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Abstract: Noise in mode-locked lasers has been a central issue for dual-comb metrological ap-
plications. In this work, we investigate the laser intensity noise on dual-comb absolute ranging
precision. Two different dual-comb schemes based on linear optical sampling (LOS) and nonlinear
asynchronous optical sampling (ASOPS) have been constructed. In the LOS scheme, the ranging
precision deteriorates with the increase in laser relative intensity noise (RIN). This effect can be
corrected by implementing a balanced photo-detection (BPD). In the ASOPS scheme, the experiment
shows that the conversion from laser RIN to dual-comb ranging precision is negligible, making a
balanced detection unnecessary for ranging precision improvement. The different manners of RIN’s
impact on absolute ranging precision are attributed to the distinct cross-correlation signal patterns
and the underlying time-of-flight (TOF) extraction algorithms.

Keywords: dual-comb absolute ranging; laser intensity noise; linear optical sampling; asynchronous
optical sampling

1. Introduction

Mode-locked lasers generate equidistant discrete optical pulse trains with ultrashort
pulse duration and are taken as one of the most suitable generators for optical frequency
combs (OFCs) [1]. OFCs based on passively mode-locked lasers [2] have become an enabling
tool for a diversity of applications, such as laser spectroscopy, optical frequency atomic
clock, and microwave photonics, to name a few [3–5]. All of these applications benefit from
the unique time-frequency properties of optical frequency combs, which characterize a
femtosecond pulse train with ultralow timing jitter [6,7] in the time domain, and a ruler
formed by a series of coherent spectral lines in the frequency domain. Recently, mode-
locked femtosecond lasers and various OFC sources have also been applied for distance
measurement applications [8–14] due to the unique features above. In the time domain,
the retro-reflective and the local pulse trains cross-correlate and generate an ultrashort
timing gate for direct time-of-flight (TOF) measurement [8,9]. In the frequency domain,
uniformly spaced phase-coherent comb lines allow a multi-wavelength interferometric
measurement principle [10,11]. OFCs and mode-lock lasers have achieved absolute ranging
with nanometer-precision [12,14], which outperforms conventional laser ranging techniques
based on continuous wave (CW) lasers and Q-switched lasers.

The absolute ranging capability based on OFCs can be further improved by adopting
a dual-comb configuration [14–33]. The principle is similar to the linear optical sampling
(LOS) used in optical telecommunication systems [34,35]. The slight repetition rate gap
that exists between OFCs provides an optical vernier caliper, ensuring high measurement
precision and extendable non-ambiguity range (NAR). The pulse train spacing of an OFC
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and the difference in repetition rate between combs determine the NAR and update rate,
respectively. In 2009, I. Coddington et al. demonstrated a measurement precision of 5 nm
within a NAR of 1.5 m by taking advantage of tightly phase-locked dual-comb interfer-
ometry. This research aims at future multi-satellite accurate and tight formation flight
applications [15]. To facilitate industrial applications, a simplified dual-comb configura-
tion has also been developed for TOF ranging only. The pulse timing is determined by
the gravity center of the interferometric beat note, and sub-micrometer ranging precision
can be obtained without a tight carrier-envelope phase locking. The methods for pulse
envelope acquisition vary according to different optical sampling principles [36]. For linear
optical sampling (LOS), the extraction of the envelope from interferometric beat notes is
achieved by applying the Hilbert transform algorithm, the harmful carrier underneath
the envelope is effectively removed, and the final TOF extraction can be performed by
subsequent Gaussian fitting [16]. For nonlinear asynchronous optical sampling (ASOPS),
the intensity cross-correlation trace is not subject to an interferometric pattern in nature,
and gaussian fitting can be directly performed on the cross-correlation traces [17].

To further improve the dual-comb absolute distance measurement performance, the
impact of different laser parameters has been investigated [18]. High precision absolute
ranging frequently benefits from higher repetition rate femtosecond laser sources [19,20].
The repetition rate gap [21–23] between the two mode-locked lasers has an impact on
the fringe density of interferometric beat notes, thus affecting the ranging precision in-
directly [24]. The center wavelength of the overlapping part of the spectra of the two
optical frequency combs indirectly affects the ranging precision in a similar manner [25].
Quantum-limited pulse timing jitter [26] has also been shown to deteriorate ranging pre-
cision, particularly in the center of each NAR. A phase distortion correction algorithm
can effectively improve ranging accuracy in LOS-based ranging systems [37], while an
appropriate increase in measurement speed can reduce the cumulative ranging error caused
by time jitter in nonlinear ASOPS-based ranging systems [38]. Despite the above progress,
the impact of laser intensity noise on ranging precision based on the LOS and ASOPS
schemes has not been explored.

In this paper, we investigate the impact of laser intensity noise on dual-comb TOF
distance measurement precision for both linear optical sampling (LOS) and nonlinear asyn-
chronous optical sampling (ASOPS). In the LOS scheme, a pair of phase-locked nonlinear
amplifier loop mirror (NALM) mode-locked fiber lasers are used. The interferometric
beat notes between the target/reference reflected pulses and the LO are digitalized and
the following Hilbert transforming algorithm is used to extract TOF. Triple outputs of the
signal laser with different intensity noise [39,40] have been used to study the impact of
RIN level on measurement precision. The integrated RIN of output ports 1, 2 and 3 are
0.020%, 0.023% and 0.026%, respectively. Separate distance measurements for a target with
100 mm distance at an update rate of ~2.5 kHz have been conducted by using these output
ports. When a single avalanche photodetector is used, the ranging precision evaluated
by Allan deviation is 26.1 µm, 31.6 µm and 36.2 µm, respectively, corresponding to the
above three output ports. When a balanced photodetector is used, the ranging precision
reaches ~10 µm, regardless of laser relative intensity noise (RIN). The measurement shows
that balanced photo-detection (BPD) can be used to erase the impact of laser RIN and
effectively improve dual-comb ranging precision. An independent dual-comb absolute
ranging experiment based on nonlinear ASOPS is conducted afterward. In this experiment,
sum-frequency generation between the target/reference reflected pulses and the LO results
in non-interferometric optical cross-correlation (OC) signals, which are digitalized and the
TOF can be directly extracted after Gaussian-envelope fitting and peak extraction. Nonlin-
ear ASOPS based on optical cross-correlation show similar ranging precision with balanced
optical cross-correlation (BOC), where the target/reference pulse timing is extracted from
the zero-crossings of the BOC signals [33]. The experiment indicates that the ranging
precision is not sensitive to laser RIN.
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2. Dual-Comb Ranging Using Linear Optical Sampling
2.1. Design of Femtosecond Lasers

In order to study the impact of laser intensity noise on the absolute ranging based
on LOS, we built an all-polarization-maintaining (all-PM) erbium-doped fiber laser mode-
locked by a nonlinear amplifier loop mirror with triple outputs and a similarly structured
LO laser. The schematics of the triple-output signal laser and LO laser are shown in Figure 1.
The fiber loops and linear arms of two mode-locked lasers are connected by optical fiber
couplers with a splitting ratio of 70/30. The end of the coupler with 70% output is used
as the reflection arm, and the other end is used for output. Pump laser output from a
980 nm single-mode laser diode is coupled into a fiber loop by a 980/1550 wavelength
division multiplexer (WDM). Asymmetrically placed 35 cm erbium-doped gain fiber and a
non-reciprocal phase shifter ensure the self-starting performance of lasers [41]. To diversify
the output parameters of the signal laser, a 90/10 splitting ratio optical coupler is added
to the loop, which will provide two more outputs with different running directions. We
numbered the three ports and marked them in Figure 1. The mode-locking of the signal laser
is self-starting at the pump power of 650 mW and achieved stable single-pulse operation
at ~100–150 mW pump power. The average output power of ports 1, 2 and 3 are 244 µW,
1.5 mW, and 2.5 mW @ 120 mW pump. Here, in order to avoid a CW peak on the optical
spectrum, the highest pump power that can obtain a single-pulse operation is not chosen,
because in some cases, the CW component in the spectrum may cause a slight increase in
the intensity noise [42].
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Figure 1. Schematic of the mode-locked lasers based on nonlinear amplifier loop mirror. COL,
collimator; EDF, Er-doped gain fiber; ISO, isolator; LD, pump laser diode; M, reflective mirror; OC,
optical fiber coupler; OFM, optical fiber mirror; PS, phase shifter; PZT, piezoelectric transducer;
WDM, wavelength division multiplexer.

A high-reflective mirror mounted on a piezoelectric transducer (PZT) is used instead
of the optical fiber mirror as the reflection arm of the LO laser to achieve phase locking. To
obtain environmentally stable output characteristics, the SL adopts an all-PM fiber config-
uration, and no active control of the cavity length is applied. The differential repetition
rate between the two lasers is stabilized by an external radio frequency (RF) signal source
and the phase-locking scheme is shown in Figure 2. The repetition rates of the two lasers
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are photo-detected and the 9th harmonics are filtered out by bandpass filters [43]. Then,
the two repetition rate harmonics are amplified and the differential frequency multiplied
by 9 times is obtained at the output of an RF mixer. This signal is further mixed with a
22.20 kHz signal produced by an RF signal generator referenced to an Rb clock. The error
signal is regulated by a loop filter, amplified, and applied to the PZT, thus closing the loop.
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Figure 2. Experimental setup of absolute ranging using linear optical sampling. BPF, radio frequency
bandpass filter; FC/APC, ferrule contactor/angled physical contact; HVA, high voltage amplifier;
LNA, radio frequency low noise amplifier; LPF, radio frequency low-pass filter; OBPF, optical fiber
bandpass filter; PI, proportional-integral controller; VOA, variable optical attenuator.

2.2. Design of Distance Measurement Setup

Figure 2 illustrates the experimental setup of dual-comb absolute measurement using
a triple-output all-PM signal laser. The ranging setup is based on a standard Michelson
interferometer structure with a reference arm and a target arm. The cooperative target to be
tested is fixed at a distance of ~100 mm, and the end face of the optical fiber jumper with a
coating of 90% transmittance acts as the reference. The transmitted pulse train is collimated
by a fiber collimator (Thorlabs, F220FC-1550, Newton, NJ, USA), and retroreflected laser
pulses are received by the same collimator. A variable optical fiber attenuator (VOA) is
used to control the output power to avoid photodetector saturation. The input power into
the three ports is adjusted to a similar level to ensure a comparable RIN measurement.
Figure 3 is the normalized optical spectrum of each output of the signal laser with 0.02 nm
resolution. A pair of ~4 nm optical fiber bandpass filters are added to avoid aliasing the
signal, and the passband is marked by a grey block. The linear optical sampling process
occurred in a 2 × 2 optical coupler with a splitting ratio of 50/50. The photodetection
module either includes a single avalanche photodetector (Thorlabs, APD430C/M) or a pair
of balanced photodetectors (Thorlabs, PDB425C). During the entire ranging process, the
mode-locked lasers are placed inside a vibration isolation box. The ranging signals are
collected and processed by a commercial digitizer (National instrument, PXIe-5122, Austin,
TX, USA) after low-pass filtering.
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2.3. Intensity Noise of Signal Laser Output

The relative intensity noise of each port of the triple-output signal laser is characterized
using the measurement setup shown in Figure 4a. The power-attenuated pulse train
from different ports is photo-detected in an amplified detector (Thorlabs, PDA05CF2)
and the power spectra are characterized by an FFT analyzer (SRS, SR770) at an acoustic
frequency (10 Hz, 100 kHz) and an RF spectrum analyzer (RIGOL, DSA815) above 100 kHz.
Figure 4b represented the measured RIN power spectral density (PSD). The corresponding
relationship between the port number and the colorized curve is shown in the legend.
Compared with ports 1 and 2, port 3 shows a significantly higher noise level (10 dB
higher than the other ports from 100 Hz to 10 kHz), which contains amplified spontaneous
emission (ASE) noise directly extracted from both directions in the nonlinearly amplified
fiber loop. Port 2 (output of clockwise-running pulses) shows a higher RIN level than port
1 (output of counterclockwise-running pulses), while the difference is within 5 dB. The
laser pulses from port 2 show a higher noise level because the clockwise-running pluses
acquire more gain, thus higher ASE noise. The integrated value of the RIN of output ports
1, 2 and 3 str 0.020%, 0.023% and 0.026%. RIN measurement is limited by the noise floor
when the frequency band is above 100 kHz. The RIN level of the laser is dominated by the
pump diode technical noise and ASE noise [44,45].

2.4. Comparison of Distance Measurement Results

A set of distance values measured within ~0.5 s from port 3 is shown in Figure 5a,
and the Allan deviation without time averaging is calculated to characterize the absolute
ranging precision shown in Figure 5b. The black and red traces represent the results using
the avalanche photodetector and the balanced photodetector, respectively.

When the avalanche photodetector is used for detection, with the increase in laser
output intensity noise, the ranging standard deviation of measurement using different
outputs increases with the RIN of the output. Using ports 1, 2 and 3 for absolute ranging, the
precision is 26.08393 µm, 31.60821 µm and 36.21884 µm, respectively, within the acquisition
time of ~0.5 s. The balanced photodetector can be used to eliminate the impact of RIN
on ranging precision. In the same acquisition time, the ranging precision using each
port is 10.13781 µm, 9.10924 µm and 11.14095 µm, much smaller compared with a single
photodetector. Note that, in our past work [46], we demonstrated that the three ports of
this NALM mode-locked signal fiber laser have substantially the same timing jitter level.
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Therefore, the difference in the ranging results is independent of the quantum-limited
timing jitter of the signal laser.
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3. Dual-Comb Ranging Using Nonlinear Asynchronous Optical Sampling

The optical power level of the triple-output SL laser used in the above experiments
cannot directly meet the requirements of the ASOPS principle. It is also better not to add
an external EDFA, which may introduce more intensity noise. Therefore, we studied the
impact of laser RIN on the dual-comb ranging precision based on nonlinear ASOPS in an
independent experiment.

3.1. Design of Dual-Comb Ranging Setup

The experimental setup is illustrated in Figure 6. A pair of homemade, almost identical
nonlinear polarization evolution (NPE) mode-locked fiber lasers are used. The lasers



Sensors 2022, 22, 5770 7 of 12

operate in a stretched pulse regime [47] with close to zero cavity dispersion. The repetition
rates of the probe laser and local laser are 99.991 MHz and 99.993 MHz, with a difference
of roughly 2 kHz. The output optical spectra and autocorrelation traces from the two
lasers are summarized in Figure 7. The LO is designed to direct output pulses close to
the pulse duration transition limit [48,49]. The residual chirp is compensated by an added
SF14 prism pair out of the cavity. The de-chirped pulse duration is 70 fs. The LO laser
output average power is 45 mW @ 480 mW pump. To meet the Nyquist condition for
sampling, we inserted an 8 nm bandpass filter centered at 1550 nm into the probe laser. The
pulse dynamics of the probe laser are correspondingly switched from stretched-pulse to
self-similar formation [50]. The probe laser output pulse duration is 760 fs and the output
average power is 40 mW @ 580 mW pump. Note that inserting a bandpass filter outside
the laser cavity is intentionally avoided here, to avoid the introduction of significant laser
power attenuation, thereby limiting the signal-to-noise ratio (SNR) in ranging detection.
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Figure 6. Experimental setup of absolute distance measurement using nonlinear ASOPS. BPF, optical
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M, mirror; PBS, polarization beam splitter; PD, photodetector; QWP, quarter-wave plate; WDM,
wavelength division multiplexer.
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3.2. Measurement Result Based on OC or BOC

The measurement principle based on nonlinear ASOPS is shown in Figure 8a. A
probe laser emits a femtosecond pulse train with a repetition rate of fr. The retro-reflected
laser pulses are combined and subsequently sampled by a local pulse train with a slightly
different repetition rate of fr + ∆ fr and orthogonal polarization. The principle of obtaining
the ranging signal using an optical cross-correlator with a single photodetector is shown in
Figure 8c. Intensity cross-correlation is also functioned by sum frequency generation (SFG)
in a piece of type 2 phase-matched periodically poled KTiOPO4 (PPKTP). Note that there
is no fringe structure in the obtained cross-correlation signal, therefore, we do not need a
phase-locked repetition rate difference, which is necessary to stabilize the optical fringe
pattern. In fact, free-running mode-locked lasers are routinely used in a nonlinear ASOPS
scheme [28]. Therefore, the two NPE mode-locked fiber lasers used in this experiment are
also free running. The two lasers share the same breadboard, which helps to counteract
relative repetition rate drift caused by mechanical vibration.
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The reference mirror and the objective mirror are also fixed at a short distance. The
combined beam is directed into the OC, where the reference and target pulses are all
optically sampled by the much shorter LO pulses. The OC signal is received by an avalanche
photodetector. The output voltage signal from the photodetector is digitized and stored by
a digitizer (National Instrument, Austin, TX, USA, PXIe-5122). The timing of the reference
and target retro-reflected pulses is determined by the peak of the OC signal.

The Allan deviation of the distance measurement with different averaging times at
a fixed target mirror position ~0.7 m away is shown by the red trace in Figure 9. The
target distance is obtained in real-time. The measurement precision is 7.436 µm at 0.5 ms
averaging time, corresponding to the 2 kHz update rate. The precision reaches 554 nm at
50 ms averaging time and 232 nm at 0.2 s averaging time.
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The BOC configuration is shown in Figure 8d. Essentially, it introduces two identical
intensity cross-correlation paths with a stable time delay. The nonlinear crystal has a
dichroic coating on the remote side, which transmits the sum frequency while reflecting
the fundamental frequency. As a result, two identical SFG processes in a single crystal are
realized. The measured BOC signal is also shown in Figure 8b. Instead of acquiring the
signal peak, the zero-crossing of the BOC signal is used to determine the pulse TOF. The
approach is similar to that of the OC scheme. Except for the replacement of the optical
cross-correlator, other elements, such as the laser source and the fixed target to be measured,
are the same.

The measurement result is shown by the blue trace in Figure 9. Comparably, the
measurement precision is 7.447 µm at 0.5 ms averaging time, only ~11 nm difference from
the result of OC. Note that this precision is at a similar level to the LOS-based ranging
performance using balanced photodetection, as shown in Figure 5b. This means that both
the standard ASOPS and LOS approach can achieve comparable ranging precision in dual-
comb ranging applications. The precision in Figure 9 reaches 525 nm at 50 ms averaging
time, ~29 nm lower than the OC result, and 187 nm at 0.2 s averaging time. The Allan
deviation satisfies the square root of the mean time, which implies that white noise is the
dominating noise source. This scatter is mainly dominated by the limited signal-to-noise
ratio in the detection of the BOC signal and the error of zero-crossing extraction. When the
average time is within 2 ms, the traces almost overlap, which indicates that the BOC does
not outperform the OC in terms of measurement precision. Only above 50 ms averaging
time, the BOC method shows better precision, while the improvement hardly exceeds
100 nm.

4. Discussion and Conclusions

In conclusion, this paper studies the impact of laser intensity noise on the dual-comb
absolute ranging precision. For LOS, a triple-output mode-locked laser with different
RIN levels acts as the signal laser. It is phase-locked with an LO such that the differential
repetition rate is fixed. In a dual-comb ranging experiment, ranging precision deteriorates
with increasing output laser RIN level, and the obtained ranging precision is 26.1 µm,
31.6 µm and 36.2 µm in the presence of RIN levels of 0.020%, 0.023%, 0.026%, respectively.
By using balanced detection, the ranging precision in each port reaches 10.1 µm, 9.1 µm
and 11.1 µm, respectively, improved significantly compared with a single photodetector.
While, for ASOPS, there is no significant difference in measurement precision based on
OC and BOC (7 µm Allan deviation without time averaging) even when free-running
dual-comb sources are used. The difference between LOS and ASOPS lies in the TOF
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extraction algorithm. For LOS, laser intensity noise may distort interferometric beat notes
and even fail the Hilbert transform algorithm, which is necessary to separate the envelope
and the interferometric fringes. Therefore, balanced detection is beneficial to measurement
precision improvement. While, for ASOPS, the nonlinear optical cross-correlation process
technically avoids the optical fringes and makes the following TOF acquisition (either by
center-of-gravity or zero-crossing determination) straightforward. The slight distortion of
the signal caused by laser RIN hardly affects the single measurement precision and the BOC
method is not necessary. This study provides a new avenue towards precision optimization
in various dual-comb absolute ranging systems.
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