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Abstract: Digital twins (DTs) play a vital role in revolutionising the healthcare industry, leading to more
personalised, intelligent, and proactive healthcare. With the evolution of personalised healthcare, there
is a significant need to represent a virtual replica for individuals to provide the right type of care in
the right way and at the right time. Therefore, in this paper, we surveyed the concept of a personal
digital twin (PDT) as an enhanced version of the DT with actionable insight capabilities. In particular,
PDT can bring value to patients by enabling more accurate decision making and proper treatment
selection and optimisation. Then, we explored the progression of PDT as a revolutionary technology in
healthcare research and industry. However, although several research works have been performed for
smart healthcare using DT, PDT is still at an early stage. Consequently, we believe that this work can be a
step towards smart personalised healthcare industry by guiding the design of industrial personalised
healthcare systems. Accordingly, we introduced a reference framework that empowers smart personalised
healthcare using PDTs by bringing together existing advanced technologies (i.e., DT, blockchain, and AI).
Then, we described some selected use cases, including the mitigation of COVID-19 contagion, COVID-
19 survivor follow-up care, personalised COVID-19 medicine, personalised osteoporosis prevention,
personalised cancer survivor follow-up care, and personalised nutrition. Finally, we identified further
challenges to pave the PDT paradigm toward the smart personalised healthcare industry.

Keywords: personalised healthcare; digital twin; personal digital twin; data analysis; COVID-19

1. Introduction

The term “digital twin”, DT, was first coined by NASA for a virtual replica of a physical
structure in real space [1]. Then, multiple definitions are used to define DTs for research
and industry [2]. According to the literature research, we used the definition that defines
DT as a digital replica of the physical thing (i.e., a physical twin, which could be a device,
machine, person, etc.). Based on this definition, the DT has these features [3,4]; (1) DT can
represent the physical twin in the real world; (2) the data-driven DT contains all processes
and operations related to the physical twin; (3) the DT always has up-to-date data about its
physical twin which means that the DT continuously synchronises with its physical twin;
and (4) it shows the simulated physical twin behaviour (see Figure 1).

Most research and industry have recently adopted DT technology from a “disease
care” perspective [5,6]. Moreover, they started to integrate DT technology with emerging
technologies (e.g., Industrial Internet of Things (IIoT), blockchain, and artificial intelli-
gence (AI)) for personalised healthcare purposes, which is person-centric prevention [7,8].
With the evolution of the personalised healthcare industry, everyone can be flanked by a
DT, representing their healthcare markers. Furthermore, every person is unique in many
way: for example, the symptoms of diseases slightly differ from one person to another
person [9]. Therefore, most researchers and industrial bloggers have early brief definitions
for PDT based on information across biological scales, from genotype to phenotype [10,11].

Sensors 2022, 22, 5918. https://doi.org/10.3390/s22155918 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155918
https://doi.org/10.3390/s22155918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8019-9069
https://orcid.org/0000-0003-2857-6979
https://orcid.org/0000-0003-1853-0723
https://doi.org/10.3390/s22155918
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155918?type=check_update&version=3


Sensors 2022, 22, 5918 2 of 35

However, we believe that not only a set of biological data but also PDT could represent a
person as a human by reflecting the different aspects of their life from birth throughout
their lifetime. Substantially, the PDT will change our future life in terms of life, work,
contact, love, fighting, learning, fun, play, and death. Consequently, we comprehensively
define the PDT concept from different perspectives, including its mental, physical, social,
and biological aspects. Figure 2 depicts our conceptual definition of PDT, including (1)
mental activities (e.g., thinking, ideas, thoughts, and knowledge); (2) physical activities
(e.g., sport, hobbies, dietary habits, sleeping patterns, etc.); (3) social activities including
life interactions with people and virtual social networks; and (4) biological scales, i.e.,
representing vital organs such as heart, lungs, liver, brain, and the kidneys.

Figure 1. Data synchronisation between the physical twin and digital twin.

Figure 2. Our comprehensive personal digital twin definition including mental activities, physical
activities, social networks, and vital organs.
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Without loss of generality, based on the biological perspective, a PDT for a patient’s
heart could be built with heart-related medical measurements (e.g., heart rate, electrocar-
diogram results, cardiac MR results, blood pressure, and genetic information) [12]. The
PDT will clearly show how the patient’s heart works. It will help cardiologists by showing
the exact shape of the real patient’s heart as well as its dimensions, partitions, ejection
fraction, electrical signal activation, and blood pressure variation. This will help cardiol-
ogists control the functioning of a patient’s heart. Furthermore, this will help improve
and personalise the medicine and optimise the treatment planning before actual treatment
delivery. Undoubtedly, a PDT for the heart is an incredibly individualised approach that
can significantly contribute to cardiac health.

On the other hand, in manufacturing, the deployed DTs are used to assess the health
conditions of machines and then predict the potential risks by estimating a particular time
for the next needed maintenance [2,13]. In smart personalised healthcare industry, combin-
ing PDT data with the analytics technologies, business rules, and optimisation algorithms
can support human decisions or even automate decision making regarding personalised
and effective care. In particular, the collected data from the PDT are sent to large data pools
to feed analytical engines and provide a deeper understanding of individual recommenda-
tion care. Consequently, better knowledge of the person’s health status using their PDT
can help diagnose the potential health risks early, improve individualised clinical path-
ways, and support treatment planning, therapy, and lifestyle intervention. Furthermore, by
combining PDT with blockchain technology, the PDT can maintain a high level of privacy
and trust for handling personal patient data [14]. In particular, the PDT provides a secure
personal digital replica of a specific patient created by their medical data. However, the
PDT is still in early its early stages and several years away from completion. Furthermore,
the improvement of personal patient care and healthy living by bridging the physical and
digital worlds still faces a great many challenges.

1.1. Motivation

Our main motivation for conducting this research is to introduce a PDT concept to
empower personalised healthcare for better patient care and healthy living. Furthermore,
we believe that this work could be a step towards smart personalised healthcare industry
by guiding the design of industrial personalised healthcare systems. Furthermore, we will
start by digging deeper into the motivation behind introducing PDT as follows:

• A personal digital model for a person is a complicated task compared with that for an
engine due to the differences among people. Therefore, the ability to distinguish indi-
vidual persons could enable smart personalised healthcare to enhance and improve
prevention in patients’ futures.

• No one-size-fits-all personalised healthcare procedure exists that includes personalised
diagnosis, therapy selection, treatment planning guidance, nutrition, and mental well-
being based on the patient’s physical characteristics, medical history, current condition,
and future needs.

• There is no reference framework for the data-driven-based personalised healthcare in-
dustry. Most researchers adopt DTs for healthcare from a specific perspective (e.g., per-
sonalised medicine [9], specific chronic disease diagnosis (including heart disease, stroke,
cancer, osteoporosis, etc.), and personalised nutrition [15]). There are no identified require-
ments to implement the PDT system for the industrial personalised healthcare system.
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1.2. Contribution

The novelty of using DT technology in healthcare is evidenced by a large number of
research works published in the last decade. Furthermore, DT technology has multilateral
applications, which makes it a frontier technology for the healthcare industry. There-
fore, without taking away from the novelty of the digital twin in the healthcare industry, it
seems reasonable to realise that personalised solutions based on DTs are in huge demand.
However, personalised solutions are partly already in place but are still in their infant stages.
Consequently, this is why we believe that the PDT is a step towards a smart personalised
healthcare industry by looking at its current progression and the future of the personalised
healthcare industry. Furthermore, PDT-based personalised solutions need frameworks for
designing and developing to work in smart personalised healthcare ecosystems.

To the best of our knowledge, no framework based on PDT has been proposed to
design a smart personalised healthcare system. Furthermore, it is too early to have a
baseline to identify how PDTs will be implemented. This is due to the highly diverse nature
of healthcare delivery systems. This motivates us to propose a reference framework to
integrate PDTs with patient data intelligence to provide a baseline for a smart personalised
healthcare industry. The proposed framework aims to empower smart personalised health-
care for person-centric prevention and care, including rapid diagnosis, treatment, the early
prevention of diseases and other personalised healthcare issues.

Our main contributions in this paper can be summarised as follows:

• We introduced the concept of PDT as an enhanced version of the DT which has
personalised and actionable insights capabilities that improve personalised healthcare.
Then, we provide its benefits for the smart personalised healthcare industry.

• We explore the progression of PDT as a revolutionary technology in healthcare research
and industry.

• We propose a reference framework for smart personalised healthcare which aims to
bring together existing advanced technologies (e.g., DT, AI, and blockchain). The pro-
posed framework aims to improve personalised healthcare by supporting patient-
centred care as a reality in everyday life, including physician–patient communication
and facilitating shared decision making. Furthermore, we identify high-level func-
tional requirements for building a smart personalised healthcare system.

• We provide some selected use cases of adopting PDTs in personalised healthcare,
including the mitigation of COVID-19 contagion, COVID-19 survivor follow-up care,
personalised COVID-19 medicine, personalised osteoporosis prevention, and person-
alised cancer survivor follow-up care and personalised nutrition.

1.3. Paper Organisation

The remainder of this paper is organised as shown in Figure 3. The current state of
research is provided in Section 2. The research questions, objectives, and methodology are
presented in Section 3. Then, the PDT concept and its benefits are introduced in Section 4.
The progression of PDT in healthcare research and industry is provided in Section 5.
The proposed reference framework for smart personalised healthcare industry is described
in Section 6. The focus on personalised healthcare use cases is presented in Section 7.
The validation and open challenges are discussed in Section 8. Finally, conclusions are
presented in Section 9.
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Figure 3. Paper structure.

2. State of Research

DTs are used in healthcare for building a digital representation of healthcare data,
including electronic medical data, hospital environments, human physiology, operational
staff, and lab results [16]. Furthermore, it is used to create a virtual replica of a healthcare
system which helps healthcare organisations review operational strategies, utilise capacities,
and evaluate staffing performance. On the other hand, at the individual level, which is
our focus in this work, DTs are applied for personalised diagnosis, treatment planning,
personalised care, etc. Accordingly, we will discuss a few existing studies to showcase how
DT technology is applied in personalised healthcare.

For adopting DTs for general-purpose use in healthcare, Angulo et al. [16] introduced
a general-purpose proposal for creating DTs which apply to the health field, specifically
lung cancer patients. Furthermore, Shengli [17] introduced a conceptual model and the
characteristics of the human digital twin (HDT). Furthermore, the authors in [18] introduced
the concept of a well-being digital twin (WDT), its architecture and impacts.

In the context of personalised medical treatment purposes, the authors in [19] have
provided a narrative review about existing and future opportunities to capture clinical
digital biomarkers in the care of people with multiple sclerosis disease. Furthermore, they
have introduced DTs for multiple sclerosis (DTMS) to monitor the long-term multiple
sclerosis disease. DTMS is used for personalised treatment by collecting high-frequency
and structured patient data to propose a tailored therapy. Furthermore, the authors in [20]
introduced the DT concept for personalised medicine. Moreover, they addressed the
expanding DTs by integrating variables of multiple types, locations, and time points.
Moreover, the authors introduced the steps of the Swedish Digital Twin Consortium (SDTC)
strategy in which (i) a DT is created for individual patients which contains unlimited copies
based on the computational network models of thousands of disease-relevant variables;
(ii) each twin is computationally treated with thousands of drugs to find the optimal
drug for this patient; and (iii) the best drug that has the best effects is selected for this
patient. Furthermore, Rivera et al. [21] presented their vision for applying the DT concept in
personalised medical treatment. Finally, the authors elaborated on the definition of internal
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structures for DT to support precision medicine techniques. Considering the decision
support purpose, the authors in [22] have introduced a patient-specific finite element
model approach based on DTs to help personalised clinical decision making. This approach
aims to optimise trauma surgery and postoperative management by focusing on tibial
plateau fractures to enhance biomechanical knowledge. It aims to optimise surgical trauma
procedures and improve postoperative management decision making. Furthermore, the
authors in [23] proposed a DT-based approach to improve healthcare decision support
systems. These authors used state-of-the-art explainability concepts to interpret machine
learning models to give doctors a more generic perspective that helps the diagnosis.

In the context of individual risk management, Ogunseiju et al. [24] proposed a DT-
based framework to improve the self-management of ergonomic risks for construction
work. The framework has been proposed for dynamic mapping between construction
workers and their virtual replicas to assess the risks by monitoring the workers’ movement
for musculoskeletal injury prevention. The authors demonstrated the feasibility of their
proposed approach by evaluating the LSTM deep learning technique on participants’ move-
ment data captured using wearable devices. Furthermore, the authors in [25] presented
their vision of agent-based DT in the healthcare context. They described a case study of
agent-based DT for supporting the process of severe trauma management.

In adopting DTs to specifically protect against COVID-19 in infected patients,
Laubenbacher et al. [10] discussed how medical DTs are beneficial to mitigate COVID-19 vi-
ral infection and any future pandemic. Furthermore, they were concerned with combining
medical DTs with a mechanistic understanding of the physiology and viral replication and
AI techniques for optimising the treatment of patients infected with a virus. Furthermore,
in our previous work, we introduced a blockchain-based collaborative DTs framework for
decentralised epidemic alerting to protect against COVID-19 and any future pandemics [26].
The proposed framework utilises the data-driven digital twins collaboration with the help
of blockchain technology to protect against pandemics such as COVID-19.

Because only a few publications exist on the adoption of PDTs in healthcare, PDTs for
personalised healthcare have not yet been a big focus in the literature to date. Furthermore,
personal data-by-design concepts have not been considered yet. Moreover, comparing the
previous related works to our work, we introduced the concept of PDT, an enhanced version
of the DTs, and its benefits for smart personalised healthcare. Furthermore, we proposed a
comprehensive reference framework for smart personalised healthcare, which aims to bring
together existing advanced technologies, including DTs, blockchain, and AI. Furthermore,
we provided some selected use cases of adopting PDTs in personalised healthcare.

Summary

In this section, we explore several research works regarding the adoption of DT tech-
nology in the personalised healthcare industry. In brief, Table 1 shows the contributions of
the previous research works in personalised healthcare and their limitations. Furthermore,
Table 2 describes a comparison of the current work and the present work concerning the
DTs applications, data analysis (i.e., AI, XAI), applications, and use cases.
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Table 1. Summary of previous research works in personalised healthcare and their limitations.

Reference Summary Limitations

[16] (2021)

- Introduces a general-purpose proposal
for the creation of DTs.
- Introduces DTMS to monitor
long-term multiple sclerosis disease

Does not identify high-level requirements for
personalised healthcare

[20] (2020) Introduces the DT concept for personalised medicine Does not identify mechanisms underlying
personalised medicine

[21] (2019) Presents a vision for applying the DT concept in
personalised medical treatment Limited validity of work

[22] (2021) Introduces a patient-specific finite element model
approach based on DTs for trauma surgery

Does not discuss how existing advanced technologies
such AI could help optimise personalised clinical

decision making

[25] (2020) Presents a vision about agent-based DT in the
healthcare context

Does not discuss how existing advanced technologies
such as AI and blockchain provide more intelligence

to DT

[10] (2021)
Discusses how medical DTs are beneficial for protect

against viral infection for COVID-19 and any
future pandemic

Does not identify high-level requirements to
build PDT

[26] (2022)
Introduces a blockchain-based collaborative DTs

framework for decentralised epidemic alerting to protect
against COVID-19 and any future pandemics

Does not identify high-level requirements for
personalised healthcare
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Table 2. Comparison of the previous works and our current proposed work with respect to the technologies used.

Reference Highlighted Digital Twins Blockchain Data Analysis/AI and XAI Applications/Usecases

[16] (2020) Provides a DT-based general-purpose proposal
for healthcare X X X General-purpose proposal

[24] (2021)
Proposes DT-based framework to improve

self-management of ergonomic risks for
construction work

X X X Self-management for
construction workers

[22] (2021)
Proposes a patient-specific finite element model

approach based on DTs to help personalise clinical
decision making

X X X Personalised clinical decision making

[19] (2021)
Provides a narrative review of existing and future

opportunities to capture clinical digital biomarkers
in the care of people with multiple sclerosis disease

X X X Personalised treatment

[23] (2019) Proposes a DT-based approach to improve
healthcare decision support systems X X X Personalised diagnosis

[21] (2019) Presents the vision for applying the DT concept in
personalised medical treatments X X X Personalised treatment

[17] (2021) Proposes the conceptual model and characteristics
of HDT X X X General-purpose proposal

[18] (2021) Presents the concept of WDT and its architecture
and impact. X X X General-purpose proposal

[25] (2020) Presents the vision about agent-based DT in
healthcare context X X X Management of traumas

[26] (2022)
Introducing a blockchain-based collaborative DTs
framework for decentralised epidemic alerting to

protect against COVID-19
X X X Decentralised epidemic alerting

[20] (2020) Introduces the DT concept for personalised
medicine and the steps of the SDTC strategy X X X Personalised medicine
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3. Research Questions, Objectives and Methodology

In this section, we state the research questions, objectives and methodology that we
worked with in this research paper.

3.1. Research Questions

The PDT represents the diverse and real-time information about a person obtained
by wearable devices. Utilising PDT data can improve the smart personalised healthcare
industry. Therefore, healthcare providers are eager to have personalised information about
their clients (i.e., patients) to make decisions and recommendations. The research based on
PDT is still in its early stage of exploring the opportunities of adopting PDT technologies
for smart personalised healthcare. Accordingly, this paper aimed to overview the PDT
concept and its benefits for healthcare, revolutionise the healthcare industry, the reference
framework and the requirements to build a PDT-based system for smart personalised
healthcare, the potential applications and use cases, and the open challenges for adopting
PDT in the healthcare industry. This is achieved by investigating the following research
questions, which are summarised in Table 3.

• RQ1: What are the role and benefits of introducing PDT?
The purpose of this question aims to provide an overview of the PDT’s role and its
benefits in healthcare. To address this question, we introduce an overview of the
PDT’s role and we explore its benefits for healthcare (see Section 4).

• RQ2: How could PDT revolutionise the personalised healthcare industry?
This question aims to explore the PDT industry’s progress concerning smart person-
alised healthcare. To address this question, we search for the healthcare companies
and the ongoing research projects and centres that adopt digital twins and collaborate
with industry partners (see Section 5).

• RQ3: What are the requirements for building a PDT-based system for a smart per-
sonalised healthcare industry? The purpose of this question aims to identify the
requirements for building a PDT system for smart personalised healthcare. To address
this question, we identified a set of high-level requirements to fulfil the criteria of
building a PDT-based smart personalised healthcare system (see Section 6.1).

• RQ4: What are the key layers for implementing a PDT-based smart personalised
healthcare system? The purpose of this question aims to identify the key modules/layers
for building a PDT system for smart personalised healthcare. To address this question,
we propose a reference framework to introduce the key modules/layers to implement
a PDT as an enhanced version of the digital twins that has personalised and actionable
insight capabilities for improving personalised healthcare (see Section 6.2).

• RQ5: What are the potential applications of using PDT for a smart personalised
healthcare industry? The purpose of this question aims to identify the potential
applications of PDT being used for smart personalised healthcare. To address this
question, we discuss the potential applications of using PDT, such as personalised
diagnosis treatment for the early prevention of diseases (see Section 6.2.3).

• RQ6: How is the PDT concept being applied to protect against the COVID-19 out-
break and any future pandemic? The purpose of this question is to elaborate on how
PDT capabilities can be used to protect against COVID-19 and any future pandemic.
To address this question, we describe how the proposed reference framework can be
applied to help mitigate COVID-19 contagion (see Section 7.1).

• RQ7: What are the open challenges to applying PDT in smart personalised health-
care? The purpose of this question is to explore the open challenges of using smart
personalised healthcare.

To address these questions, we discuss the challenges of applying PDT for smart
personalised healthcare in terms of data privacy and regulations, data quality, ethics issues,
modelling, connectivity, timing, speed, and technical issues (see Section 8.2).



Sensors 2022, 22, 5918 10 of 35

3.2. Research Objectives

We discuss the PDT concept and introduce the benefits of using PDT to answer
these questions. Then, we proposed a reference framework for PDT being used for smart
personalised healthcare. The inputs will be the collected healthcare data from the medical
sensors and wearable devices such as temperature, heart pulse, blood pressure, insulin, and
other fitness activities. The outputs will be insights based on a data-driven PDT that could
be used for any healthcare application such as smart personalised healthcare systems and
smart hospitals. Furthermore, these insights could be used in different smart personalised
healthcare applications and to automate decision making within personalised healthcare
systems. Furthermore, we selected some use cases concerning personalised healthcare.
Moreover, based on the result of the COVID-19 pandemic outbreak, there is a significant
need to adopt PDT to protect against this pandemic crisis. Therefore, we also describe how
the proposed reference framework can be applied to mitigate COVID-19 contagion and
help patients with long-haul COVID-19 while preserving personalised healthcare.

Table 3. The research questions and the corresponding section/subsection for the answer.

Number Description Section

RQ1 What are the role and benefits of introducing PDT? Section 4

RQ2 How could PDT revolutionise the personalised healthcare
industry? Section 5

RQ3 What are the requirements for building a PDT-based system for a
smart personalised healthcare industry? Section 6.1

RQ4 What are the key layers for implementing a PDT-based smart
personalised healthcare system? Section 6.2

RQ5 What are the potential applications of using PDT for a smart
personalised healthcare industry? Section 6.2.3

RQ6 How is the PDT concept being applied to protect against the
COVID-19 outbreak and any future pandemic? Section 7.1

RQ7 What are the open challenges to applying PDT in smart
personalised healthcare? Section 8.2

3.3. Research Methodology

Figure 4 shows the key steps in conducting this study. First, a literature review on
the state of the art of DTs adoption in personalised healthcare is provided. Then, a com-
prehensive definition of the PDT concept is introduced to identify its role and benefits for
the personalised healthcare industry. Furthermore, a brief overview of PDT progression
is provided to understand how the concept has revolutionised personalised healthcare,
including research organisations and the industry sector. Then, a set of high-level require-
ments for smart personalised healthcare is introduced, followed by a detailed description
of the key modules/layers used to elaborate the proposed framework. Afterwards, the
potential personalised healthcare use cases are demonstrated.

Figure 4. Overview of the research methodology.
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Summary

In this section, we identify the research questions that are answered in the following
sections (see Table 3). Then, we discuss the research objectives by concisely describing
what the research is trying to answer with regard to the PDT concept, its reference frame-
work, as well as its potential applications and use cases. Furthermore, we highlight the
methodology—including the critical steps in conducting this study—to analyse information
about the PDT topic (see Figure 4).

4. Personal Digital Twin Concept and Its Benefits

RQ1: What are the role and benefits of introducing PDT?

This section introduces an overview of the PDT role in healthcare and the high-level
view of PDT. Then, we provide a set of positive aspects of using PDT in healthcare.

4.1. The Role of Personal Digital Twin

Substantially, people are already digital replicas on their social media networks.
These social digital replicas show people’s thinking, opinions, feelings, activities, etc.
Similarly, PDT represents a virtual replica of a human [17] including their mental, biolog-
ical, physical, and social aspects. Therefore, the role of PDT is to make a digital version
of a human life to help them with self-care, self-reflection, and personal growth. Further-
more, the PDTs present people’s current lives and can provide life forever through their
data. On the bright side of PDT, PDT is gaining momentum in the healthcare industry. It
revolutionises personalised healthcare by delivering live, personal health data sources for
healthcare-based learning systems to predict the potential risks, especially for older people
and chronic diseases. This attracts healthcare providers and stakeholders to maximise
their business by making personalised decisions and recommendations for their clients.
Beyond this, PDT can help people improve their personal productivity development and
increase their health longevity by following efficient self-care routines in their daily life.
Unfortunately, PDT has critical privacy issues. The ethical conditions related to accessing
PDTs should be considered when PDTs share people’s sensitive and personal content.

The high level of PDT is shown in Figure 5. It can be seen that the high level of PDT
contains the physical world and cyber world. The data are captured from physical smart-
phones and wearable devices such as smartwatches and Fitbit for the physical world. In
particular, these personal data are collected from physical sensors that record temperature,
heart pulse, blood pressure, blood sugar levels, insulin, number of walking steps, and
other activities.

Figure 5. The high level of personal digital twin from a personalised healthcare perspective.
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4.2. The Benefits of Introducing Personal Digital Twin

There are a set of benefits of using PDT, including building a digital patient model,
personalised treatment, rapid diagnosis, predicting responses to surgical interventions, joint
research, empowering the world of AI-enhanced humanity, empowering self-reflection and
self-coaching, and human immortality through data (see Figure 6). The details regarding
these benefits of using PDT are listed as follows.

• Building digital patient model: The digital patient integrates the different measure-
ments of a person over time. PDT can help build a digital model to provide a big
picture of a patient. This allows for bringing together all the information about a
particular patient. This helps general practitioners to use a model or sub-model of a
patient or a patient’s body part, such as an organ, and how it works over time. For
example, dynamically updated digital body parts (e.g., a digital heart model, digital
brain model, and digital liver) could support the early diagnosis and treatment plan-
ning for chronic diseases [12]. Furthermore, the digital patient model based on PDT
would help predict which patients will fall ill weeks or months in advance. Moreover,
the healthcare providers can access patients’ PDTs which contain personalised infor-
mation about their health conditions to make appropriate decisions and personalised
recommendations.

• Personalised treatment: As every person is unique, their immune system reacts to
different diseases and differs from other people. Therefore, using PDTs to collect
personal healthcare data about patients and then analyse them with AI techniques
will provide insightful information about patients’ health conditions. This attracts the
healthcare providers and pharma companies to utilise the PDT-based health data for
individually prescribing drugs, e.g., unique drugs for each patient, and recommending
an optimal therapy and improving the care for every customer. Furthermore, the
individual treatment based on PDT would help predict how a particular patient will
react to a specific treatment, how they can most benefit, and what the side effects are.
These predicted remarks could even further revolutionise medicine and maximise the
profits of healthcare enterprises and pharma companies.

• Rapid diagnosis: PDTs could be used to diagnose the potential risks for chronic
diseases by analysing the patients’ data. For example, PDT-based machine learning
models are used to understand patterns and use predictions to help in the early
diagnosis of cancer, asthma, diabetes, heart disease, multiple sclerosis, etc. [12,19].

• Predicting responses to surgical interventions: PDTs could be used to simulate the
individual procedures of surgery. The individual-simulated surgery based on PDTs
considering the personalised circumstances of a particular patient helps avoid the
potential risks and identify the optimal devices and techniques for surgical procedures.

• Joint research opportunity: Based on the genetic background and medical history,
researchers can perform their experimental work, including individualised treatment
simulations using PDTs to determine the best therapy option for individual patients.
The PDT provides researchers with a whole image of the human body, which gives
a set of relationships between human organs and the interactions with different
diseases, nutrition, and lifestyle. These relationships can offer opportunities for joint
research on a larger scale by clinicians, scientists, engineers, and healthcare technology
providers. For example, there is a clinical relationship between knee osteoarthritis,
cardiovascular diseases, and sleep disorders, which can offer elaborate translational
research possibilities for knee therapy.

• Empowering the world of AI-enhanced humanity: PDTs can mirror humans’ body
parts, organs, and personal genomes. However, on the other hand, AI plays a vital
role in contributing to human healthcare by utilising the massive amounts of data that
their PDTs may capture. Consequently, healthcare leaders are taking advantage of
data from PDTs and then applying AI to build a big picture about individual clients
and their personhoods to deliver enhanced care services.
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• Empowering self-reflection and self-coaching: PDTs can contribute to human men-
tal health by contacting people such as personal coaches, leadership trainers, and
behavioural therapists to realise their weaknesses and strengths. For example, Mind
Bank Ai (https://www.mindbank.ai/mental-health.html, accessed on 15 February
2022) has designed PDT to individually assist people by giving them loop feedback
about themselves gaining mental strength through self-discovery.

• Human immortality through data: We saw that social media can store people’s posts,
including their voices, pictures, stories, opinions, thinking, and feeling. These data
could be stored in their PDTs to maintain the footprint of their existence. Therefore, the
PDTs will be the data lake for human eternity through data. The PDTs will provide
a rich source of personal data that represent people. Furthermore, combining PDTs
with NLP technology will be an interesting research direction for storytelling about
people’s current lives, even forever on their behaviour.

Figure 6. The benefits of using a personal digital twin.

Summary

In this section, we introduce the concept of the PDT role in personalised healthcare.
Then, we provide a detailed description of the beneficial use of PDT. Finally, the info-graphic
of the PDT benefits is depicted in Figure 6.

5. The Progression of Personal Digital Twin in Healthcare Research and Industry

RQ2: How could PDT revolutionise the personalised healthcare industry?

This section provides an overview of the PDT industry’s progress in smart person-
alised healthcare. First, ongoing research projects and centres collaborating with industry
partners are provided. Then, a summary of healthcare companies that have adopted DT is
introduced and categorised based on their products and services.

5.1. Healthcare Research Centres and Projects

Some research centres and projects adopted DT technology to improve their studies,
including in personalised diagnosis, treatment, and medicine. Some examples include the
Swedish Digital Twin Consortium (SDTC), Human Digital Twin OnePlanet research centre,

https://www.mindbank.ai/mental-health.html
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Empa research centre, DIGIPREDICT consortium, Living Heart project, and COVID-19
Long-hauler project. Further details about these research centres and projects are provided
below. Furthermore, a summary of the DT-based healthcare research centres and projects
and their focus is depicted in Figure 7.

• In Swedish Digital Twin Consortium (https://liu.se/en/news-item/digital-tvillingar-
hjalpmedel-for-skraddarsydd-medicinering-, accessed on 1 February 2022), the Swedish
researchers adopted DT technology for personalised medicine using RNA. The SDTC
(https://www.sdtc.se/, accessed on 1 February 2022) aims to develop a strategy for
personalised medicine [20]. The SDTC strategy is based on three steps: (i) creating a
DT for individual patients which contains unlimited copies based on the computa-
tional network models of thousands of disease-relevant variables; (ii) each twin being
computationally treated with thousands of drugs to find the optimal drug for this
patient; and (iii) the best drug which has the best effects is selected for this patient.

• Human Digital Twin, OnePlanet Research Center (https://oneplanetresearch.nl/
innovatie/digital-twin/, accessed on 2 February 2022) developed an AI-guided digital
platform for continuous collection and the analysis of health and nutrition data using
sensors. The digital data platform is being constructed using health data collected
in OnePlanet’s innovation programs Ingestibles for Gut Health, Smart Bathroom for
Health and Studies in Nutrition & Mental Wellbeing. It is a collaborative research
work between digital platform experts from imec, specialising in high-tech sensors and
wearables, nutritionists, behavioural experts and doctors from Wageningen University
& Research, Radboud University and Radboudu. The DT technology serves the
research platform in this research centre by collecting health and nutrition data to
facilitate the early detection of diseases (e.g., diabetes, cardiovascular diseases, and
burnout) and develop personalised products and services.

• Empa research centre (https://www.empa.ch/web/s604/eq71-digital-twin, accessed
on 2 February 2022) in Switzerland utilises DT capabilities to improve the dosage of
drugs for people afflicted by chronic pain. They studied some characteristics such
as age and lifestyle to help them customise the DTs of patients and then predict the
effects of pain medications. Then, the patients can report the effectiveness of their
personalised dosages, which improves their DTs’ accuracy.

• DIGIPREDICT consortium (https://www.digipredict.eu/, accessed on 3 February
2022) is a research project with seven top-level universities, research centres, hospitals,
and three SMEs. The DIGIPREDICT partners are working to combine cross-cutting
lines of biomedical research by bringing a range of excellent international scientists
with complementary and interdisciplinary skills. The DIGIPREDICT proposes the
first DT of its kind that predicts the progression of the disease and the need for early
intervention in infectious and cardiovascular diseases. With regard to the development
work, the DIGIPREDICT DT started to predict whether COVID-19 patients will develop
severe cardiovascular complications and, in the long term, the possibility of the onset
of inflammatory disease.

• Living Heart project (https://www.3ds.com/products-services/simulia/solutions/
life-sciences-healthcare/the-living-heart-project/, accessed on 3 February 2022) was
launched by Dassault Systèmes in 2014. The project aims to obtain information about
the human heart using its virtual image, i.e., digital heart twin. The project is an open
source collaboration between medical researchers and industry partners, including
surgeons, medical device manufacturers, and drug companies.

• COVID-19 Long-hauler project (https://www.delltechnologies.com/asset/en-us/
solutions/business-solutions/briefs-summaries/dell-i2b2-infographic.pdf, accessed
on 3 February 2022) is a collaborative research work between Dell Technologies and
i2b2 tranSMART. The project aims to apply AI with advanced technology such as
DTs to understand the causes of the post-acute sequelae of SARS-CoV-2 (PASC) and
develop effective treatments. The DTs will be shared with researchers from more than

https://liu.se/en/news-item/digital-tvillingar-
hjalpmedel-for-skraddarsydd-medicinering-
https://www.sdtc.se/
https://oneplanetresearch.nl/innovatie/digital-twin/
https://oneplanetresearch.nl/innovatie/digital-twin/
https://www.empa.ch/web/s604/eq71-digital-twin
https://www.digipredict.eu/
https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/
https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/
https://www.delltechnologies.com/asset/en-us/solutions/business-solutions/briefs-summaries/dell-i2b2-infographic.pdf
https://www.delltechnologies.com/asset/en-us/solutions/business-solutions/briefs-summaries/dell-i2b2-infographic.pdf
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200 hospitals and research centres. The DTs allow the researchers to conduct millions
of simulations to identify the best treatments for COVID-19 long-haulers.

Figure 7. Digital twin-based healthcare research centres and projects and their focus.

5.2. Healthcare Industry

The healthcare industry is adopting emerging technologies such as IoT, AI, and DTs
to improve business. For example, they utilise the virtual replicas of their clients (i.e.,
provided by DT technologies) to monitor their health status and provide care services
based on individual needs. In particular, the healthcare industry uses people’s personal
information extracted from their PDTs. Then, they analyse the PDT-based high-quality
collected health data about the individual patient (e.g., biometrical, cognitive and genetic)
to predict the potential risks and track progress over time. These tracked progression and
the predictions are considered gold indicators for (i) people who want to practise self-care;
(ii) healthcare insurance companies; and (iii) health practitioners who prefer to follow their
patients and have insightful information about their health history.

We listed the progression of some healthcare and pharma companies using DT tech-
nology for smart personalised healthcare (see Table 4). Some companies target a specific
vital part such as the heart or brain, while others provide a generic product to improve per-
sonalised healthcare. Based on the type of products and services, FEops [27], Simens [11],
Philips [28], and Dassault Systèmes [29] are using DT technology for heart virtualisation
to empower personalised treatment for patients. For example, both Simens and Dassault
Systèmes provide a 3D model for a live heart for cardiac treatment and research purposes.
On the other hand, Living Brain [30] provides a tracking progression of neurodegenerative
disease. Moreover, IBM [31], Babylon [32] and DigiTwin [33] use DT technology to deliver
personalised healthcare services to their clients.

Summary

This section provides a comprehensive study of the progression of PDT in research
and industry. The infographic about the set of ongoing research projects and centres is
depicted in Figure 7. Furthermore, we provide a summary of the healthcare companies that
adopted DT in terms of their products and services (see Table 4).
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Table 4. The progression in the industry for digital twins in relation to smart personalised healthcare.

Company Description of Product/Service Type of Product/Service

FEops [27]
A transformation of cardiac images into DTs to improve and
expand personalised treatment for patients with structural

heart disease
Virtual heart/personalised treatment

Living
Brain [30] Provide a tracking progression of neurodegenerative diseases Virtual brain

Siemens
Healthi-

neers [11]

Provide 3D Digital Heart Twin which is used to simulate
surgical procedures and verify tests on patients causing

severe injury
Virtual heart

IBM [31] Efficient and personalised patient treatment using DT model
of patient Personalised treatment

Philips [28] Using DTs and 3D ultrasound to simulate a virtual heart for
providing a heart model and dynamic heart model Virtual heart

Babylon [32]
Capturing health data from fitness devices and wearables and
then transforming them into DTs. The DT-based data are used

to support interactions between GPS, doctors, and patients
Personalised healthcare

DigiTwin [33]

Converting 2D patient medical images (MRI, CT scans) into
3D virtual images to allow clinicians to engage patients with

their DTs for improving patient education and shared
decision-making processes leading to better treatment plans

Personalised treatment

Dassault
Systèmes [29]

Provide 3D models of live hearts which are used for cardiac
research purpose Virtual heart

6. Proposed Reference Framework for Smart Personalised Healthcare Industry

The merit of the proposed framework is integrating DT, AI, blockchain technologies,
and the operational data of patients to deliver smart personalised healthcare services
to improve people’s lives. Therefore, the proposed framework is considered one level
higher than the adoption of DT technology in the healthcare industry. Furthermore, the
proposed framework could be developed and implemented on top of DT platforms, which
exploit AI capabilities to deliver smart personalised healthcare services. Moreover, the
proposed framework was introduced by identifying the high-level requirements for smart
personalised healthcare and the layers used to elaborate the framework.

6.1. High-Level Requirements for Smart Personalised Healthcare

RQ3: What are the requirements for building a PDT-based system for a smart person-
alised healthcare industry?

We identified the requirements for building a smart personalised healthcare system
based on PDTs. Table 5 summarises 12 criteria to fulfil the high-level requirements for smart
personalised healthcare, including data collection (R1), data update frequency (R2), data
management (R3), data analysis (R4), data explainability (R5), data quality (R6), simulation
capabilities (R7), privacy and confidentiality (R8), authorisation (R9), connectivity (R10),
decision making (R11), and computing paradigm (R12).

Table 5. High-level requirements for a smart personalised healthcare system based on PDT.

Req. No. Requirement Reason

R1 Data collection supporting data-driven smart personalised healthcare
R2 Data update frequency providing real-time update on the physical twin

R3 Data management Maintaining data management including data
acquisition, data query, and data modelling

R4 Data analysis Enabling advanced predictions of the potential risks,
customised medicine, treatment planning, etc.

R5 Data explainability Supporting clinical decision systems
R6 Data quality Leading to better decision making
R7 Simulation capabilities Enabling virtual visibility

R8 Privacy and confidentiality Maintaining the confidentiality of the patient’s
personal information including their medical records

R9 Authorisation Allowing the authorised people by law to access the
people personal information

R10 Connectivity Allowing to connect the on-body sensors and wearable
sensors to their digital twins

R11 Decision making Providing an insightful decision-making process
R12 Computing paradigm Performing analysis (e.g., cloud and edge)
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The data are collected by the physical devices (e.g., on-body medical sensors, wearable
devices, and personal activities) (R1). The collected data are of two types: historical data
and real-time data. The historical data are collected from the medical records stored in
the patients’ databases and medical ledgers. The real-time data are captured from remote
sensors such as attached medical, wearable, and smartphones which publish their data to
PDTs. Furthermore, the collected data could be managed and queried by real-time query
engines and modelled based on the required specifications of the personalised healthcare
system (R3). For example, if the smart personalised system is used for clinical diagnosis, the
schema of PDT will be defined based on the required information for diagnosis. Another
example is that, if the smart personalised system is used for fitness recommendations, the
schema of PDT will be defined based on the necessary information about the physical
activities captured by smartphones and wearable devices.

Based on the dynamism of the personal data, the data are frequently updated in real
time, which is beneficial to the healthcare timely decision-making process (R2 and R11).
The PDTs provide the decision-making participants (e.g., the patients, doctors, hospital,
clinical research systems, diagnostic laboratories, and healthcare providers) with insightful
information for making decisions, including the healthcare recommendations, rapid diagno-
sis, treatment plans, and potential diseases. These actionable decisions are made based on
the predicted indicators obtained by data analysis technologies (i.e., machine learning (ML)
and deep learning (DL)) trained by historical data and evaluated by continuous updating
by the PDTs’ real-time data readings (R4). Moreover, specific analytical tasks need further
explainability for some personalised healthcare use cases to support diagnosis and clinical
decision system (R5) [34,35]. For example, clinical specialists need a data interpretation for
the clinical significance of the individual patient.

Furthermore, they would like to individually conclude the diagnosis by reviewing
the related cases for other patients and considering personalised biophysical models and
health conditions for the individual patient. Furthermore, poor quality data can lead to
poor treatment of the patient, e.g., inaccurate diagnosis and improper recommendation
(R6) [36]. Therefore, the data should be as clean and free of errors as possible to allow
the doctors to make more effective and informed decisions for their patients and enable
healthcare providers to deliver highly personalised healthcare services to their clients.

However, simulation aims to investigate what the patient has, but it could also help
understand what could happen in the future (R7). For example, using PDTs’ capabilities
with medical measurements (e.g., heart rate, blood pressure, and insulin level) could
simulate some clinical scenarios to select the optimal diagnosis. Another example is using
individual simulated surgery to predict the responses to surgical interventions; the doctors
will be ready for the appropriate actions during surgery.

Privacy and confidentiality are the most critical aspects of any healthcare system
because they maintain their personal information, including medical records. The personal
medical records should only be accessible by those legally authorised to access patients’
personal information (R8 and R9). Furthermore, the patients should explicitly consent to
their data being shared with non-profit organisations and trusted research partners for
research purposes. Furthermore, all regulatory bodies that govern the use of patients’
personal information must comply with the confidential agreements between parties.

The PDTs could not achieve their objectives in real time (R10) without good connectiv-
ity. Thus, the good connectivity of the physical devices (e.g., on-body and wearable sensors)
is essential to avoid critical data loss, especially for health risk conditions. In addition,
the PDT-based predictive data analysis could be performed on computing paradigms
such as cloud and edge computing to leverage extra computing capabilities for real-time
analysis (R12).
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6.2. Layers of the Proposed Reference Framework

RQ4: What are the key layers for implementing a PDT-based smart personalised health-
care system?

This paper proposes a reference framework to build a smart personalised healthcare
system based on PDT. The proposed framework aims to enable the healthcare industry
to deliver better-personalised services to its clients. The proposed framework empowers
grants the PDT more intelligence to provide a baseline for designing smart personalised
healthcare systems. Three layers are used to equip the reference framework of building a
PDT-based personalised healthcare system with operational data intelligence. As shown
in Figure 8, the layers are (i) the physical devices containing the smartphones, wearable
devices, medical sensors, etc.; (ii) industrial technologies; and (iii) application areas. These
layers will be elaborated upon as follows.

Figure 8. The reference framework of building PDT-based personalised healthcare systems.
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6.2.1. Physical Devices

Physical devices are potentially involved in the smart personalised healthcare sys-
tem. The devices could be biosensors, medical devices, smartphones, wearable devices,
etc. Biosensors are portable medical-grade wireless devices that discreetly adhere to the
body. For example, the Philips Biosensor BX100 monitors the chest by measuring vital
signs, posture, and activity while allowing patient mobility. The smartphones acts as an
instrumental interface to mirror these biosensors to help aid the early identification of
patient deterioration and then drive early intervention [37]. Furthermore, the built-in
smartphone sensors (e.g., GPS, step counter, proximity and mobile health sensors) allow
people to share their activities with the corresponding parties (e.g., doctors, hospitals, and
healthcare providers.) for health-tracking purposes. Furthermore, wearable devices such
as smartwatches and Fitbit devices could contribute by publishing personalised wearable
data about people. For example, the real-time self-measurement of temperature, heart rate,
blood pressure, glucose level, and sleep could be a point of care for patients to predict the
potential risks and take early prevention actions.

6.2.2. Industrial Technologies

Different industrial technologies are used for building a concert PDT model for per-
sonalise healthcare applications [9]. Consequently, this layer briefly highlights the role of
emerging industrial technologies in building a smart personalised healthcare system. We
describe this layer using eight components for simplification: collaborating twins, data
management, data analysis, synchronisation, simulation, stream processing, blockchain
technologies, and computing technologies.

Collaborating twins

Collaborating twins is an emerging area of interest among DTs in different sectors
such as the energy industry—fault diagnosis of wind turbines [4]; the railway industry—
predictive maintenance [38]; and the logistics industry [26]. As people collaborate to
innovate and perform jobs, DTs do the same by sharing and exchanging information among
entities and sharing tasks to act accordingly. An example of DTs collaboration is DTs for
different aircraft components (e.g., wing, engine, and fuselage). First, the DTs of each
machine collaborate to deliver insights into the state of the engine. Then, the data-driven
DTs of the aircraft components are used to analyse purposes to reduce engine downtime,
improve maintenance staff efficiency, and optimise the spare part inventory.

Consequently, collaboration is essential for a group of DTs to effectively and efficiently
perform analysis, while a single cannot do [39]. Thus, PDTs are built on collaborating twins
for biosensors, medical devices, smartphones, wearable devices, etc. These sets of DTs of
different body parts help understand the whole body’s PDT status within personalised
healthcare systems.

Data management

Data management has three sub-components: data acquisition, query, and modelling.
The data acquisition technologies are used to gather the sensors’ data in the real world and
inject them into the parallel simulated environment. Then, the collected data are used for
real-time data analysis. The data query component actively retrieves information from the
running database. The running database holds the values of the deployed DTs within the
virtual cyber world, whether historical DTs stored in ledgers or streaming DTs are used to
retrieve the up-to-date data [40]. The data modelling technologies are used to semantically
model the PDT data by representing the features of personal health data, which are used
for digital objects for a person [12,21]. The features of the collaborating twins and their
relations determine the PDT model’s complexity and data structure choice.
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Data analysis

Pairing AI with DT technologies creates new efficiencies for smart healthcare industries.
For example, applying predictive data analytic techniques (e.g., ML and DL) using data-
driven DTs provides predictions of the disease progression in near real time [41,42]. These
predictions are used as biomarkers to support early clinical decision making and propose
patient-specific therapy using existing drugs. The data analysis component has three
sub-components: the predictive model, explainable AI, and knowledgebase.

Predictive model The designed PDT-based predictive models are used to under-
stand patterns and predictions to help personalised healthcare services. Furthermore,
building predictive models based on DT-based multiple scales data helps build concert com-
putational representations of biological processes and body systems. These models could be
customised per-patient models by integrating with DT-based personalised clinical data from
individual patients. Then, the PDT model can be used to derive personalised predictions
about diagnosis, prognosis, and the efficient optimisation of therapeutic interventions.

Figure 9 shows the workflow description of building a predictive model using data-
driven PDTs. The workflow mainly consists of two phases: building an offline predictive
model and deploying an online predictive model [43]. For the offline predictive model, we
will use the ML/DL techniques (e.g., classifier). An offline predictive model will be devel-
oped and trained using personal historical data collected from PDT-based medical records.
For the online predictive model, the developed predictive model could be evaluated at the
edge level and then be used to predict the potential risks online using PDT-based real-time
streaming data.

Figure 9. The workflow of building a predictive model based on a personal digital twin.
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Explainable AI Explainable AI is a set of tools and frameworks to help data scientists
understand and interpret ML models’ predictions. According to a personalised healthcare
context, the explainability of models is needed to provide accurate recommendations and
evidence for individual patients. Clinicians apply the diagnostic inference by extracting
the association rules among multiple data types such as clinical records, sensor readings,
social activity, and environmental factors. Therefore, PDT technology could gain impor-
tance in helping clinicians expand their diagnosis by providing real-time data feeds about
the patients’ current conditions. Furthermore, combing PDTs with explainable AI could
enhance diagnosis and personalised treatments by obtaining an accurate picture of the
patient health and recommending the proper care at the right time [16,23,35].

Knowledgebase This component manages the knowledgebase within the proposed
reference framework. According to the building of PDTs using a set of collaborating twins,
each DT relation to other DTs is defined and stored in the knowledgebase, such as instance–
instance relations, inheritance, parent–child relations, and the whole system to remain
consistent. Then, the knowledgebase contains the set of knowledge rules and ontologies
learned through relevant ML techniques from DT-based historical data [44]. Furthermore,
knowledge rules are used to refine the knowledgebase by identifying new conditions using
rule-based analysis.

Synchronisation

Healthcare professionals and providers deal with huge amounts of data such as clinical
data lakes, EMRs, medications, and infinite health records of patients’ current statuses [45].
Furthermore, proper integration and synchronisation can help handle healthcare data.
Therefore, adopting PDTs can play a vital role in removing frustration by always being
in sync with the existing patients’ records. Furthermore, healthcare providers should
not hesitate to step into the future by adopting PDT-based solutions to integrate and
synchronise their data for greater consistency and better real-time data collection. This
motivated us to propose a synchronisation component that should be implemented as a
PDT-based synchronisation interface to keep a similar synchronisation consistency within
a personalised healthcare system.

Simulation

With a simulation, doctors/engineers can test scenarios and conduct assessments
on a simulated version of medical devices. For example, the cardiologist could simulate
procedures using heart catheters or surgery for an individual patient to avoid risks and carry
out the intervention as well as possible. According to the context of PDTs, collaborating
twins receive real-time updates from the medical devices to simulate an upcoming, more
accurate, and valuable intervention. Therefore, this component simulates the data exchange
among collaborating twins and the entire personalised healthcare system.

Streaming processing

The merit of DTs relies on continuous data updates by ingesting stream data from
sensors [46]. Therefore, the streaming data analysis adopts DT technology for the grantee to
receive real-time data to analyse the status of the physical assets. Furthermore, combining
the DT technology with streaming analytics offers several benefits in different real-world
applications. In particular, the DT technology helps engineers implement a stateful model
of the physical data sources that generates event streams while maintaining separate
state information for each data source [47]. According to the context of PDTs, the stream
processing component is responsible for ingesting streaming twin data for implementing
the smart personalised healthcare system.
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Blockchain technology

In several industry areas, DT technology has been linked with blockchain technology
to connect multiple DTs using distributed ledger technology (DLT) [48]. For instance,
we envision two possibilities for blockchain and DTs. First, the required personal data
surrounding PDTs must be immutable (i.e., they cannot be modified), and the blockchain
plays a vital role in securing them. Thus, instead of keeping it in a traditional database,
one method saves PDT-based information in the blockchain. Second, the importance of
combining PDT and blockchain technology is the need for the PDT to interact with doctors,
hospitals, healthcare providers, etc. [26].

Furthermore, the PDT-based blockchain offers secure distributed operational data
management and analytics across multiple participants [38,49]. Furthermore, blockchain
technology enhances healthcare industries to provide adequate patient care and high-
quality health facilities [50]. It can keep an incorruptible, decentralised, and transparent
log of all patient data which places the patient at the centre of the healthcare ecosystem.
Accordingly, Table 6 lists some healthcare/medical care companies which have adopted
blockchain practices in their products and services (e.g., Akiri [51], BurstIQ [52], Factom [53],
MEDICALCHAIN [54], Guardtime [55], Professional Credentials Exchange [56], Avaneer
Health [57], Coral Health [58], Robomed [59], and Patientory [60]).

Table 6. Blockchain in the healthcare industry.

Company Industry Location Description Blockchain Application Usage
Real-Life
Impact in

Healthcare

Akiri [51] Big data Foster City, CA Providing patient health data protection
using ledger technology Using ledger technology

Security,
sharing au-
thorisation

BurstIQ [52] Big data,
cybersecurity

Colorado
Springs,

Colorado

Helping healthcare companies secure
patient data Improve medical data sharing Prescription

drugs

Factom [53] IT, enterprise
software Austin, Texas

Creating a product to help the
healthcare industry securely store digital

health records
Securely store digital health records Data

security

MEDICALCHAIN
[54]

Electronic health
records, medical London, England Maintaining the integrity of health

records
Maintain patients’ records and protect

patient identity Consultations

Guardtime [55] Cybersecurity,
blockchain Irvine, California

Helping healthcare sectors implement
blockchain into their cybersecurity

methods

Apply for blockchain for cybersecurity
in healthcare

Deploying
blockchain
platforms

Professional
Credentials

Exchange [56]
Big data Tampa, FL Creating a distributed ledger of

healthcare credentials data
Fulfil the requirements of data sharing

and authorisation

Verify the
credentials
of patient’s

data

Coral Health [58] Healthcare, IT Vancouver,
Canada

Providing automated healthcare services
by using ledger technology

Use ledger technology to connect parties
and smart contract between patients and

doctors

Tracking
patients

Robomed [59] Blockchain,
medicine Moscow, Russia Offering patients a single point of care

using AI and blockchain

Use blockchain to gather patients’
information and share it with patients’

healthcare providers

Security and
sharing
medical

data

Patientory [60]
Blockchain,

cybersecurity,
healthcare, IT

Atlanta, Georgia
Provide blockchain-based platform to
help the healthcare industry securely

transfer their information via blockchain

Enabling the secure storage and transfer
of important medical information.

Security and
data storage

According to the context of this work, Figure 10 depicts the participants collaborating
in the smart personalised healthcare system. These participants are PDTs composed of a
set of collaborating twins, operational staff (e.g., doctors, pharmacists, lab technicians, and
scientists), public healthcare authorities (e.g., hospital and health organisations), and the
healthcare industry. In particular, the decentralised nature of blockchain technology allows
patients, doctors, and healthcare providers to share the same information quickly and safely
by exchanging their data using a blockchain network. Furthermore, blockchain technology
allows developers to implement smart contracts between PDT-based participants such as
patients, i.e., PDT, and healthcare professionals to ensure data and treatments.
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Figure 10. The participants of the blockchain network include personal digital twins, healthcare
authorities, healthcare industry, and operational staff participants.

Computing technology

Due to the generation of large volumes of healthcare industry data, the DT-based
predictive data analysis could be performed on computing paradigms such as cloud and
edge computing to leverage extra computing capabilities for real-time analysis [61,62].

6.2.3. Application Areas

RQ5: What are the potential applications of using PDT for a smart personalised health-
care industry?

PDT can be used in many industrial healthcare applications (e.g., personalised health-
care, smart hospital, e-healthcare, and decision making). In particular, the proposed
reference framework could be applied to different areas because it can collect, manage,
and analyse vast amount of personal healthcare data. For example, to facilitate healthcare-
based decision-making applications, the PDT-based predictive analysis of healthcare data
is applied to early-stage disease risk prediction, treatment planning and patient-specific
recommendations. Moreover, based on the analysis of PDT discussed in this paper thus
far, we summarise the potential smart personalised healthcare applications: personalised
medicine, rapid diagnosis, self-care, remote care, fitness tracker, well-being, medical alerts,
and pandemic combating (see Figure 11).

• Personalised medicine applications: Recently, medical technologies have moved
from a traditional ’one-size-fits-most’ model towards the customisation of mass
medicine. Therefore, PDT could be used for customised short-term and long-term
treatment by customising medications for individuals based on their current vital
organs status, anatomy, unique genetic makeup, behaviour, daily routines, etc. Further-
more, the proposed PDT reference framework could help the next step in personalised
medicine by linking the extracted insights and inferences of patients’ organs. For
example, wearable sensors and tiny devices such as the BioSticker will be used to
collect real-time data and then feed the PDT for the patient, which is connected
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to their general participator. The general participator will notify the patient of the
tests/procedures and the personalised medicine for early prevention [63].

• Rapid diagnosis applications: The proposed PDT reference framework could help
early diagnosis by analysing the PDT-based data in addition to genetic information
and body measurements to improve the diagnosis of detected and previously uniden-
tified maladies.

• Self-care applications: The proposed PDT reference framework could improve hu-
man life by helping self-care application, self-reflection, and personal growth.

• Remote-care applications: The proposed PDT reference framework could help pro-
mote remote care procedures for smart healthcare systems by allowing personalised
care and reducing the demand for hospitalised services (e.g., reservation, queues,
hospital visits, and hospital stay).

• Fitness tracker and well-being applications: The proposed PDT reference framework
could help improve fitness tracker and well-being applications for those practising
self-care and daily health activities. The PDT can facilitate fitness tracker applications
by feeding real-time healthcare data such as heart rate, blood pressure, insulin, and
step count.

• Medical alert applications: The proposed PDT reference framework could help un-
derstand individualised risk factors. In particular, the system could predict the poten-
tial risks by incorporating the individual’s historical data from their medical record
aligned with the real-time reads received from live PDT. Based on these predictions,
the system will send medical alerts to the corresponding receiver (e.g., person, family
member, home care, nurse, doctor, hospital, emergency department, or healthcare
provider) to prepare appropriate actions based on the patient’s health conditions.

• Pandemic combating Considering COVID-19 as a pandemic example and with a
certain level of privacy, the proposed PDT reference framework could help detect the
potential risks to protect people’s lives. First, the updated status within a PDT of a
person’s symptoms is analysed. Then, the predicted result is sent to the corresponding
receiver (e.g., person, family member, home care, nurse, doctor, hospital, or emergency
department) if the informed case is detected. Furthermore, it will be beneficial to
report that the COVID-19 infected case situation and notify all people around to
practise social distancing and avoid touching and interaction. Consequently, a couple
of on-time remote alerts to inform all people around persons infected or potentially
infected with COVID-19 can significantly limit pandemic outbreaks [26].

Figure 11. Personal digital twin-based smart personalised healthcare applications areas.
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Summary

In this section, we provide the high-level requirements identified for building a smart
personalised healthcare system by listing the 12 criteria described (see Table 5). Then, we
introduce a detailed description of the layers used for building the reference framework of
PDT (i.e., physical devices, industrial technologies, and application areas, as can be seen
in Figure 8).

7. Focusing on Personalised Healthcare Use Cases

Many PDTs span multiple use cases and even categories; these cross-domain person-
alised healthcare-based use cases form a significant strength of PDTs. Figure 12 depicts the
selected use cases: the mitigation of COVID-19 contagion, COVID-19 survivors follow-up
care, personalised COVID-19 medicine, personalised osteoporosis prevention, personalised
cancer survivor follow-up care, and personalised nutrition. The mitigation of COVID-19
contagion case will be discussed in detail to address the importance of using PDT to protect
against the COVID-19 outbreak.

Figure 12. The use cases of using a personal digital twin for a smart personalised healthcare industry.

7.1. Mitigation of COVID-19 Contagion

RQ6: How is the PDT concept being applied to protect against the COVID-19 outbreak
and any future pandemic?

In this use case, the PDT is used to mitigate COVID-19 contagion by focusing on
the collection, analysis, modelling, and reporting of outbreak data based on the PDTs of
people [26]. The PDT-based smart personalised healthcare framework could be used to
report people with COVID-19. Then, people around the person with COVID-19 would be
notified by their PDTs to start practising social distancing, stop touching shared items, and
use hand sanitizer.

We reproduced Figure 13 from our previous work [26] to showcase how the PDTs
can be used for mitigating COVID-19 contagion. Based on Figure 13, the participants are
people (e.g., potentially infected persons, infected persons, doctors, nurses, or pharmacists),
government organisations (e.g., hospitals or health organisations) who communicate and
share the updated status of COVID-19 to the blockchain network. People in quarantine
areas have permission to share their status with the blockchain networks using their PDTs,
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as can be seen in the purple arrows in Figure 13. The report from the blockchain network is
sent back to the participant, as shown by the blue arrows. Doctors can access the status and
suggest the required medicine to the smart contract. Then, the feedback about the medicine
from the doctors and pharmacists is sent to the blockchain network—this can be seen in
the black arrows in Figure 13.

Figure 13. PDT collaboration for mitigating COVID-19 contagion. Data are exchanged among the
blockchain-based digital twins network. Arrow explanation: (a) purple arrow is for sending personal
data; (b) black arrow is for sending reports to the blockchain network; (c) blue arrow is for receiving
reports from the blockchain network; (d) orange arrow is for sending warnings to the cases of infection
and potential infection and for sending warnings of the increase in cases to doctors, hospitals, and
health organisations; (e) red arrow is for sending alerts to infected cases and for sending warnings of
the increase in cases to doctors, hospitals, and health organisation; and (f) green arrow is for sending
and broadcasting the decision (e.g., quarantine or lockdown) made by health organisations and
governments to the blockchain network (reproduced from [26]).

The COVID-19 pandemic alert can also count the number of cases and identify the
areas in which COVID-19 is increasing to mitigate COVID-19 contagion. Consequently, a
few on-time remote alerts to notify all people around the infected or potentially infected
persons can significantly limit COVID-19 outbreaks. According to Figure 13, the orange
and red arrows denote warning and alert, respectively. If the PDT shows that a person is
infected with COVID-19, a couple of notifications will be distributed to everyone connected
to the network. People around the infected COVID-19 person would be notified by their
PDT to start practising social distancing, stop touching shared items, and use hand sanitizer.
Furthermore, the PDTs of the people everywhere will analyse their status locally and send
up-to-date information on the confirmed positive cases to the pandemic alert.

For example, based on PDTs, as shown in Figure 13, Group 3 will receive a red warning
alert due to the confirmation of an infection case which is a neighbour. This alert specifically
warns the PDTs of elderly adults because they are likely the age group at high risk. An
orange warning alert will be received by the PDTs of Group 2 to warn people to maintain
social distancing. This warning alert is sent to analyse their movement and location, as
their PDTs send their GPS and proximity sensors. Finally, Group 1 do not receive any alert
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because there is no confirmed case in proximity to them, and they are practising social
distancing. Therefore, the government becomes able to do what is needed to keep the
COVID-19 pandemic under control and mitigate COVID-19 contagion, such as by declaring
a strict lockdown of the area where the number of positive cases is significantly increasing.
Furthermore, as the results of the dynamic updating of healthcare institutions based on the
continuous communications to PDTs, the government can relax the restrictions where there
is a lower risk and enforce more substantial restrictions where risk is higher.

7.2. COVID-19 Survivor Follow-Up Care

After the world started controlling the pandemic outbreak, the healthcare sectors
attempted to follow up on COVID-19 survivors (i.e., people infected by COVID-19) and
advise that they to adapt to a new lifestyle. Unfortunately, there are not yet studies that
confirm the higher-quality evidence for the long-term symptoms of COVID-19 survivors.
The most commonly reported symptoms are fatigue, dyspnoea, breathlessness and cough,
joint and muscle pain, chest pain, and palpitations. Therefore, healthcare sectors and
industries face the challenges of integrating up-to-date medical records for COVID-19
survivors with various telemedicine platforms, data sharing complexities, cost factors,
etc. The proposed PDT-based smart personalised healthcare framework could be used to
report on the conditions of COVID-19 survivors. The healthcare authorities and providers
would have to ask the patients (i.e., COVID-19 survivors) to consent to sharing their data
with a large-scale international follow-up study. These data will be collected from their
PDTs and then integrated into single personal records for individual COVID-19 survivors.
The blockchain network will share the data, and continuous data analysis will be performed.
Then, the feedback results will be flagged to the participants and healthcare providers for
ongoing patient-specific care for the COVID-19 survivors.

7.3. Personalised COVID-19 Medicine

Despite the suffering that the COVID-19 pandemic has caused around the world, there
have been benefits. For example, significant improvements have been made in COVID-19
detection and testing. Furthermore, a more accurate diagnosis and COVID-19 personalised
medicine will be tailored to each individual. The pandemic has pushed healthcare authori-
ties, industries, and providers towards smart personalised healthcare for individuals [64].
Therefore, scientists and researchers have started collaborating to study how to utilise
emerging technologies such as big data, DTs, and AI technologies to create smart person-
alised healthcare solutions based on individual variables (e.g., immunity system, genomic,
and clinical records). Consequently, the proposed PDT-based smart personalised healthcare
framework could be used to add valuable progress to this ongoing research. The proposed
framework can bring together advanced technologies to build personalised healthcare
systems by providing PDT to provide up-to-date health conditions of individuals and
people with COVID-19 with appropriate personalised medicine recommendations.

7.4. Personalised Osteoporosis Prevention

Knee disorders are pervasive in patients of all ages, ranging from congenital disorders,
trauma and sports injuries to osteoarthritis. Furthermore, knee osteoarthritis is the most
common disease that causes disability. As the human knee is a complex organ in terms
of structure and function, PDTs could monitor human knee health. Then, the PDT-based
knee data would allow physicians and physiotherapists to understand the patient’s knee
condition better and deliver appropriate personalised care. Furthermore, the PDT-based
proposed framework empowers shared decision making between the patient and the
treating physician for rehabilitation and value-based health knee care. In particular, the
proposed framework combines advanced technologies (i.e., IoT, DTs, AI, and blockchain)
to deliver smart personalised solutions for osteoporosis prevention.
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7.5. Personalised Cancer Survivor Follow-Up Care

All cancer survivors should have follow-up care, which means seeing a healthcare
provider for regular medical check-ups once they are finished with their treatment [65].
This follow-up care plan (i.e., survivorship care plan) contains different tests that look for
changes in cancer survivor health or any problems due to cancer treatment. The PDT could
collect the biomarkers about the cancer survivor such as blood tests, heart rates, steps,
sleep, organ data, and other diagnostic data. The proposed PDT-based smart personalised
healthcare framework could be used to analyse these biomarkers alongside the cancer
historical EMR to build a health curve for that person and compare it with other healthy
people. Based on the outcome of the analysis, the doctors can decide whether cancer has
returned and whether it is treatable. Then, based on the personal health conditions of the
cancer patient, the doctors will decide what surgical intervention should be performed. By
utilising the capabilities of the proposed framework, the doctors can run patient-specific
detailed datasets through AI and simulation software to identify possible treatment options
and see which ones might work best for the individual cancer patient. Furthermore,
they can recommend the appropriate personalised care and therapy for the individual
cancer patient.

7.6. Personalised Nutrition

Nutritional and lifestyle changes remain at the core of healthy ageing and disease
prevention [15]. PDT could monitor human body health by reporting clinical and pheno-
typic variables and behavioural aspects (dietary habits, physical activity tracking sleeping
patterns, etc.). The proposed PDT-based smart personalised healthcare framework could
be used to analyse this accumulation of healthcare data for individuals. The proposed
framework could recommend specific dietary and lifestyle strategies for individuals based
on their health and daily lifestyle.

Summary

In this section, we provided some selected use cases of adopting PDTs in person-
alised healthcare, including the mitigation of COVID-19 contagion, COVID-19 survivor
follow-up care, personalised COVID-109 19 medicine, personalised osteoporosis preven-
tion, personalised cancer survivor follow-up care, and personalised nutrition. Figure 12
depicts the infographic of the selected use cases of using PDT for smart personalised
healthcare industry.

8. Validation, Open Challenges, and Discussion

This section discusses the validity of our proposed framework concerning the require-
ments, followed by the discussion of open challenges.

8.1. Validation of Fulfilment Requirements for the Proposed Framework

This section validates the proposed framework. For this purpose, we discuss how the
high-level requirements are fulfilled from a technological perspective by using industrial
technologies and informative concepts. Table 7 shows the overview of mapping the
industrial technologies to the identified requirements for the proposed framework. Further
details about the high-level requirements are described in Section 6.1 and Table 5.

For the data collection (R1), smartphones, medical IoT technology, and biosensor tech-
nologies are used to collect personal data from various healthcare sources. These collected
health data are represented in collaborating DTs to provide the image of a human body.
Furthermore, these data are frequently updated to inform on the current status of the
human body (R2). The timely updating can be captured using DT technology to maintain
rapid updates within physical medical devices. Examples of open source frameworks for
creating and managing DTs are Eclipse Ditto, iModel.js, and Mago.
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Table 7. Validation of fulfilment requirements from the technology perspective for the proposed
framework.

Req. No. Main Requirements Enabled by Industrial Technologies Examples

R1 Data collection Smartphones and medical IoT technology Biosensors and wearable devices

R2 Data update frequency DT technology Eclipse Ditto, iModel.js, Mago3d

R3 Data management

For data acquisition: IoT protocols CoAP, MQTT, XMPP, DDS, AMQP

For data query: continuous query processing InfluxDB, PipelineDB, RethinkDB

For data modelling: semantic technology OOP, RDF, OWL

R4 Data analysis
Machine learning techniques DT, KNN, SVM, RF, NB

Deep learning techniques CNN, RNN, LSTM, GRU

R5 Data explainability Interpretable methods for machine learning PDP, ALE, ICE, LIME, SHAP

R6 Data quality Open source data quality and profiling tools
Talend Open Studio, Quadient DataCleaner,

OpenRefine, DataMatch Enterprise, Ataccama,
Apache Griffin, Power MatchMaker

R7 Simulation capabilities DT technology Ditto, Swim OS, iModel.js

R8 Privacy and confidentiality Blockchain and DLT technology HeperLedger, Ethereum, Corda, Quorm,
Openchain

R9 Authorisation Blockchain and DLT technology HeperLedger, Ethereum, Corda, Quorm,
Openchain

R10 Connectivity Wireless communication technologies Beyond Fifth Generation (B5G) Sixth
Generation (6G), WiFi

R11 Decision making
Machine learning techniques DT, KNN, SVM, RF, NB

Consensus algorithms PoW, PBFT, PoS, PoB

R12 Computing paradigm Cloud, edge, etc.
Open cloud: Apache CloudStack, Eucalyptus,

OpenStack Not open cloud: Amazon EC2,
Google cloud

Data management technologies are used to manage the PDT data and reflect the
physical and cyber world in real time (R3). For data acquisition, IoT protocols are used
for connecting devices, allowing communication, and exchanging data in a structured and
meaningful way in the physical and cyber worlds. Some examples of these IoT protocols
are: Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport
(MQTT), Extensible Messaging and Presence Protocol (XMPP), Data-Distribution Service
(DDS), and Advanced Message Queuing Protocol (AMQP). For data query, continuous
query processing technologies are used to retrieve the streaming data from connected
devices and from the active time-series database [13,66]. Some examples of continuous
queries are: InfluxDB, PipelineDB, RethinkDB, and Oracle Continuous Query Language
(CQL). Finally, different semantic technologies could be used to describe the PDT model for
data modelling. For example, model-to-model technology (e.g., OOP, RDF, and OWL) can
be used to describe the relations among collaborating twins to build a concert PDT model.

For data analysis (R4), a set of ML and DL techniques are used to provide smart
AI-based personalised healthcare solutions. The most popular ML techniques are: decision
tree (DT), K-nearest neighbour (KNN), support vector machine (SVM), random forest (RF),
and naive Bayes (NB). In contrast, the DL techniques are convolutional neural network
(CNN), recurrent neural networks (RNNs), long short-term memory networks (LSTMs),
gated recurrent units (GRU). These techniques are trained and evaluated based on the
data-driven PDT to provide timely predictions that help the decision-making process.
For data explainability (R5), tools and methods are used to help data scientists design an
interpretable ML process. Some examples of these methods are the partial dependence
plot (PDP), accumulated local effects (ALE), individual conditional expectation (ICE), lo-
cal interpretable model-agnostic explanations (LIME), and Shapley additive explanations
(SHAP). Finally, for data quality (R6), multiple tools are used for the pre-processing, iden-
tifying, cleaning, understanding, and correcting flaws in data that lead to better decision
making. There are a set of open source data quality and profiling tools, including Talend
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Open Studio, Quadient DataCleaner, Open Source Data Quality and Profiling, OpenRefine,
DataMatch Enterprise, Ataccama, Apache Griffin, and Power MatchMaker [67].

Furthermore, the DT technology was adopted for its dynamic simulation capability to
understand what is happening on the physical device and what could happen in the future
(R7). The simulation software simulates individual surgeries and treatments under certain
conditions to avoid potential risks. For privacy, confidentiality, and authorisation (R8 and
R9), the frequent update of the data for the collaborating twins needs to be exchanged in a
secure, trust, authenticated, and transparent process. Therefore, blockchain technology, one
application form of DLT, is used. More specifically, some advantages motivated us to adopt
blockchain in the proposed framework, including (1) maintaining the trust and secure
data exchange among peer-to-peer networks [48,68]; (2) allowing traceability across the
entire network [69]; (3) provide insightful consensus-based decision-making process [70];
and (4) deliver efficient solutions by utilising the decentralisation feature of blockchain
technology [71]. Different open source blockchain and DLT technologies could be used
including HeperLedger, Ethereum, Corda, Quorm, and Openchain. For connectivity (R10),
reliable network peers are necessary to communicate efficiently among parties. Different
communication technologies could be used such as Beyond Fifth Generation (B5G) and
Sixth Generation (6G).

For the decision-making process (R11), ML techniques provide predictions that deliver
better insights into a robust and effective decision-making process. Furthermore, the
consensus algorithms are used to improve the participants’ collaboration by utilising the
agreement of most nodes regarding the potential risk to notify the decision makers within
the personalised healthcare systems. Some examples of the use of the consensus algorithms
include Proof of Work (PoW), Practical Byzantine Fault Tolerance (PBFT), Proof of Stake
(PoS), Proof of Burn (PoB), Proof of Capacity, and Proof of Elapsed Time.

For the computing paradigm (R12), edge-based AI addresses ML algorithms’ process-
ing and implementation locally on the hardware. However, the cloud-based AI performs
ML in remote hardware by providing remotely powerful computational resources. Fur-
thermore, the designers and developers are left to decide the best computing paradigm to
build a personalised healthcare system (i.e., whether the cloud or the edge is best). Some
examples of the open cloud are Apache CloudStack, Eucalyptus, and OpenStack, whereas
examples of non-open cloud are Amazon EC2 and Google cloud.

As the PDT can become more person-centric, all DTs have one thing in common: en-
abling continuous improvement. Therefore, the use case should be identified to successfully
implement the PDT solution with a clear understanding of its requirements. Different
frameworks are available for building DT/PDTs, such as Eclipse Ditto, Swim OS, and
iModel JS. Furthermore, various public cloud vendors are offering DTs that can be used
to build PDTs (e.g., Azure Digital Twins, AWS Digital Twins, and IBM Digital Twins).
Furthermore, various industrial vendors offering DTs can be used to build PDTs (e.g., GE
Predix, Bosch’s digital twin solution, and Siemens MindSphere platform). For the reset
modules within the reference framework, Table 7 shows the mapping of the industrial
technologies to the identified requirements based on the selected use case.

8.2. Open Challenges and Discussion

RQ7: What are the open challenges to applying PDT in smart personalised healthcare?

Right now, the PDT is still a vision for the future of the smart personalised healthcare
industry. However, there are challenges that must be overcome in order to develop a
concrete PDT-based smart personalised healthcare system. Therefore, we will explore and
address some of those challenges.

8.2.1. Data Privacy and Regulations

Privacy is a crucial requirement for adopting PDTs to collect personal health data about
patients. These data from PDTs are used to build patient-centric models while maintaining
patient privacy and data integrity. Therefore, creating a PDT-based smart personalised
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healthcare system needs to apply strict compliance with data privacy law while allowing
the healthcare industry to enhance their deliverable services [19].

8.2.2. Security

Data security is crucial for healthcare data due to hacker attacks, for example, the cy-
berattack for the Health Service Executive (HSE) of Ireland, which occurred on 14 May 2021
(https://www.hse.ie/eng/services/news/media/pressrel/hse-publishes-independent-
report-on-conti-cyber-attack.html, accessed on 21 February 2022). Therefore, it is nec-
essary to ensure the protection of privacy, which is becoming more and more difficult
with the increasing functionality of technologies. Like PDTs, patients must be confident
that their PDT data are secure, transparent, and accessible. Blockchain technology can
be applied to the personalised healthcare industry to protect the access for the PDTs of
the patients. Significantly, some initiatives are adopting blockchain technology in medical
care/healthcare companies to secure their products and services (see Table 6).

8.2.3. Scalability

Building a DT of an entire system or process plant is a big challenge due to the complex
interactions between physical entities. Furthermore, according to the PDT context, PDTs
need updating every time physical or operational changes are made to the corresponding
person. Therefore, the designers/developers must invest a lot of time and resources to
create a customised PDT solution for several participants. Consequently, a scalable solution
is needed to handle a large number of PDTs. However, designing a scale PDT-based system
is a challenging task which has become one of the most problematic concerns for the
personalised healthcare industry.

8.2.4. Data Quality

Data insufficiencies are due to faulty sensors. Furthermore, the biomedical sensors’
data quality plays a vital role in the healthcare system as they are rendered useless if the data
quality is bad. Multiple reasons cause bad data quality (e.g., data loss, corruption, weather
conditions, and dead sensor battery life) and lead to inconsistent readings. Although the
factors that cause insufficient data quality are known, the strategies to overcome data
quality problems are still challenges for the healthcare industry.

8.2.5. Modelling

PDT modelling links different engineering features to efficiently handle the person-
alised healthcare system’s complexity. In particular, the PDT for a human is complex due to
the complexity of the human body parts [12]. Furthermore, the communication between hu-
man body parts (i.e., collaborating twins) increases complexity. Moreover, the data-driven
model methodologies for PDTs should consider the historical patient to feed the analytical
process [72]. Thus, building a comprehensive PDTs model is quite challenging to deliver a
concrete personalised healthcare system.

8.2.6. Connectivity

With the proliferation of smart devices and DTs, the connection remains a barrier
for these devices to achieve their objectives in real time. Because of the critical role of
biomedical sensors that built up the PDT, they require high connectivity. If any PDT
becomes disconnected, the risk of a delayed healthcare service increases, affecting patients
with critical health situations. Therefore, sophisticated communication technologies, such
as B5G or 6G, are required.

8.2.7. Timing, Speed and Response

Timing and speed are difficult with regard to performing PDT functions. Firstly,
time enhances decision making and reaction times for customer service demands (e.g.,
potential health risk, appropriate recommendation, personalised treatment planning, rapid

https://www.hse.ie/eng/services/news/media/pressrel/hse-publishes-independent-
report-on-conti-cyber-attack.html
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disease diagnosis, prevention procedures, and programs), requiring high accuracy and
quick replies. In addition, hospitals, healthcare industries, and providers do not want data
but want real-time virtual visibility for patients/clients.

8.2.8. Ethics Issues

PDTs for human health face ethical overheads due to the fact that they deal with critical
information about people [73,74]. The essential ethical issue is predicting the progressive
disease risk and informing and communicating with the patients. Furthermore, the ethical
issue is associated with the duration of data access consent. Therefore, all ethical conditions
should be specified when dealing with PDTs for human health.

9. Conclusions

In this work, we introduced the PDT concept as an enhanced version of the DT with
actionable insight capabilities. The PDT helps personalised diagnosis, therapy selection,
and procedure planning based on the patient’s physical characteristics, medical history,
current condition, and future needs. Furthermore, this can help healthcare providers and
the industry who would have personalised information about their clients (i.e., patients) to
make timely decisions and personalised recommendations. Then, we proposed a reference
framework as a step towards smart personalised healthcare industry. This aims to integrate
DTs, blockchain, and AI technologies to deliver smart personalised healthcare services for
improving people’s lives. Furthermore, we described the selected personalised healthcare
use cases, including the mitigation of COVID-19 contagion, COVID-19 survivor follow-up
care, personalised COVID-19 medicine, personalised osteoporosis prevention, personalised
cancer survivor follow-up care, and personalised nutrition.
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