks are scheduled on fog nodes; however, all delay-tolerant
tasks must be scheduled on cloud computing for efficient processing. For instance, v5 and
v4 and the rest of the tasks are offloaded to the remote cloud by the SDN controller for
execution via the Internet.

Sensors 2022, 22, 5937 7 of 30

TasksTopological Ordering

V1 V2 V3 V4

V1 V3 V2 VNOffloading

V5 V6 VN

V6 V5V4

Smart Home
Sensors

A.G. Sensors

E-Business
Sensors

E-Healthcare
Sensors

IoT Application Layer 1
Fog-Cloud Agent Layer 2

Fuzzy Multi-criteria
Method

Task Offloading Results

Orchestrator Multi-Layers SDN Scheduler Controller

V6

V1

V3

V2

V5

V4

Fog k1

Base-station 1 Base-station 2

Fog k2 Cloud k3

Internet

VN

Geographically Distributed Resource
Layer 3

Figure 1. Joint Hybrid Delay Optimal Offloading and Task Scheduling for IoT Applications in
Fog-Cloud Architecture.

3.1. System Model Scenario

As we mentioned above, the study considered leaving dynamic requests of users in
the system. Therefore, resources, network channel capacity, and QoS (quality of service)
and quality of experience (QoE) requirements of applications are dynamic. The scenario of
IoT applications in the fog cloud network is defined as follows. Initially, all IoT applications
(e.g., mobile devices, sensors, cameras, vehicles, etc.) are connected to the BSs. Each
application is only connected with one BS at a time. In comparison, many base stations are
connected with fog nodes which are dynamically distributed and managed by the SDN
control plane. All the BSs are connected with fog nodes via different fiber optics switches.
The SDN control plane is also associated with the remote cloud via wire Internet to process
the delay-tolerant tasks of applications during execution. All BSs and fog nodes are resource
constraints; therefore, SDN control is also responsible for load balancing among BSs and
computing nodes.

3.2. Problem Formulation

The architecture leverages three different core technologies: IoT sensor-based tech-
nologies, wireless technologies (i.e., WiFi, Bluetooth, and cellular network), and computing
frameworks (e.g., fog node and cloud node). The considered joint optimization task is
offloading and the scheduling problem for IoT applications incurred two kinds of delays:
network delay and computation delay. Thus, total delays for each task have network delay
and computation delay during offloading and execution. The notation of the study is
described in Table 2.

Sensors 2022, 22, 5937 8 of 30

Table 2. Mathematical notation.

Notation Description

A Number of all IoT applications
G The Gth application of A
N Number of tasks of application G
vi ith independent task
vi ↔ b Round-trip delay between vi and b
B Set of base stations b
yib The coverage base stations
b↔ k The Round-trip delay between b and k
Tnet

i Total network delay for task vi
M Set of computing nodes
k kth computing nodes of M
εk Resource capacity of computing node kth kth
ζ j The speed capability of jth of kth computing node
Wi The requested workload of task vi
W ′i The result of task vi
di The deadline of task vi
Te

i The execution time of task vi
xij The assignment of task vi on k j cloud
Fi The finish time of task vi
Td The lateness of the vi
C The channel capacity
Bw The bandwidth of the channel in hertz
S Signal power over the bandwidth
Ns Interference over the bandwidth
S

Ns
The signal-to-noise ratio

3.3. Dynamic Environment

The problem constraints, such as computing resources, network contexts, and task
size, are highly dynamic in the study. This work considered the in and out user requests in
the system as a dynamic environment without mobility features. Although the mobility
feature is a part of the dynamic environment, this study did not consider the mobility of
the application in the current version of the work.

3.4. Network Delay

The network delay for IoT applications is comprised of round-trip delays, such as
the delay between a task vi and associated base station b and kth computing node. The
notation vi ↔ b shows round-trip delay between task vi and assigned BS b. Whereas the
notation b ↔ k shows round-trip delay between the base station b and computing node
k. Each application is composed of different types of tasks, such as video, audio, image,
text, and so on. However, it is not trivial to know in advance what amount of task data
will be carried via a channel per second or at what rate the channel transfers task data to
the cloud for execution. There are many factors that can interrupt communication links
during task offloading and downloading, such as noise, inference, and intermittency in the
wireless network [28]. Thus, our task offloading decision method adopts dynamic changes
of network contexts during offloading. The binary variable y = {0, 1} shows either the
offloaded task i being implied in base station b in the coverage area yib = 1 or not yib = 0.
The communication delay for a task during offloading and downloading between BS and
computing node can be estimated in the following way:

Tnet
i = yib(vi ↔ b + b↔ k)× C. (1)

Sensors 2022, 22, 5937 9 of 30

Equation (1) determines the maximum capacity C of the channel and measures the
network delay of each task, which is the sum of delay between the user and BS and BS to
any particular computing node during offloading and downloading. In simple terms, it is
round-trip delay between a user to BS and BS to computing node.

rc =
(

Wi
UB · wc

+
W ′i

DB · wc

)
log2

(
1 +

S
N

)
. (2)

In Equation (2), the variable rc determines the usage ratio of channel resources. Where
UB.wc is the uploading bandwidth (i.e., not fixed) of the wireless channel, wc determines
the hertz (H), and UB.wc is the downloading bandwidth. The variable S is the signal power
of the network in watts, and N is the present noise and inference in the wireless during

task offloading to the fog cloud network. Whereas the variable log2(
Wi

UB·wc) + (
W ′i

UB·wc) is the
amount of data offloaded and downloaded to and from BS and computing. The network
delay of all tasks between all BSs and computing nodes is determined in the following way.

Tnet =
A

∑
G=1

N

∑
i=1

yG
ib(v

G
i ↔ b + b↔ k), (3)

b ∈ B , k ∈ M.

Equation (3) calculates the network delay of all tasks during offloading and downloading.

Computation Delay

The aim of the study is to offload and schedule all independent tasks of different IoT
applications to the heterogeneous computing nodes k ∈ M to reduce the maximum delay
of all tasks. The tasks are represented by {v1, v2, v3, . . . , vN}. Each task vi has workload
Wi{vi = 1, . . . , N} and deadline di, which is defined by the user when tasks are offloaded
to the proper computing node. All computing nodes are heterogeneous and represented by
{k1, k2, . . . , kM}. Each computing node has a different computing speed which is depicted
as ζk, where k = 1, 2, . . . M. We denote the computing resources of all computing nodes
in this way, i.e., εk = {k = 1, . . . , kM}. The notation εk denotes particular resources of the
node k. To reduce the computation delay of all submitted tasks, we assign each vi to the
ideal computing node to meet the deadline constraint of all tasks with minimum delay.
Meanwhile, a task vi is executed by a single cloud k. The decision variable is employed xik
and either task vi is assigned to k or not. The execution time of the task vi on kth computing
node can be estimated as given in Equation (4). The computation delay on a particular
node of a task i is determined in the following way:

Te
i = xij

Wi
ζk

. (4)

Equation (4) measures the execution delay of a task on the particular computing node.
Similarly, the execution delay of all tasks on all computing nodes is determined in the
following way.

Te =
A

∑
G=1

N

∑
i=1

xG
ij

Wi
G

ζk
where k ∈ M (5)

Equation (5) calculates the computation delay of all tasks on heterogeneous computing
nodes.

The considered problem is mathematically modeled as below:

Ttotal = Tnet + Te. (6)

Sensors 2022, 22, 5937 10 of 30

whereas Ttotal is the total delay (e.g, communication delay and computation delay) of
tasks of all applications in distributed computing nodes as determined in Equation (6).
The objective function is to minimize communication delay and computation delay for
each task.

min Ttotal . (7)

The considered problem is a convex linear integer optimization problem, where
Equation (7) is a convex main function and computation delay and network delay are the
convex constraints in the problem.

rs = Wi ≤
M

∑
k=1

εk, ∀{i = 1, . . . , GN}∀A. (8)

The requested workloads of tasks must not be exceeded by the limit of resource
capacity that is ensured in Equation (8). Whereas rs is an integer variable that shows the 0
and 1 status, if it is greater than zero, it means nodes have sufficient resources to process
the workload. Otherwise, it shows 0.

Fi = Bi + Te
i , ∀{i = 1, . . . , GN}∀A. (9)

The finish time ensures that all tasks are executed under their deadlines with a mini-
mum lateness determined in Equation (9), whereas Bi is the beginning time of a task.

Bi = 1− Te
i , ∀{i = 1, . . . , GN ∈ A}. (10)

The beginning time of a task on the same machine is equal to the execution of the
current task during scheduling, as determined in Equation (10).

rc ≤ C, ∀{b = 1, . . . , B}. (11)

Each network channel has limited capacity to offload workloads from users to com-
puting nodes; therefore, Equation (11) ensures that the capacity of channel is sufficient for
offloading all workloads to the system.

A

∑
G=1

N

∑
i=1

xik = 1, ∀{k = 1, . . . M}. (12)

Each task can only assign to one computing node, as defined in Equation (12).

M

∑
k=1

xik = 1, ∀{i = 1, . . . , GN}∀A. (13)

Each computing node can only execute one task at a time, as defined in Equation (13).

B

∑
b=1

yib = 1, b ∈ B. (14)

Each task can access one base station at a time. It depends upon the availability of the
network; therefore, the binary variable yib shows 1 if a task accesses the particular base
station, otherwise it is zero, as shown in the Equation (14).

xij ∈ {0, 1}, yib ∈ {0, 1}. (15)

Equation (15) shows that task i is either assigned to the computing node k or not.
The combinatorial Integer Linear Programming (CLIP) offers an optimization solution

to the linear problem. The offloading and scheduling are linear and have a trade-off between

Sensors 2022, 22, 5937 11 of 30

network delay and computational delay in the considered problem. CLIP has an objective
function with different constraints. Therefore, communication delay and computation delay
for each task are determined based on their primitives. For instance, data size required
resources to execute data and make the deadline. Mainly, the performance of the objective
function depends upon available resources, including network resources and computation
resources. The formulation of CLIP is performed based on Equations (1)–(14).

4. Proposed Algorithmic Jtos Framework

The study considered offloading and scheduling problems as a joint optimization and
formulated a combinatorial integer linear programming (CILP). The objective function is an
integer value, where all constraints are integer numbers and are denoted as a convex set. For
a feasible solution, it is necessary to satisfy all conditions of the problem during the entire
process in the system. The CILP is an NP-hard problem when it processes heterogeneous
machines in the distributed fog cloud network. In joint optimization, offloading decides
whether to offload or not based on certain values to obtain the minimum network delay and
computation delay of applications. Moreover, scheduling will handle resource allocation
mechanisms of tasks under deadline and failure constraints. Keep the balance between
the total delay of Ttotal and deadline and constraints, and the joint optimization will
achieve the overall objective of the study. Furthermore, the CILP problem will be divided
into more sub-problems, such as offloading, sequencing, and scheduling. To solve the
CILP problem, the study proposes the JTOS algorithmic framework, which consists of
different components for processing user requests. JTOS framework initially takes the
input of all tasks of applications. The study suggests that an Algorithm 1 is the main
algorithmic framework that consists of different methods in the sequences. For instance,
the FMCM method is the framework method that makes the offloading decision based
on the following parameters (e.g., network delay, computation delay, required computing
instructions (ms) data size, and total delay). The Fuzzy indexes and weight ratios consist of
different attributes, including execution time, communication time, resource availability,
and deadline. The pairwise comparisons of giving elements are produced based on the
normalized comparison scale on nine levels as illustrated in Table 3. Task offloading results
are a result of tasks, as shown in Table 4. Each task has different requirements, such as a
small workload, a small deadline, and being delay-sensitive and delay-tolerant. Therefore,
all listed tasks are furthermore sorted into the proposed topological ordering of their needs.
Based on topological ordering, machine learning-based search finds the optimal computing
node for each task. Based on topological sorting, all tasks are scheduled onto search nodes
based on their objective function. However, initial scheduling incurs the failure of tasks
it will handle in two ways. Firstly, the transient failure tasks will recover under their
deadlines and comprehensively failed tasks will re-offload from scratch to the system. The
work discusses all components in the corresponding subsections.

Table 3. Scale & definition.

Definition Strength of Importance

Uniformly 1
Fairly important 3
Robustly important 5
Very robustly important 7
Extremely important 9
Intermediary 2 4 6 8

Sensors 2022, 22, 5937 12 of 30

Algorithm 1: JTOS Framework

Input : G ∈ A, i = {i = 1, . . . , N}, k = {k1, . . . , M};
Output : min Ttotal ;

1 begin
2 status← i running status of a task;
3 results[null, null];
4 while (stability=1) do
5 foreach (G=1 to A) do
6 Call FMCM results[i, k]← i↔ k;

7 foreach (k=1 to M) do
8 Call Topological Sequence Methods;
9 Call MLBRS;

10 Call Initial Scheduling;
11 results[i, k]← i↔ k;
12 Ttotal ← results[i, k]

13 if (status← i=0) then
14 Call Reschedule;
15 Recover Transient Failure tasks;

16 else
17 Re-Offload Call FMCM;

18 End Tasks loop;

19 End Inner Loop;
20 return Ttotal

Table 4. Ttotal Delay Result of Tasks on Heterogeneous Computing Nodes.

G1
Fog Nodes Cloud Node

k1 k2 k3 k4

v1 30 20 10 50

v2 27 28 47 70

v3 51 26 29 80

v4 50 47 71 29

v5 24 57 56 77

v6 35 26 16 34.5

G2
Fog Nodes Cloud Node

k1 k2 k3 k4

v1 41 31 51 66

v2 47 30 31 86

v3 36 29 27 21

v4 41 37 71 33

v5 33 30 18 54

v6 19 26 49 59

Sensors 2022, 22, 5937 13 of 30

Table 4. Cont.

G3
Fog Nodes Cloud Node

k1 k2 k3 k4

v1 17 31 15 100

v2 34 41 17 120

v3 48 25 55 90

v4 61 66 86 43

v5 86 76 52 48

v6 12 65 19 39

G4
Fog Nodes Cloud Node

k1 k2 k3 k4

v1 21 45 15 100

v2 56 90 50 46

v3 89 125 60 56

v4 20 66 46 130

v5 32 26 50 200

v6 200 285 240 100

4.1. Fuzzy Multi-Criteria Method (Fmcm)

The offloading is the sub-problem of the CILP type problem, which makes the decision
when and where to offload tasks in such a way that total Ttotal is minimized for all applica-
tions. The offloading problem only ensures that it delays optimal offloading from users
to computing nodes without considering deadlines and failure situations of tasks. In this
study, offloading is a multi-criteria decision problem, where decision parameters have some
weights to make the offloading for tasks. The fuzzy logic algorithm accommodates solving
an enigma input. This study presented the FMCM offloading method for the applications,
where the FMCM method evaluates the rank of each criterion according to criterion, i.e., ω
based on Equation (15). The goal is to sort and determine all ranks based on their given
requirements. Furthermore, the FMCM method normalized aggregated fuzzy importance
weight for each criterion based on Equation (16). After that, the technique normalized the
matrix for all applications G ∈ A for each measure based on Equation (17). Similarly, the
FMCM method normalized stored weights based on Equation (18). FMCM constructs the
weighted normalized fuzzy decision matrix of application and makes decisions in the fifth
and sixth. The seventh FMCM determines the fuzzy positive and negative ideal solution
based on Equations (19) and (20). In the final step, FMCM determines the fuzzy closeness
computing node for each task and ranks the alternatives according to their closeness based
on Equation (21). To solve the multi-criteria offloading decision, we propose the FMCM. The
FMCM determines a decision based on the given weights to the criteria of the task during
offloading matrix, i.e., G{v1, v2 . . . , vN}, where each attribute includes relative weight for
their importance, i.e., ω = {0.1, 0.4, 0.3, 0.5}. We formulate the task offloading problem as a
multi-criteria decision-making (MCDP) problem [27]. The existing decision methods [26]
are not suitable for our task offloading where elements are dynamically changed. However,
all decision methods are efficient and effective when the environment is stable with the
perfective of all elements. We propose a lightweight and multi-criteria task offloading
decision method, which tackles all elements dynamically based on their current values.
Furthermore, we apply similar elements pairwise comparison to the analytic hierarchy

Sensors 2022, 22, 5937 14 of 30

process (AHP) method [29] to obtain pairwise values. We show the pairwise value in the
matrix G.

A

∑
G=1

G =

v11 · f w11, v12 · f w12, v13 · f w13, v14 · f w14
v21 · f w21, v22 · f w22, v23 · f w23, v24 · f w24
v31 · f w31, v32 · f w32, v33 · f w33, v34 · f w34
v41 · f w41, v42 · f w42, v43 · f w43, v44 · f w44

, (16)

ω · vi×k =1 · vk∈K×vi∈N =
1

vi×k
. (17)

Equation (16) describes three alternative computing nodes, i.e., n = (k1, k2, k3) and
four attributes ω = { f w1, f w2 . . . , ω}. It determines the K× N(3× 4) resource matching
calculation during the offloading decision. The attributes are execution time, communica-
tion time, resource availability, and deadline. The pairwise comparisons of giving elements
are produced based on the normalized comparison scale on nine levels employed in matrix
G to compute the weight of the attributes by obtaining an eigenvector ω, which is also
associated to the prime eigenvalue λmax. As usual, the outcome of the pairwise comparison
reliability index (RI) is determined in the following way:

RI =
λmax − n
(n− 1)

, (18)

RR =
RI

(n− 1)× Random− Index
. (19)

Equation (18) shows the reliability indexes of elements, where RR is the reliability
index ration of RI, whereas successive relative weights are produced by RI, the possibility
of multi-criteria derive via NM(xi×k)dc . Where x is a integer value, which is equal to 1 when
it has ideal fuzzy weight. Because k is a fascinating alternative (k1, . . . , K) with N number
of tasks, it further normalizes in the following way:

NM(xi×k)dc =
M(xi×k)

dc

∑4
n=1 M2

i×k

, (20)

Equation (20) determines the selection of the best resources among all existing re-
sources, as x is any real number of R which explores the choices that may be criteria and
alternative. Where dc is the dcth decision maker whose task has the highest rank on the
computing node. Due to the dynamic environment, tasks and resource offloading have
many FMCM choices, i.e., {dc1, . . . , DC}.

Mw = ωv × N, (21)

Equation (21) stored the related weight of each element (which is fixed in advance),
where ωv is a weight which is already initialized above. The affirmative best solution and
the aversive solutions for each decision maker can be determined dc from the weight matrix.

Adc+ = (22)

〈min Ttotal × i× k | i = 1, 2, 3, 4, k = 1, 2, 3 | N ∈ J+〉,
〈min Ttotal × i× k | v = 1, 2, 3, 4, k = 1, 2, 3 | N ∈ J−〉,
Adc− = (23)

〈min Ttotal × i× k | v = 1, 2, 3, 4, k = 1, 2, 3 | N ∈ J−〉,
〈min Ttotal × i× k | v = 1, 2, 3, 4, k = 1, 2, 3 | N ∈ J+〉

Sensors 2022, 22, 5937 15 of 30

where J+ is a positive solution of the decision maker for application objective, where
J− is aversive (negative) solution to the objective. It is natural to consider the real time
information related to the available wireless network via the network profiler; the FMCM
uses the Euclidean distance matrix among all possible alternatives and it can be calculated
in this way:

D+
v =

√√√√ 4

∑
v=1

((Ttotal × i× k)+)2, (24)

D−v =

√√√√ 4

∑
v=1

((Ttotal × i× k)−)2, (25)

Equation (24) determines the best choice: which solution is best for each task before
offloading. Because D+

v and D−v show the best and worst solution for each alternative, the
task offloading algorithm chooses the highest rank solution Hv solution from all alternatives,
as follows:

Hv =
D−v

D+
v + D−v

. (26)

Equation (26) finds the highest rank of each node for every task during the offloading
decision.

Algorithm 2 processes the offloading mechanism for all applications onto different
heterogeneous computing nodes. In step 2–4, Algorithm 2 constructs the fuzzy weight
tasks and resource matrix of each application based on Equation (15). The reliability index
is measured based on Equation (16). In step 6–8, the algorithm normalized the tasks
index based on Equation (17). In step 9–14, Algorithm 2 constructs the decision matrix
based on Equation (18) and generates the position solution and negative solution based
on Equation (19). The algorithm determines each task’s best choice and worst choice for
computing based on Equation (20). In the end, the optimal and ideal rank of each task onto
optimal computing are constructed based on Equation (21). The output of Algorithm 2,
i.e., results[i ∈ N, k ∈ K] is shown in Table 4. The offloading results of four applications,
such as E-Healthcare, E-Transport, Self-Autonomous (e.g., Augmented Reality), and smart
home are analyzed by FMCM with different steps. Table 4 shows that, in the result list,
i.e., results[i ∈ N, k ∈ K], each task has different Ttotal on different computing nodes.
Therefore, these results will be passed to the system for further execution under deadlines
and failure constraints.

4.2. Topological Ordering of Tasks

Table 5 shows the topological ordering of the tasks into the system. A topological sort
is a method of sorting jobs in which each vertex appears before any of the vertices reliant
on it. We use a topological sort to represent the task graph using an adjacency list. The task
restructuring adjacency list was ordered in this study. A period task graph topological sort
algorithm is based on a topological sort algorithm. However, we compare methods by the
period at a specific time. Furthermore, this approach assigns a period to all tasks using
a harmonic relation. Therefore, it is based on the assumption of usage. The offloading
method generated the offloading result, i.e., results[i ∈ N, k ∈ K] of tasks of all applications.
Each task has different requirements, such as workload, deadline, required bandwidth, and
Ttotal . Therefore, all tasks are sorting into some topological order, such as lateness order
and deadline order. The study proposes a novel three ordering rules-based methods. In
sequence-1, all tasks are sorted by descending order of their Ttotal on computing nodes. In
the second sequence-2, all tasks are sorted on the specific node by their deadlines. The first
topological ordering of tasks based on the proposed is shown in Table 5.

Sensors 2022, 22, 5937 16 of 30

Algorithm 2: Task Offloading Phase

Input : ∑A
G=1, ω = { f w1, f w2 . . . , ω}

Output : results[i, k]
1 begin
2 foreach (G=1 to A) do
3 Construct fuzzy weight tasks and resource matrix of each application based

on Equation (16);
4 The reliability index measured based on Equation (18);
5 RI = λmax−n

(n−1) RR = RI
(n−1)×Random−Index ;

6 Normalized the tasks index based on Equation (20);

7 NM(xi×k)dc =
M(xi×k)

dc

∑4
n=1 M2

i×k
;

8 Construct the decision matrix based on Equation (21);
9 Mw = ωv × N;

10 foreach (dc=1 to DC) do
11 Generate position solution and negative solution based on Equation (22);
12 i← k← J+;
13 i← k← J−;
14 determines the best choice and worst choice of each task to computing

based on Equation (24);
15 i← k← D+

v ;
16 i← k← D−v ;
17 Construct the optimal and ideal rank of each task onto optimal computing

based on Equation (26);
18 results[i, k]← Hv ← Ttotal ;

19 if (rc ≤ C) then
20 Offload: results[i, k];

21 results[i, k] for all applications;

22 End

Table 5. Sequence-1: Sorting Tasks by Their Descending Order of Resource Ttotal .

Fog Nodes Cloud Node

Application k1 k2 k3 k4

G1 v2, v5 v3 v1, v6 v4

G2 v6 v2, v1 v5 v3, v4

G3 v6 v3 v2 v4, v5

G4 v1, v4 v5 v1 v3, v6

The topological ordering of deadline sequence is shown in Table 6.

Sensors 2022, 22, 5937 17 of 30

Table 6. Sequence-2: Sorting Tasks by Their Descending Order of Resource di.

Fog Nodes Cloud Node

Application k1 k2 k3 k4

G1 v5, v2 v3 v6, v1 v4

G2 v6 v1, v2 v5 v4, v3

G3 v6 v3 v2 v4, v5

G4 v1, v4 v5 v1 v6, v3

4.3. Dynamic Task Scheduling

The study devises the scheduler method Algorithm 3 for the workload sorting and
execution in the system. The dynamic scheduling is the mapping process in this study
which schedules all tasks onto different computing based on their given ranks or orders. The
task scheduling scheme is an iterative model where the objective of each task will improve
during the runtime of execution. The scheduler only handles computing node failure tasks
instead of offloading failure. The study only considered the node failure tasks, which are
transitory failed during their process. This study devises a task scheduling Algorithm 3
which takes a sorted list of tasks and resources as an input. We only determined the
communication offloading and downloading time of tasks in the system. As we assumed,
we have fixed bandwidth for the offloading and downloading task data between users
and servers in the article. The study exploited the scheduler in which tasks are received in
random format and stored in the queue before being scheduled in the system.

All steps of Algorithm 3 defined as below.
• The workload of all tasks must be less than the capacity of the computing nodes before

scheduling in the network as defined between 2 and 5 steps.
• All tasks are sorted based on sequence-1 and sequence-2.
• If the task deadline is satisfied at any node without wasting any resource, the objective

of each task is calculated based on Equation (7).
• There are three statuses of each task with different activities, such as start, i.e., status-1,

and status = 2 shows progress, and status shows the finished process at a particular
node as defined in 9 to 20 steps.

• If any task is incurred with transient failure, it will be added to the failure list.
• The failure list will recover tasks based on the failure aware method with their detec-

tion, retry, and failure aware strategies.
• However, due to the dynamic environment, the initial solution is not optimal. There-

fore, the searching method searches for the optimal solution based on the current
values of the network.

• The searching method will improve the initial solution of tasks from the neighborhood
structure.

• The neighborhood structure consists of different objective functions of each task in
the dynamic environment, where the scheduler will choose the best one via the linear
searching method.

• The scheduler will control both the failure and dynamic environment for all tasks in
the system.

Sensors 2022, 22, 5937 18 of 30

Algorithm 3: Task Scheduling Scheme

Input : results[i ∈ N, k ∈ K];
, εk

1 begin
2 foreach (vi=1 to N ∈ A) do
3 Initially all tasks are sorted according to Sequence-1;
4 if (Wi ← k ≤ εk) then
5 Sort all tasks based on deadline order according to Sequence-2;
6 if (i← Fi ≤ di) then
7 i← k← Ttotal ;
8 Calculate the initial scheduling based on equation (7);

9 if (statusi = 1) then
10 Return Status=Started;

11 else
12 Failure[i, k, in f o]← i← k;
13 Return Status=2;

14 foreach (i=1 to Failure[i, k, in f o]) do
15 if (Failure[i, k, in f o] 6= empty) then
16 Call Transient Failure Method;
17 Call Searching Method;
18 Optimize: Ttotal ← T∗total ;
19 Calculate the new scheduling based on in f o;
20 i← k← T∗total ;
21 Status=3;

22 End of Failure Tasks;

23 End of Inner Iteration;

24 End of Main Loop;

4.4. Solution Searching Method

The study considered the dynamic environment, where users can enter and leave the
network at runtime. At different timezones, the objective function of each task could be
changed. In the night timezone, the user’s traffic is low, and all requests are entertained
in a better way. However, during peak time, the traffic is high and the objective function
will suffer from time to time. Due to this dynamic environment, the study constructs the
different solutions for each task via neighborhood structure. The study proposes a novel
searching engine, i.e., Algorithm 4, which determines the best solution for each task based
on offloading results in the system.

The study defines all steps of Algorithm 4 as follows.

• Initially, the study constructs the neighborhood structure of available solutions.
• The initial objective of each task is Ttotal .
• The initial objective of each task Ttotal will be compared with another solution when a

new solution is better than the existing ones, and it will return a new optimal solution,
i.e., T∗total .

• All the failure tasks or scheduled tasks always obtained an optimal solution, i.e., T∗total
in the dynamic environment.

• The length of the search method is limited, and each solution is compared with a new
solution in the non-linear way; when a new one is the better existing solution, the
searching mechanism will stop searching. This way, the number of search steps will
be reduced and remain optimal.

Sensors 2022, 22, 5937 19 of 30

Algorithm 4: Searching Optimal Solution

Input : Neighborhood Structure: NS = G ← results[i ∈ N, k ∈ K] ∈ A
1 begin
2 Ttotal ←=1 Initial Solution;
3 while (Ttotal ≤ NS) do
4 foreach (G ← results[i ∈ N, k ∈ K] ∈ A) do
5 Ttotal = (Ttotal , NS);
6 T∗total=Local Search (Ttotal);
7 if (f (T∗total) ≤ f (Ttotal) then
8 Ttotal = 1;

9 else
10 Ttotal+ = 1;

11 Stop when criteria are met;

12 return T∗total ;

13 End

4.5. Transient Failure Aware Method

To understand the failure-aware mechanism, the study discusses a case study of
the real-world practice of IoT applications. There are two types of failure in distributed
computing that are often considered: communication node failure and computing node
failure. However, this study considers the transient failure of computing nodes in a dynamic
environment. Figure 2 illustrates the execution process of application G1 with its tasks
on different computing devices. The information is the history of a task from beginning
to end. Each task has three statuses: s1 shows that a task has started its execution on a
particular node. s2 illustrates that a task is still in the process of execution on any node,
whereas s3 ensures the execution of a task is finished successfully. The tasks v2 and v5 of
application G1 are scheduled on k1. Let us assume that a task v5 failed at the computing
node k1. The detection strategy saves information on the failure of a task from the point
of failure and sends it to the retry strategy. At the same time, the retry strategy tries to
recover s2 status with two possible iterations left, i.e., three before the deadline, as shown
in Figure 2. The task v1 recovered with three retried operations on computing node k1 and
final failure aware (FA) policy return success status to the system. In another case, a task v5
on computing node k1 failed, and the retry strategy tried possible iterations. However, a
task failure exceeds its deadline limit, and then the FA will mark it as a failure. The v5 will
reschedule from the scheduler from the start for execution.

Algorithm 5 handles the transient failure aware process of all applications robustly
without violating their performances during execution.

The transient failure steps of Algorithm 5 are explained as below.

• Initially, the failure list of all tasks saved those tasks which have failure status during
scheduling.

• The retry variable ret = 0 and max-iteration (max-ite) has a limited three attempts to
recover the transient failure aware process of tasks.

• The detection will return the information of tasks when they are failed on different
computing nodes.

• The retry strategy will retry tasks from their point of failure with three iterations. The
retry duration is only 30 s, and the gap between the first iteration and the second
iteration is about 15 s.

• In the end, if the tasks are retried under their deadlines, then FA returns finished status.
Otherwise, it will inform the scheduler of the tasks to be scheduled again from scratch.

Sensors 2022, 22, 5937 20 of 30

v2

k1

info

s1 s2 s3

G1

Start

Progress

Finished

v5

k1

info

s1 s2 s3

G1

di
ret1 ret2 ret3

Retry

FA

v5

Detect

v3

k2

info

s1 s2 s3

G1

v1

k3

info

s1 s2 s3

G1

di
ret1 ret2 ret3

Retry

FA

v1

k1
Detect

k3

Figure 2. Transient Computing Node Failure Aware.

4.6. Time Complexity of Jtos

A study mentioned above shows that the JTOS framework consists of different com-
ponents, such as offloading, sequencing, searching, and scheduling. Therefore, the time
complexity of JTOS is determined by various elements. The time complexity of offloading
is divided into three phases: parameters, normalization, and weighting, and it is equal to
O(n× n). In comparison, the time complexity of the positive ideal solution and negative
ideal solution becomes n. The ranking of each task becomes n. Therefore, the total complex-
ity of the offloading algorithm is equal to O(n× n). The task sequence is divided into two
ordered, such as Ttotal and deadline, and the time complexity becomes Olog(n× n). The
Ttotal ordering becomes n and it is the same for the deadline, which becomes n. Therefore,
the total time complexity is equal to Olog(n× n). The searching for an optimal solution for
each task to the resource is equal to n×m. n is several tasks, and m matches each resource’s
iteration during searching. Furthermore, all tasks are scheduled in n order to the optimal
solution. The total time complexity of searching and scheduling becomes (n×m + n). The
final time complexity transient failure algorithm is divided into three parts: detection, retry,
and failure aware event. The detection strategy finds the failure of tasks when they have
failed status in n time, and the same for the retry method, i.e., n. The failure awareness
is the decision scheme for all tasks, and then it is equal to n. Therefore, the total time
complexity of transient failure is equal to n + n + n.

Sensors 2022, 22, 5937 21 of 30

Algorithm 5: Transient Failure Aware Schemes
Input : Failure[i, k, s, in f o]∀A

1 begin
2 ret=0;
3 Max− ite = 3;
4 while (ret ≤ Max− ite) do
5 Call Detection policy; Failure[i, k, s, in f o]∀A;
6 if (si==1) then
7 Apply Retry Policy;
8 Failure[i, k, s, in f o];

9 if (si == 2) then
10 i← k← Failure[i, k, s, in f o];
11 ret++;

12 if (si == 3 & vi ← Ttotal ≤ di) then
13 Failure Aware Scheme Apply;
14 Return Status=success;

15 else
16 Return Status=Fail;

17 Three rules condition run until executed all tasks;

18 End of Main;

5. Performance Evaluation and Experimental Settings

This section evaluates the performances of the proposed algorithms on the different
workloads of IoT applications in a dynamic environment. The performance evaluation
consists of many sub-parts, from the parameter setting to the result in the discussion.

5.1. Existing Simulation Tools

Many existing simulation tools and their approaches suggested different frameworks
to solve the CLIP problem in distributed computing, as shown in Table 7. These tools consist
of the following parts: control plane network, framework, implementation, environment,
and the problem type. The control plane is a centralized system, which handles the entire
system within the system. For instance, the SDN control plane enables many BS and fog
nodes and manages their management during the process. Due to offloading, these studies
considered the BS, wireless access point, and Bluetooth as a network channel for offloading.
The algorithm framework is most important here, and many works suggest their methods
based on GA, iterative heuristic, PSO, and optimization techniques to solve the problem.
The computing nodes, such as fog node and cloud, offer two kinds of servicing model
based on container and virtual machines. However, recently, results are witnessed that
container-type resources outperform virtual machines concerning the delay in the system.

Table 7. Existing SDN Fog Cloud Simulation Tool.

Tool Control Plane Network Framework Implementation Environment Problem

Edge-Fog [30] SDN BSs GA Fog VMs Dynamic CILP
Fog-Torch [31] SDN Wireless HEFT Fog VMs Dynamic CILP
Fog-TorchII [32] Agent BSs SA Edge VMs Dynamic CILP
iFogSim [33] Agent BSs Iterative Edge VMs Dynamic CILP
FogDirSim [34] Controller BSs Heuristic Edge VMs Dynamic CILP
FogNetSim++ [35] Controller BSs Meta-Heuristic Fog VMs Dynamic CILP
FogWorkFlow- Sim [36] Master Node Wireless Searching Fog VMs Dynamic CILP
YAFS [37] Hadoop Wireless Min-Max Fog Container Dynamic CILP
FogDirMime [38] Handler Link PSO Fog Container Dynamic CILP
fogbus [39] Monitor Nodes MET Fog VMs Dynamic CILP
MobFogSim [39] Profiler Wireless MCT Fog Container Dynamic CILP

Sensors 2022, 22, 5937 22 of 30

5.2. Proposed Simulation Tool

The evaluation part is crucial to evaluate the performances of applications based on
proposed schemes. We exploited the multi-variance analysis of variance (ANOVA) method
to find out the ideal parameters of the proposed algorithm. The simulation parameters are
organized in Table 8. The workload analysis of mobile cloud applications with different
task types (i.e., image, text, and video) is explained in Table 9. We use a fog cloud network
based on android emulators, i.e., Amazon GenyMotion, running as virtual images on the
AWS product, as a service (PaaS) on virtual machines and on the desktop machine. We
also implemented a cloud-based android emulator running as a virtual image on a desktop
machine as software (SaaS). We constructed a virtual cloud, i.e., edge cloud, that will be
scaled up and down on-demand while emulator and configurations are performed in the
cloud. We designed JTOS heuristic in the JAVA language with an advanced application
programming interface (API) and tested it on Intel (R) Core (TM) i5-3475 CPU @ 3.30 GHz,
10 G Memory machine. We implemented the 64 bit X86 Amazon Machine Image (AMI)
mobile cloud environment with Android 7.0 nougat for mobile cloud applications. We
installed mobile applications APK’s (i.e., Android Packages) on 64 bit X86 AMI. The
configuration of heterogeneous computing nodes resources defined in Table 10 with their
characteristics and specifications.

Table 8. Simulation Parameters.

Simulation Parameters Values

Windows OS Linux Amazon GenyMotion (virtual box)
Centos 7 Runtime X86-64-bit AMI
Languages JAVA, XML, Python
Android Phone Google Nexus 4, 7, and S
Experiment Repetition 160 times
Simulation Duration 12 h
Simulation Monitoring Every 1 h
Evaluation Method ANOVA Single and Multi-Factor
Amazon On Demand Service EC2 t3
Android Operating System GenyMotion
Application interface Desktop, Cloud or Mobile Applications:

Task Offloading Attributes Weights

C 5GB
B 0.130
S
N 0.062
RR 0.052
vi ↔ b 0.1∼100 ms
b↔ k 0.05∼50 ms
ω {0.1, 0.4, 0.3, 0.5}
TZ = 1 12 am to 8 am
TZ = 2 8 am to 4 pm
TZ = 3 4 pm to 12 am

Table 9. Workload of IoT Applications.

Workload Wi (MB) W ′
i (MB) Image Tasks Video Tasks Text Tasks N

G1 825 5.2 100 100 300 500
G2 631 6.3 150 200 350 700
G3 645 7.4 100 200 500 800
G4 755 8.7 200 200 600 1000

Sensors 2022, 22, 5937 23 of 30

Table 10 defines resource specification of computing nodes with their characteristics
and features.

Table 10. Heterogenous Fog Cloud Nodes Resource Specification.

Resources
Fog Clouds Public Cloud

k1 k2 k3 k4

ζk Small 2 V CPU Medium 4 V CPU Large 8 V CPU Extra Large 24 V CPU

CORE 1 1 2 4

εk 500 GB 1000 GB 1500 GB 3000 GB

Run− Time X86 X86 X86 X86

5.3. Data Performance Method

We tested four benchmark mobile cloud applications; their specifications are exempli-
fied in Table 9. We tested applications that generate data (i.e., configuration file obtained
data via profiling technologies and task scheduling heuristics) of different applications
via analysis of variance (ANOVA). At the same time, ANOVA is an efficient parametric
technique accessible for examining algorithm-generated data of mobile cloud applications
from experiments. We exploit t-tests and dependent and independent random variables
in the one way ANOVA method to note the proposed method’s efficiency. To compute
the recital of the JTOS, we exploit RPD (relative percentage deviation) statistical analysis.
It evaluates the power consumption consumed by different parameters and frameworks,
plus algorithm permutation throughout the parameter space of component calibration. The
RPD estimation can be as demonstrated in the following Equation (27):

RPD(%) =
Ttotal − T∗total

T∗total
× 100%, (27)

where Ttotal is the objective function of the article that executes the tasks via the proposed
IoT tasks fog cloud architecture and JTOS algorithm. Furthermore, T∗total is the delay optimal
and scheduling in the proposed architecture in the distributed computing environment.

5.4. Baseline Approaches

The study implemented the recently published article methods to compare the per-
formance of the proposed JTOS framework based on different components. Recently, two
computing models, virtual machines and container-based services, have been widely used
to run various IoT applications. However, many additional features, such as service start
time, pre-allocation, and post-allocation of resources, have utilization and delay effects on
both applications and the system. The following research methods are assumed as baseline
approaches in the experimental part.

(1) Baseline 1: The experiment environment implemented existing method frameworks [1–10]
that are considered dynamic situations during offloading and resource allocation.
They suggested joint offloading and GA and PSO-aware resource allocation methods
to CILP problems with the fixed environment (e.g., where users entered and left at
different timezone). They considered a virtual machine-based fog cloud network and
SDN controller with different base stations and wireless access points.

(2) Baseline 2: The experiment environment implemented existing method frame-
works [11,14,19,22,39] that are considered dynamic situation during offloading and
resource allocation. They suggested joint offloading and iterative and search-aware
greedy heuristics-based resource allocation methods to CILP problems with the fixed
environment (e.g., where users entered and left at different timezone). They consid-
ered a docker container-based fog cloud network and SDN controller with different
base stations and wireless access points.

Sensors 2022, 22, 5937 24 of 30

5.5. Sdn Fog Nodes Offloading Scenario
Sdn Controller Configuration

NetSim [40] is a widely used simulation modeling for the SDN control plane to handle
distributed fog and cloud computing via different base stations. This study extended the
SDN class control plane and base-station classes as an abstract class from the NetSim model
for the experiment purpose in the proposed work.

The SDN control plane monitors the channel capacity and resource of computing
nodes. The SDN control plane is a management manager that helps offload the engine to
reduce the total delay of applications. However, in different timezones, the uncertainty of
applications could be added due to traffic and load on nodes. The study considered the
following assumptions during offloading for all tasks.

1. Each task vi is only finished and its execution or fail once it is assigned to any node.
2. Each task has a different total delay in a different timezone.
3. The study only considered the node failure and ignored the base-station failure.
4. The task migration and pre-emption are not allowed.
5. The dynamic environment only considered enter and leaving requests in the network.

It is different from mobility, and mobility is not considered in this study.
6. The failure tasks reschedule from scratch if they completely failed on their comput-

ing nodes.
7. The roundtrip time between user and base station and base station to computing

nodes is fixed in the same timezone. However, in a different timezone, there would
be a different network roundtrip during offloading.

The offloading of tasks in different timezones has an impact on the objective of each
application. Whereas in a dynamic environment, users with different applications can enter
and leave at any time. However, the traffic of users becomes dense from 8 am to 10 pm.
Therefore, in the simulation, the timezone is divided into three zones, such as TZ = 1, i.e.,
12 am to 8 am; this time, the traffic is more minor, and total delay (communication delay and
computation delay) becomes less. Whereas TZ = 2, i.e., 8 am to 4 pm, the traffic becomes
very high, applications’ objective function has a huge impact on their performances. In
the final timezone TZ = 3, i.e., 4 pm to 12 am, the traffic becomes less than daytime peak
time. In the joint offloading and allocation optimization problem, existing studies only
consider the random and linear offloading without considering the timezone. Furthermore,
they offload tasks based on task size and required CPU requirements. However, they
did not consider the deadline and total delay of applications in their offloading scheme.
Figure 3 shows FMCM in JTOS gained lower delay of application with random tasks as
compared to all baseline approaches. The study evaluated the offloading of all applications
at different timezones with JTOS with a different number of arbitrary tasks. Hence it is
proved that the multi-criteria offloading in a dynamic environment with different timezones
outperforms all conventional offloading methods in terms of RPD%. In the following way,
the proposed FMCM works better than the existing offloading method: (1) All existing
offloading methods in baseline 1 and baseline 2 just focused on compute-intensive or
data-intensive task offloading in the full offloading scheme. Whereas, in full offloading, all
tasks were offloaded in the associated external server for execution. The task offloading
scheme could not meet the QoS requirement of applications, such as deadline and objective
function based on data size. (2) The study proposed a fuzzy multi-criteria method that
offloads all tasks based on data size, execution time, total delay, and deadline of each
application in a different timezone. Different timezones have different offloading results;
FMCM in JTOS always adopts the environment and makes an offloading decision based on
the current values in the system.

Sensors 2022, 22, 5937 25 of 30

200 400

TZ=1: Number of Random Tasks

0.0123

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

R
P

D
%

Baseline1
JTOS
Baseline2

200 400

TZ=2 Number of RandomTasks

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06

0.062

R
P

D
%

Baseline1
JTOS
Baseline2

200 400

TZ=3 Number of Random Tasks

0.0123

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600 800

All Applications Random Tasks

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

R
P

D
%

Baseline1
JTOS
Baseline2

Figure 3. Offloading Performance In Different Timezones.

5.6. Proposed Task Scheduling Performance against State-of-the-Art Approaches

Scheduling (e.g., resource allocation) is always a challenging problem in the dynamic
environment. Whereas ordering of tasks, i.e., ranks, searching for particular resources,
and transient failure often happen in the background. Due to different requirements of
tasks in size, deadline, and additional computing speed of nodes, they are assigning tasks
appropriately based on their ranks. For instance, v1 has a small deadline compared to v2,
which has both a large size and deadline. Therefore, in this case, the scheduler should not
assign them to power machines for their execution. In this way, a lot of resources are wasted.
We implemented the existing GA, PSO, and HEFT-based methods as existing studies used
in their resource allocation model and evaluated all applications’ performance in terms
of RPD% in the dynamic environment. Figure 4 shows the performance of all random
tasks of different applications at different timezones onto heterogeneous computing nodes.
Initially, all algorithms rank to each task before scheduling in the network, then search the
appropriate resource for the execution of every task. Different searches such as liner search
informed search and bi-searched are implemented as baseline approaches in the simulation
tool. Figure 4 illustrates that JTOS outperforms all existing resource allocation policies in
terms of RPD% of applications in different timezones with their characteristics.

These are the reasons why JTOS outperforms all existing baseline approaches: (1) The
first reason is that they exploited a simple sorting strategy, i.e., all tasks are ranked based
on their size. However, this way, they will violence their deadline during scheduling.
(2) The second reason, all tasks are sorted based on the available resource of machines.
However, in this way, the slack time gap between tasks leads to lateness for each task.
(3) All existing resource allocation schemes were used for exploration and exploitation
searching during scheduling for all applications. However, due to the ample space of
candidate searching, the scheduling will face a lot of overhead during the assignment of

Sensors 2022, 22, 5937 26 of 30

tasks. (4) They implemented failure aware strategy and recalled backup or checkpointing
strategy until and unless tasks are recovered from the point of failure. However, this way,
resource and recovery time become very high. Therefore, scheduling in JTOS ranks all
tasks based on size, execution time, deadline, and total delay before scheduling. The initial
scheduling maps all tasks based on sorting order. Then, the failure of tasks reschedules
from the failure aware strategy with minimum recovery time compared to existing studies.
In the dynamic environment at different timezones, JTOS outperforms for all applications
in terms of RPD%.

200 400 600 800

Number of Random Tasks

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600 800 1000

Number of Tasks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600

Number of Random Tasks

0

2

4

6

8

10

12

R
P

D
%

Baseline1
JTOS
Baseline2

200 400

Number of Random Tasks

0

1

2

3

4

5

6

R
P

D
%

Baseline1
JTOS
Baseline2

Figure 4. Scheduling Performance at Different Timezone.

5.7. Proposed Failure Aware Technique Performance against State-of-the-Art Approaches

The failure of tasks in the dynamic environment often occurs at different timezone
due to intermittent changes in network and computing nodes. We implemented all ex-
isting strategies of fault-tolerant in distributed computing. Baseline 1 and baseline 2 are
implemented checkpointing, backup recovery, runtime backup recovery, and node failure.
However, these policies cannot apply to the transient failure of tasks in a dynamic environ-
ment. The transient failure is a temporary failure that can recover under task deadlines.
The transient failure methods recover the failure of tasks on the same node instead of
transferring to another node. For instance, v1 is failed due to computing node k1, and it is a
transient failure; it will recover soon after some instants under the task deadline. It requires
some iterations for recovery. However, the recovery will complete under its deadline.
The study implemented all existing failure methods and evaluated the performance of all
applications in terms of RPD%. Figure 5 shows the transient failure aware schemes in JTOS
handled all types of errors with detection scheme, retry scheme, and failure aware scheme
and gained good performance as compared to all existing baseline approaches. However,
still, the failure ratio is high because many transient failures need to be recovered with

Sensors 2022, 22, 5937 27 of 30

deadlines. For instance, communication failure, application failure, switches failure, and
busy failure still need to be recovered in the transient failure aware methods.

200 400 600 800

TZ=1 Number of Random Tasks

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600 800

TZ=2 Number of Random Tasks

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600 800

Number of Random Tasks

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

R
P

D
%

Baseline1
JTOS
Baseline2

200 400 600 800

Number of Random Tasks

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

R
P

D
%

Baseline1
JTOS
Baseline2

Figure 5. Failure Aware Performances at Different Timezones.

However, Figure 5 shows that the failure ratio is still high in the dynamic environment
because all methods did not consider the failure of tasks due to the communication node in
a different timezone. The resource fluctuation could occur in other computing during peak
hours because of many requests generated by users. Therefore, it is necessary to measure
the performances of the system in a different timezone. The proposed JTOS algorithm offers
timezone-aware scheduling without degrading the quality of tasks at an additional time.

5.8. Rescheduling and Searching Delay Performance against State-of-the-Art Approaches

The searching for a new resource after the failure of a task is necessary for the schedul-
ing method. For instance, if a task v1 is currently executing on computing node k1, and if
a task cannot recover, it will schedule from scratch with a new resource, i.e., k2 ∈ K. It is
important, and a new computing node must execute the failure of tasks without wasting
a lot of resources. The study proposed a searching mechanism for failure of tasks based
on tasks’ objective function and executing them under their deadline without violence of
their performances. Figure 6 shows that all failed tasks are executed under their deadlines
with minimum loss of generosity. Whereas, these methods will still improve when the
communication and computing failure of tasks are noted in the dynamic environment for
execution. However, the searching mechanism in JTOS for the failure of tasks still work
better than existing methods in terms of applications of RPD%.

Sensors 2022, 22, 5937 28 of 30

400 600 800

Number of Random Tasks

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R
P

D

Baseline1
JTOS
Baseline2

200 400 600 800

Number of Random Tasks

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

R
P

D
%

Baseline1
JTOS
Baseline2

Figure 6. Solution Searching Aware Performances At Different Timezones.

6. Conclusions and Future Work

This study formulated the joint offloading and scheduling CILP problem for IoT
applications in the distributed fog cloud network. The proposed JTOS algorithm framework
executed all tasks with different components under deadline and failure-aware constraints.
The performance evaluation showed that JTOS outperforms all existing joint offloading
and scheduling problems in the dynamic environment. The results discussed showed
that the proposed work executed the successful industrial automation applications on the
collaborative fog cloud network. All the results differed, and the proposed work minimized
the overall delays compared to existing studies by 50% in work. However, there are a lot of
limitations in the proposed schemes to be improved in future work. The JTOS does not
support mobility-aware and location-aware services for IoT applications. This work still
suffers from security issues in the fog cloud network. Application failure, communication
failure, and node failure are standard transient errors in the network. However, this study
only considered momentary node failure for IoT applications.

This study formulated the joint offloading and scheduling CILP problem for IoT
applications in the distributed fog cloud network. The proposed JTOS algorithm framework
executed all tasks with different components under deadline and failure-aware constraints.
The performance evaluation showed that JTOS outperforms all existing joint offloading
and scheduling problems in the dynamic environment.

The researched technologies have great potential for application within the Industry
4.0/5.0 concept. For the development of predictive maintenance in the industry, the use of
IoT and fog cloud will be key.

In future research, the author’s collective will deal with the design of a suitable
architecture for the needs of Industry 4.0/5.0. It will also be a key element of the Operator
4.0/5.0 concept.

Author Contributions: Conceptualization, A.L. and M.A.M.; Data curation, A.L. and M.A.M.; Formal
analysis, A.L. and M.A.M.; Funding acquisition, J.N., R.M. and P.Z.; Investigation, A.L., M.A.M.
and K.H.A.; Methodology, A.L., M.A.M., K.H.A. and M.M.J.; Software, A.L.; Supervision, A.L.;
Validation, A.L.; Visualization, A.L.; Writing—original draft, A.L., M.A.M., K.H.A. and M.M.J.;
Writing—review & editing, J.N., R.M. and P.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work was partially supported by the Ministry of Education of the Czech
Republic (Project No. SP2022/18 and No. SP2022/34) and partially by the European Regional
Development Fund in Research Platform focused on Industry 4.0 and Robotics in Ostrava project,
CZ.02.1.01/0.0/0.0/17_049/0008425 within the Operational Program Research, Development,
and Education.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 5937 29 of 30

Informed Consent Statement: Not applicable.

Data Availability Statement: All the experimental data are generated at the local institution servers.
Therefore, it cannot be made publicly available for other researchers.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. De, D.; Mukherjee, A.; Roy, D.G. Power and Delay Efficient Multilevel Offloading Strategies for Mobile Cloud Computing. Wirel.

Pers. Commun. 2020, 112, 2159–2186. [CrossRef]
2. Shahryari, O.K.; Pedram, H.; Khajehvand, V.; TakhtFooladi, M.D. Energy-Efficient and Delay-Guaranteed Computation Offloading

for Fog-Based IoT Networks. Comput. Netw. 2020, 182, 107511. [CrossRef]
3. Aburukba, R.O.; AliKarrar, M.; Landolsi, T.; El-Fakih, K. Scheduling Internet of Things requests to minimize latency in hybrid

Fog–Cloud? computing. Future Gener. Comput. Syst. 2020, 111, 539–551. [CrossRef]
4. Lin, C.; Han, G.; Qi, X.; Guizani, M.; Shu, L. A Distributed Mobile Fog Computing Scheme for Mobile Delay-Sensitive Applications

in SDN-Enabled Vehicular Networks. IEEE Trans. Veh. Technol. 2020, 69, 5481–5493. [CrossRef]
5. Fan, Q.; Ansari, N. Application aware workload allocation for edge computing-based IoT. IEEE Internet Things J. 2018, 5, 2146–2153.

[CrossRef]
6. Kavitha, B.; Vallikannu, R.; Sankaran, K.S. Delay-aware concurrent data management method for IoT collaborative mobile edge

computing environment. Microprocess. Microsystems 2020, 74, 103021. [CrossRef]
7. Chanyour, T.; El Ghmary, M.; Hmimz, Y.; Cherkaoui Malki, M.O. Energy-efficient and delay-aware multitask offloading for

mobile edge computing networks. Trans. Emerg. Telecommun. Technol. 2019, 33, e3673. [CrossRef]
8. Chamola, V.; Tham, C.K.; Gurunarayanan, S.; Ansari, N. An optimal delay aware task assignment scheme for wireless SDN

networked edge cloudlets. Future Gener. Comput. Syst. 2020, 102, 862–875.
9. Roy, P.; Sarker, S.; Razzaque, M.A.; Hassan, M.M.; AlQahtani, S.A.; Aloi, G.; Fortino, G. AI-enabled mobile multimedia service

instance placement scheme in mobile edge computing. Comput. Netw. 2020, 182, 107573. [CrossRef]
10. Gu, X.; Zhang, G.; Cao, Y. Cooperative mobile edge computing-cloud computing in Internet of vehicle: Architecture and

energy-efficient workload allocation. Trans. Emerg. Telecommun. Technol. 2020, 32, e4095. [CrossRef]
11. Zhang, L.; Ansari, N. Latency-aware IoT Service Provisioning in UAV-aided Mobile Edge Computing Networks. IEEE Internet

Things J. 2020, 7, 10573–10580. [CrossRef]
12. Xia, Q.; Lou, Z.; Xu, W.; Xu, Z. Near-Optimal and Learning-Driven Task Offloading in a 5G Multi-Cell Mobile Edge Cloud.

Comput. Netw. 2020, 176, 107276. [CrossRef]
13. Abbasi, M.; Pasand, E.M.; Khosravi, M.R. Workload Allocation in IoT-Fog-Cloud Architecture Using a Multi-Objective Genetic

Algorithm. J. Grid Comput. 2020, 18, 43–56. [CrossRef]
14. Ying Wah, T.; Gopal Raj, R.; Lakhan, A. A novel cost-efficient framework for critical heartbeat task scheduling using the Internet

of medical things in a fog cloud system. Sensors 2020, 20, 441.
15. Arikumar, K.; Natarajan, V. FIoT: A QoS-Aware Fog-IoT Framework to Minimize Latency in IoT Applications via Fog Offloading.

In Evolution in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2021; pp. 551–559.
16. Siasi, N.; Jasim, M.; Aldalbahi, A.; Ghani, N. Delay-Aware SFC Provisioning in Hybrid Fog-Cloud Computing Architectures.

IEEE Access 2020, 8, 167383–167396. [CrossRef]
17. Naha, R.K.; Garg, S.; Chan, A.; Battula, S.K. Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud

environment. Future Gener. Comput. Syst. 2020, 104, 131–141. [CrossRef]
18. Lakhan, A.; Li, X. Transient fault aware application partitioning computational offloading algorithm in microservices based

mobile cloudlet networks. Computing 2020, 102, 105–139. [CrossRef]
19. Lakhan, A.; Khan, F.A.; Abbasi, Q.H. Dynamic Content and Failure Aware Task Offloading in Heterogeneous Mobile Cloud

Networks. In Proceedings of the 2019 International Conference on Advances in the Emerging Computing Technologies (AECT),
Al Madinah Al Munawwarah, Saudi Arabia, 10 February 2020; pp. 1–6.

20. Lakhan, A.; Sajnani, D.K.; Tahir, M.; Aamir, M.; Lodhi, R. Delay sensitive application partitioning and task scheduling in mobile
edge cloud prototyping. In Proceedings of the International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 26–27
November 2014; Springer: Berlin/Heidelberg, Germany, 2018; pp. 59–80.

21. Mahesar, A.R.; Lakhan, A.; Sajnani, D.K.; Jamali, I.A. Hybrid delay optimization and workload assignment in mobile edge cloud
networks. Open Access Libr. J. 2018, 5, 1–12. [CrossRef]

22. Lakhan, A.; Xiaoping, L. Energy aware dynamic workflow application partitioning and task scheduling in heterogeneous mobile
cloud network. In Proceedings of the 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB),
Fuzhou, China, 15–17 November 2018; pp. 1–8.

23. Lakhan, A.; Li, X. Content Aware Task Scheduling Framework for Mobile Workflow Applications in Heterogeneous Mobile-
Edge-Cloud Paradigms: CATSA Framework. In Proceedings of the 2019 IEEE International Conference on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 242–249.

http://doi.org/10.1007/s11277-020-07144-1
http://dx.doi.org/10.1016/j.comnet.2020.107511
http://dx.doi.org/10.1016/j.future.2019.09.039
http://dx.doi.org/10.1109/TVT.2020.2980934
http://dx.doi.org/10.1109/JIOT.2018.2826006
http://dx.doi.org/10.1016/j.micpro.2020.103021
http://dx.doi.org/10.1002/ett.3673
http://dx.doi.org/10.1016/j.comnet.2020.107573
http://dx.doi.org/10.1002/ett.4095
http://dx.doi.org/10.1109/JIOT.2020.3005117
http://dx.doi.org/10.1016/j.comnet.2020.107276
http://dx.doi.org/10.1007/s10723-020-09507-1
http://dx.doi.org/10.1109/ACCESS.2020.3021354
http://dx.doi.org/10.1016/j.future.2019.10.018
http://dx.doi.org/10.1007/s00607-019-00733-4
http://dx.doi.org/10.4236/oalib.1104854

Sensors 2022, 22, 5937 30 of 30

24. Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.J.; Ding, Z. A survey of multi-access edge computing in 5G
and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 2020, 8, 116974–117017. [CrossRef]

25. Sajnani, D.K.; Mahesar, A.R.; Lakhan, A.; Jamali, I.A. Latency Aware and Service Delay with Task Scheduling in Mobile Edge
Computing. Commun. Netw. 2018, 10, 127. [CrossRef]

26. Ma, X.; Wang, S.; Zhang, S.; Yang, P.; Lin, C.; Shen, X.S. Cost-efficient resource provisioning for dynamic requests in cloud assisted
mobile edge computing. IEEE Trans. Cloud Comput. 2019, 9, 968–980. [CrossRef]

27. Zhang, J.; Xia, W.; Yan, F.; Shen, L. Joint computation offloading and resource allocation optimization in heterogeneous networks
with mobile edge computing. IEEE Access 2018, 6, 19324–19337. [CrossRef]

28. Hossain, M.D.; Sultana, T.; Nguyen, V.; Nguyen, T.D.; Huynh, L.N.; Huh, E.N. Fuzzy Based Collaborative Task Offloading
Scheme in the Densely Deployed Small-Cell Networks with Multi-Access Edge Computing. Appl. Sci. 2020, 10, 3115. [CrossRef]

29. Dab, B.; Aitsaadi, N.; Langar, R. A novel joint offloading and resource allocation scheme for mobile edge computing. In
Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
11–14 January 2019; pp. 1–2.

30. Mohan, N.; Kangasharju, J. Edge-Fog cloud: A distributed cloud for Internet of Things computations. In Proceedings of the 2016
Cloudification of the Internet of Things (CIoT), Paris, France, 23–25 November 2016; pp. 1–6.

31. Brogi, A.; Forti, S. QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 2017, 4, 1185–1192.
[CrossRef]

32. Brogi, A.; Forti, S.; Ibrahim, A. How to best deploy your fog applications, probably. In Proceedings of the 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 105–114.

33. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

34. Forti, S.; Pagiaro, A.; Brogi, A. Simulating FogDirector Application Management. Simul. Model. Pract. Theory 2020, 101, 102021.
[CrossRef]

35. Qayyum, T.; Malik, A.W.; Khattak, M.A.K.; Khalid, O.; Khan, S.U. FogNetSim++: A toolkit for modeling and simulation of
distributed fog environment. IEEE Access 2018, 6, 63570–63583. [CrossRef]

36. Liu, X.; Fan, L.; Xu, J.; Li, X.; Gong, L.; Grundy, J.; Yang, Y. FogWorkflowSim: An automated simulation toolkit for workflow
performance evaluation in fog computing. In Proceedings of the 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), San Diego, CA, USA, 11–15 November 2019; pp. 1114–1117.

37. Lera, I.; Guerrero, C.; Juiz, C. YAFS: A simulator for IoT scenarios in fog computing. IEEE Access 2019, 7, 91745–91758. [CrossRef]
38. Forti, S.; Ibrahim, A.; Brogi, A. Mimicking FogDirector application management. SICS Softw.-Intensive -Cyber-Phys. Syst. 2019,

34, 151–161. [CrossRef]
39. Tuli, S.; Mahmud, R.; Tuli, S.; Buyya, R. Fogbus: A blockchain-based lightweight framework for edge and fog computing. J. Syst.

Softw. 2019, 154, 22–36. [CrossRef]
40. Calvo-Fullana, M.; Mox, D.; Pyattaev, A.; Fink, J.; Kumar, V.; Ribeiro, A. ROS-NetSim: A Framework for the Integration of Robotic

and Network Simulators. IEEE Robot. Autom. Lett. 2021, 6, 1120–1127. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3001277
http://dx.doi.org/10.4236/cn.2018.104011
http://dx.doi.org/10.1109/TCC.2019.2903240
http://dx.doi.org/10.1109/ACCESS.2018.2819690
http://dx.doi.org/10.3390/app10093115
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1016/j.simpat.2019.102021
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1007/s00450-019-00403-y
http://dx.doi.org/10.1016/j.jss.2019.04.050
http://dx.doi.org/10.1109/LRA.2021.3056347

	Introduction
	Related Work
	Proposed Solution
	System Model Scenario
	Problem Formulation
	Dynamic Environment
	Network Delay

	Proposed Algorithmic Jtos Framework
	Fuzzy Multi-Criteria Method (Fmcm)
	Topological Ordering of Tasks
	Dynamic Task Scheduling
	Solution Searching Method
	Transient Failure Aware Method
	Time Complexity of Jtos

	Performance Evaluation and Experimental Settings
	Existing Simulation Tools
	Proposed Simulation Tool
	Data Performance Method
	Baseline Approaches
	Sdn Fog Nodes Offloading Scenario
	Proposed Task Scheduling Performance against State-of-the-Art Approaches
	Proposed Failure Aware Technique Performance against State-of-the-Art Approaches
	Rescheduling and Searching Delay Performance against State-of-the-Art Approaches

	Conclusions and Future Work
	References

