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Abstract: To solve the problem of low accuracy and slow speed of drone detection in high-resolution
images with fixed cameras, we propose a detection method combining background difference and
lightweight network SAG-YOLOv5s. First, background difference is used to extract potential drone
targets in high-resolution images, eliminating most of the background to reduce computational
overhead. Secondly, the Ghost module and SimAM attention mechanism are introduced on the
basis of YOLOv5s to reduce the total number of model parameters and improve feature extraction,
and α-DIoU loss is used to replace the original DIoU loss to improve the accuracy of bounding box
regression. Finally, to verify the effectiveness of our method, a high-resolution drone dataset is made
based on the public data set. Experimental results show that the detection accuracy of the proposed
method reaches 97.6%, 24.3 percentage points higher than that of YOLOv5s, and the detection speed
in 4K video reaches 13.2 FPS, which meets the actual demand and is significantly better than similar
algorithms. It achieves a good balance between detection accuracy and detection speed and provides
a method benchmark for high-resolution drone detection under a fixed camera.

Keywords: object detection; background difference; high-resolution image; drone; small target

1. Introduction

With the increasingly widespread use of consumer unmanned aerial vehicles (UAVs),
UAV jamming has brought great pressure to air defense security. The key to fighting against
malicious UAV systems is effective detection of small and fast-moving UAVs or drones.
With the popularity of high-resolution shooting equipment, there is an increasing demand
for processing high-resolution data. Especially in the vision detection and tracking of small
targets moving long distances, more detailed information of small targets can be obtained.
Therefore, high-resolution equipment is more and more widely used in the detection
of drones. Drones are characterized by their small size, high-flying altitude, and fast-
movement speed, which brings great challenges to drone detection under high-resolution
images [1].

In early studies, most methods detected small drones through radar systems, radio
detection, and other technologies [2], but there are certain limitations due to cost, complexity,
and coverage. Due to the strong feature extraction capability of deep neural network,
methods based on CNN are increasingly applied to drone-detection tasks. In [3], to solve
the problem of insufficient drone data collection, a data set of artificial drones and birds
was made by subtracting the background of the target and combining with other real
pictures, and YOLOv2 was used to achieve accurate detection of drones and birds. In [4],
the segmentation network, U-Net, was first used to extract areas of interest (ROI), and
ResNet was then used to classify the targets in ROI, finally realizing the detection of
drones. For drone detection under fixed cameras, a recurrent correlation network (RCN)
based on convolutional neural network, recurrent neural network, and correlation filtering
was proposed in [1], which extracts the motion features of tiny flying objects in 4K video
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by joint detection and tracking to improve detection performance. In [5], the authors
proposed a two-stage method. First, background subtraction was used to extract potential
targets, and then the CaffeNet network was used to classify potential targets and filter
out interference targets, such as birds. This method filters out the background through
complex background modeling and obtains the location coordinates of the target. However,
when the foreground target is incorrectly extracted or not completely extracted in the
background-modeling stage, the target recognition and location will be biased. Therefore,
this paper uses the simple background difference method to extract candidate regions in
the image, and then uses the target-detection network to classify and precisely locate the
targets in the candidate regions.

Object detection is one of the basic tasks of computer vision, which includes target
classification and target location. Some algorithms with excellent performance, such as
YOLOv5, Faster-RCNN [6], and CenterNet [7], have achieved excellent performance in
many detection tasks. Among them, YOLOv5 is a one-stage algorithm, which is widely
used due to its high-detection accuracy and fast-inference speed. But for small drones
with targets in high-resolution images, the detection effect is poor. In this paper, we
improved YOLOv5 to obtain SAG-YOLOv5s, a lightweight detection network with high-
detection accuracy and combined it with background difference for the high-resolution
drone detection under fixed cameras. In SAG-YOLOv5s, we introduced a lightweight Ghost
module [8] to reduce the total number of model parameters and improve the detection
speed. Then, to improve the network’s attention to the drone targets and suppress the
complex background, the SimAM [9] attention mechanism was integrated. In addition, the
DIoU loss [10] in YOLOv5s was replaced by the α-DIoU loss [11] to improve the bounding
box regression accuracy and make the drone target localization in high-resolution images
more accurate. As shown in Figure 1, the high-resolution drone detection is divided into
two steps. First, possible targets are extracted as candidate regions through background
difference. Then, all the candidate regions are fed into the lightweight detection network,
SAG-YOLOv5s, to perform efficient detection.
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2. High-Resolution Drone Detection
2.1. Extracting Potential Targets through Background Difference

Background difference is a commonly used video-target-detection algorithm, which
has important applications in intelligent monitoring and other fields [12]. As background
difference has advantages of high-segmentation accuracy and fast-operation speed, it can
be used to extract potential targets in high-resolution video images under fixed cameras.

Before the detection, we calculate the pixel level gray median of image sequences
as the background model, B(x, y), and then, the video images are subtracted from the
background model to obtain the difference image. As follows:

D(x, y) = |It(x, y)− B(x, y)| (1)
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where, D(x, y) represents the difference image, It(x, y) represents the current video im-
age sequences. Binary operations are performed on the difference images to obtain the
thresholded image, R(x, y), and its operation expression is shown in Formula (2).

R(x, y) =
{

1, D(x, y) > T
0, D(x, y) ≤ T

(2)

where, T represents a fixed pixel threshold used to distinguish the foreground and back-
ground. The higher the threshold, the higher the processing efficiency will be, but the
missed-detection rate will increase. The lower the threshold, the slower the processing
speed will be, and the false-detection rate will increase. According to the complexity of the
background and through experiments, we set a reasonable pixel threshold, T, to effectively
extract potential drone targets and improve the processing efficiency.

When the thresholded image is obtained, the morphological operations are carried.
Since the target is small and the image resolution is high, the closing operation with kernel
18 is carried out first and then perform an opening operation with a kernel of 3. The closing
operation is to dilate and then erode the thresholded image, and the opening operation
is to erode and then dilate the thresholded image. In this way, noise interference can be
removed, and some holes or gaps can be filled on the premise of retaining tiny targets to
obtain foreground targets. Figure 2 shows the original images and the results obtained by
background difference.
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Since small drones occupy very small pixels in high-resolution original images, and
drones at long distances are usually blurred, it is crucial to make full use of the context
information of the targets for drone detection. Therefore, the foreground target is enlarged
to a uniform size in the original image as a candidate region, and the size of the candidate
region is controlled within a reasonable range to perform efficient detection. Some examples
of candidate regions extracted by background difference are shown in Figure 3.
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2.2. SAG-Yolov5s, a Lightweight Detection Network

YOLOv5 is an efficient target detection algorithm developed by the Ultralytics
team [13]. Compared with most other one stage detectors, it has higher detection accuracy
and faster inference speed. This paper proposes an improved lightweight-object-detection
network, SAG-YOLOv5s, based on YOLOv5s, as shown in Figure 4. The algorithm in-
troduces the Ghost module and SimAM attention mechanism based on YOLOv5s, which
improves the detection speed while retaining the detection accuracy.
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2.2.1. The Ghost Module

The Ghost module is a lightweight structure. Since the feature maps output by
ordinary convolution layer usually contain a lot of redundancy, and some of them may be
similar to each other, the Ghost module splits the ordinary convolutions into two parts.
The first part is a certain number of ordinary convolutions and generates inherent feature
maps through convolution operations, and the second part generates more feature maps
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through a series of simple linear operations. These two feature maps are then stacked to
maintain the feature dimension of the output.

We use GhostConv to represent the Ghost module introduced into YOLOv5s, and
its structure is shown in Figure 5. It can be seen that in the convolution operation of
the first part, it is treated with batch normalization (BN) and the (Sigmoid Linear Unit)
SiLU activation function is introduced. The main function of the BN layer is to make the
input and output of the different network layers in the same distribution to speed up
the convergence of the model. SiLU is improved from the Sigmoid activation function
to prevent the gradient from disappearing during model training. In the second part,
depthwise separable convolution (DWConv) is used for simple linear operations, which
are BN processed and SiLU activation function introduced to accommodate the stacking
of the two-part feature maps. Compared with ordinary convolution, the Ghost module
greatly reduces the computational complexity and the total number of model parameters
without changing the size of the output feature maps.
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2.2.2. YOLOv5s

YOLOv5s is mainly composed of four parts: input, backbone network Darknet-53 [14],
neck network PANet [15], and output. CBS and CSP_n are the basic structures of YOLOv5s,
where CBS represents the basic convolution module, which has undergone a BN operation
and introduced a SiLU activation function to prevent the gradient from disappearing.
The CSP_n structure mainly includes two branches. The first branch is composed of n
Bottleneck modules in series, and the second branch is the CBS convolution block. Then,
the two branches are stacked. This structure increases the network depth and improves the
feature-extraction ability.

The input terminal mainly performs operations, such as data enhancement and adap-
tive anchor box. The backbone network is mainly composed of 2 CSP_1 and 2 CSP_3
structures for feature extraction. The neck network mainly contains four CSP_1 structures
and achieves feature fusion of different levels through multiple up-sampling and down-
sampling, realizing multi-scale output, and improving the detection ability of small targets.
Additionally, the output head finally achieves accurate detection of the target through
bounding box regression and NMS post-processing.

2.2.3. SimAM Attention Module

In many computer-vision tasks, attention modules, such as SE [16] and CBAM [17],
are commonly used to improve the model’s attention to the target so that the network can
learn more useful information. Different from the existing channel-attention mechanisms
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or spatial-attention mechanisms, SimAM does not simply connect the channel- and spatial-
attention mechanisms in series or parallel, but it is a 3D attention module that combines
two attention mechanisms to work together. Inspired by the attention mechanism of the
brain, this module designs an energy function to explore the importance of each neuron
and derives 3D attention weights for feature maps without additional parameters.

In neuroscience, the active neurons usually suppress the surrounding neurons, a
phenomenon known as spatial suppression. We should assign higher importance to
neurons with significant spatial inhibition. Therefore, the energy function of SimAM is
defined as:

et(wt, bt, y, xi) =
1

M− 1

M−1

∑
i=1

(−1− (wtxi + bt))
2 + (1− (wtt + bt))

2 + λw2
t (3)

where, t and xi are the target neuron and other neurons in the single channel of input
feature, X ∈ RC×H×W , i is the index of spatial dimension, M = H ×W is the number
of neurons in a single channel, (wtxi + bt) and (wtt + bt) are the linear transformations of
xi and t. The minimum energy formula can be obtained by calculating the closed-form
solution of wt and bt, and the mean and variance of all neurons in the channel.

e∗t =
4
(
σ̂2 + λ

)
(t− µ̂)2 + 2σ̂2 + 2λ

(4)

where µ̂ = 1
M ∑M

i=1 xi, σ̂2 = 1
M ∑M

i=1(xi − µ̂)2. According to the above formula, the lower the
energy value, the greater the difference between neuron t and other neurons, and the more
important the t neuron is. The SimAM module is finally optimized as:

~
X = sigmoid

(
1
E

)
� X (5)

where, E is the sum of e∗t in all channel and spatial dimensions. The Sigmoid function
is used to restrict values too large in E, and it does not affect the relative importance of
each neuron. In this paper, the SimAM attention mechanism is embedded in the YOLOv5s
network structure, which enables better focus of the drone targets in the feature extraction
process without introducing additional parameters.

2.2.4. SAG-YOLOv5s

This paper proposes a lightweight object detection network, SAG-YOLOv5s, that
integrates the Ghost module and the attention mechanism, which makes the following
improvements to YOLOv5s:

1. The CBS basic convolution block is replaced with Ghostconv. Ordinary convolution
brings numerous parameters, and the introduction of the Ghost module can greatly
reduce the total number of model parameters. According to the Ghost module, for
input X ∈ Rc×h×w to obtain the n = m × s dimension feature maps, the normal
convolution is used to generate the inherent feature maps of the m-dimension, and
then, the linear transformations of the inherent feature maps of the m-dimension are
performed to generate the m× (s− 1) dimension feature maps. Finally, the two parts
of the feature maps are stacked to obtain the results. Therefore, the number of common
convolution parameters is about s times that of the Ghost module. In this paper, it is
assumed that the number of output channels are c2, the dimensions of the inherent
feature graph are c2/2, and the BN term and bias term are simplified. Therefore, the
acceleration ratio is about 2, and the number of parameters of GhostConv is only
about half of CBS.

2. The SimAM attention mechanism is introduced, and SAGBottleneck is designed as
the basic structure of SAG-YOLOv5s. To better suppress the complex background
and focus on drone targets during feature extraction, the SimAM attention module
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and the Ghost module are integrated and embedded into the Bottleneck structure
of YOLOv5s. The SAGBottleneck structure is shown in Figure 6a. This structure is
similar to the residual structure, mainly including two 1 × 1 Ghostconv modules
and a skip connection. The first Ghostconv is used to reduce the number of input
channels, thereby reducing the feature dimension. The SimAM attention mechanism
is embedded in the second Ghostconv module to improve feature extraction and
increase the feature dimensions to keep consistent with the input and finally add the
input and output of the left and right parts through skip connections. In the second
Ghostconv, the SimAM attention module is fused before the BN operation to adapt
to the output, and the SiLU activation function is removed. This is because after the
SiLU activation function, the distribution of the input data of the current layer and
the next layer are different, which will reduce the model convergence speed during
training. In addition, the SAGBottleneck is integrated into the CSP_n structure to
obtain the SAGCSP_n structure, as shown in Figure 6b, which consists of 3 and 1 × 1
Ghostconv and n SAGBottlenecks.
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Due to the effective fusion of the Ghost module and the SimAM attention mechanism,
the feature extraction ability of the network is strengthened, and the amount of parameters
is greatly reduced so that SAG-YOLOv5s can improve the detection speed of high-resolution
drones while maintaining the detection accuracy.

2.3. α-DIoU Loss for Bounding Box Regression

Bounding box regression is a fundamental task in many advanced detectors. The
anchor-based detector obtains the predicted bounding boxes of the target by regressing
offsets between the ground-truth bounding boxes and their preset anchor boxes. Inter-
section over Union (IoU) loss [18] is a classic bounding box regression loss function that
calculates the localization loss between the resulting bounding boxes and the ground-truth
bounding boxes.

To improve the localization accuracy of drone targets and increase the robustness of
the proposed algorithm on small data sets, α-DIoU loss is used instead of DIoU loss in
YOLOv5s. DIoU loss is an improvement on the GIoU loss [19], and compared to the GIoU
loss, DIoU loss can directly minimize the distance between the two target bounding boxes,
and the convergence speed has been greatly improved. The DIoU loss expression is:

LDIoU = 1− IoU +
ρ2(b, bgt)

c2 (6)
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where, b and bgt represent the central points of the predicted bounding boxes and the real
box, respectively. ρ stands for Euclidean distance, and c represents the diagonal length of
the smallest enclosing rectangle that can cover both the prediction box and the ground-truth
bounding boxes.

α-DIoU loss is a unified power generalization of DIoU loss by power parameter, α,
which can be expressed as:

Lα-DIoU = 1− IoUα +
ρ2α(b, bgt)

c2α
(7)

The boundary box loss function contains a power IoU term and an additional power
regularization term. By adjusting the power parameter, α, the α-DIoU loss can help improve
bounding box regression accuracy by adaptively up-weighting the loss and gradient of
high IoU objects. The loss function can make the detector detect more true positive targets
and less false positive targets, thus improving the final detection accuracy. In this paper, by
adjusting the value of α, the accuracy of the boundary box regression is effectively improved
without increasing parameters; thus, the drone targets localization is more accurate, and
the target detection performance is improved.

3. Experiment and Result Analysis
3.1. Dataset

Deep neural networks usually require a large amount of real-world data for training.
Therefore, to verify the effectiveness of the algorithm in this paper, a high-resolution drone
detection dataset is produced based on the public dataset, Drone-vs-Bird [20,21].

We selected several 4K videos in this public dataset with a total of 9410 pictures
of 3840 × 2160 pixels and collected several high-resolution video segments containing
drones, birds, or other interfering targets on the spot under a fixed camera. We annotated
1876 images (6240 × 4120 pixels) from field-collected videos and mixed their 4K video
image sequences together to obtain a high-resolution drone dataset of 11,286 images. The
dataset has a total of 12,188 drone targets with an average of 1.08 targets per image. Figure 7
is the size distribution diagram of the objects in the dataset. There are many extremely
tiny objects (less than 30 × 30 pixels), and nearly half of the objects are distributed in size
between 30 × 30 pixels and 60 × 60 pixels. Most objects have a very small pixel ratio in the
original image. In the experiments of this paper, 90% of the data is used for training and
validation, and 10% of the data is used as the test set to evaluate the model.
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3.2. Experimental Results and Evaluation

The experiments in this paper are carried out on the Ubuntu18.04 system, the CPU is
Intel (R) Core i5-10400F @ 2.90 GHz, the GPU is Nvidia GeForce RTX 2070 SUPER, the GPU
acceleration software is CUDA10.2 and CuDNN7.6.5, and the deep-learning framework
used is Pytorch1.8.1. The main evaluation indexes selected in the experiment are accuracy
(P), recall (R), and average accuracy mean (mAP). The formula is as follows:

P =
TP

TP + FP
× 100% (8)

R =
TP

TP + FN
× 100% (9)

AP =
∫ 1

0
P(r)dr (10)

where, TP (true positives) represents the number of correctly predicted positive examples,
FP (false positives) represents the number of falsely predicted positive examples, and FN
(false negatives) represents the number of incorrectly predicted negative examples. AP is
the average precision, which is expressed as the integral of the precision rate to the recall
rate. When detecting a class, the size of mAP is its AP value.

In the training phase, the data set is preprocessed, and all the candidate regions
extracted from the background difference are used for the training of the algorithm in
this paper. In the inference stage, the high-resolution original image is directly used as
the input. First, the candidate region is extracted through the background difference, and
then, SAG-YOLOv5s classifies and precisely locates the target in the candidate region and
finally obtains the detection result through NMS. Since most drone targets are extremely
tiny relative to the original image, a lower value is used as the IoU threshold in the NMS
stage to filter out redundant overlapping boxes.

Figure 8 shows the PR curves comparison between the proposed algorithm and the
original YOLOv5s. It can be seen that compared with YOLOv5s, the PR curve obtained
by our method covers a larger area with the X and Y axes indicating that it has better
performance in the detection of high-resolution drones.
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To further verify the effectiveness of our method, ablation experiments are performed.
We mainly evaluate the detection performance and model complexity. The experimental
results are shown in Table 1, where BD represents the background difference, and FPS
represents the number of frames per second processed by the algorithm. Parameters and
floating-point operations (FLOPs) are used to measure the complexity of the neural network
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model. The smaller the value, the lower the model complexity. The following conclusions
can be drawn from Table 1:

1. From the data in the first and second rows, it can be seen that after using the back-
ground difference, the mAP value increased from 73.3% to 97.0%, an increase of 23.7%,
this is because the original YOLOv5s directly reduces the high-resolution image to
a fixed size and then performs feature extraction during detection, which is easy to
cause small targets to be lost, and it is difficult to extract effective features, resulting
in a poor detection effect.

2. It can be seen from the data in the third and second rows, as well as the data in the
fifth and fourth rows that after introducing the SimAM attention mechanism, mAP
is increased by 0.5% and 1.8%, respectively, indicating that SimAM can pay more
attention to drone targets in the process of feature extraction and show better results
on lightweight networks.

3. Comparing our SAG-YOLOv5s network and YOLOv5s network, the amount of
floating-point operations is reduced from 16.4 GFLOPS to 8.8 GFLOPS, which shows
that our network model has lower model complexity. After combining the back-
ground difference and SAG-YOLOv5s, the detection speed when the candidate areas
are 416 × 416 reaches 13.2 FPS, which is 4.2 FPS higher than before the introduction
of the Ghost module;

4. Comparing the data in the sixth row and the fifth row, it can be seen that reducing
the size of the candidate region from 416 × 416 to 96 × 96 can improve the detection
speed, but it will lead to a slight decrease in mAP. This is mainly because of the 96 × 96
input image, which reduces the detection accuracy of larger size drones. In specific
applications, actual adjustments can be made according to the distance between the
fixed camera and the monitored drone.

Table 1. Ablation experiments.

Method mAP@0.5 (%) Parameters (106) FLOPs (109) FPS Input Size (pixels)

YOLOv5s 73.3 7.06 16.4 21.0 416 × 416
BD + YOLOv5s 97.0 7.06 16.4 9.2 416 × 416

BD + YOLOv5s + SimAM 97.5 7.06 16.4 9.0 416 × 416
BD + Ghost + YOLOv5s 95.8 3.90 8.8 13.4 416 × 416

BD + SAG-YOLOv5s 97.6 3.90 8.8 13.2 416 × 416
BD + SAG-YOLOv5s 97.2 3.90 8.8 15.0 96 × 96

In addition, our method is compared with some other drone detection methods. Table 2
shows the experimental results of CenterNet, YOLT [22], and ours. All results are obtained
on the same test set, and the bold font in the table indicates the best results. Among them,
YOLT is a commonly used high-resolution image detection method, which uses three steps
of cutting, detection, and merging to detect small targets in high-resolution images. YOLT-
YOLOv5s means replacing the detector in YOLT with advanced YOLOv5s. According
to the results in Table 2, CenterNet has a poor detection effect on high-resolution drones
because the small targets are lost after the original images are reduced and after multiple
down sampling. Although YOLT and YOLT-YOLOv5s have high-detection accuracy for
high-resolution drones, the detection speed is slow due to the large number of sub-images
after cutting the high-resolution images, which takes up a lot of memory, while our method
achieves 97.6% mAP on the test set and is faster. It shows a good-detection ability for
high-resolution drones and achieves a good balance between detection accuracy and
detection speed.
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Table 2. Experimental results of various algorithms on the test set.

Method Precision (%) Recall (%) mAP@0.5 (%) FPS

CenterNet 87.2 69.5 69.8 10.5
YOLT 92.9 88.0 91.1 4.6

YOLT-YOLOV5s 95.3 92.8 95.2 6.0
Ours 97.3 95.5 97.6 13.2

3.3. Results Visualization

Finally, to verify the effectiveness of introducing the SimAM attention module, the
visualization heatmaps of the YOLOv5s, Ghost-YOLOv5s, and SAG-YOLOv5s networks
after feature extraction of the targets in the candidate areas are generated according to the
Grad-CAM [23] method, as shown in Figure 9.
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Compared with the original algorithm YOLOv5s, after combining the Ghost module,
there is a small amount of noise interference on the heatmaps of the Ghost-YOLOv5s. Dur-
ing the feature extraction process, it is easily interfered by similar objects in the surrounding
environment, and the attention to the targets is not enough, resulting in a decrease in the de-
tection effect. After the SimAM attention mechanism is effectively integrated with the Ghost
module, the color of the target areas on the SAG-YOLOv5s heatmaps become significantly
darker, which effectively strengthens the target feature extraction, suppresses the complex
background area, and makes the network more focused on the drone targets. According to
the visual analysis, it can be concluded that the SAG-YOLOv5s proposed in this paper can
well reduce the interference information and improve the target detection accuracy.

Figure 10 shows the drone detection results of the proposed method in high-resolution
images. It can be seen that under the fixed camera, our method can well detect tiny drones
and filter out interference targets, such as birds, which has practical application value.
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4. Conclusions

In this paper, we proposed an efficient method for detecting small drones in high-
resolution images. Aiming at the problem of high-image resolution and small target,
a two-stage method is proposed to detect drone targets under a fixed camera. In the
first stage, potential drone targets are extracted by background difference, and numerous
background areas are excluded, which greatly improves the detection efficiency of high-
resolution images. In the second stage, the lightweight detection network SAG-YOLOv5s,
which integrates the Ghost module and the SimAM attention mechanism, is used to
efficiently and accurately detect targets in candidate areas. Finally, using α-DIoU loss
improves the object bounding box regression accuracy. We made a high-resolution drone
dataset for experiments based on the existing dataset. The experimental results show that
compared with the original YOLOv5s and some other drone detection algorithms, our
method has obvious advantages in high-resolution drone detection under fixed cameras,
which improves the detection speed while maintaining the detection accuracy.
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