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Abstract: In view of the existence of remote sensing images with large variations in spatial resolution,
small and dense objects, and the inability to determine the direction of motion, all these components
make object detection from remote sensing images very challenging. In this paper, we propose a
single-stage detection network based on YOLOv5. This method introduces the MS Transformer
module at the end of the feature extraction network of the original network to enhance the feature
extraction capability of the network model and integrates the Convolutional Block Attention Model
(CBAM) to find the attention area in dense scenes. In addition, the YOLOv5 target detection network
is improved by incorporating a rotation angle approach from the a priori frame design and the
bounding box regression formulation to make it suitable for rotating frame-based detection scenarios.
Finally, the weighted combination of the two difficult sample mining methods is used to improve the
focal loss function, so as to improve the detection accuracy. The average accuracy of the test results of
the improved algorithm on the DOTA data set is 77.01%, which is higher than the previous detection
algorithm. Compared with the average detection accuracy of YOLOv5, the average detection accuracy
is improved by 8.83%. The experimental results show that the algorithm has higher detection accuracy
than other algorithms in remote sensing scenes.

Keywords: deep learning; remote sensing image; rotating frame; attention mechanism; YOLOv5

1. Introduction

With the rapid development of space remote sensing technology, high-quality remote
sensing images have increased, and target detection has made great progress in remote sens-
ing images. Remote sensing image target detection is used to find the specific location of the
target of interest in the remote sensing image, and identify its target category, usually with
special attention to aircraft, airports, cars, bridges and other targets. This technology plays
an important role in the civil and military fields, such as port and airport flow monitoring,
traffic diversion, looking for lost ships and so on, providing new solutions for national de-
fense, maritime, natural resource management and other fields, further improving resource
utilization, and strengthening national defense early warning capabilities.

Common deep learning target detection algorithms are divided into two categories:
single-stage detection algorithms and two-stage detection algorithms. The single-stage
detection algorithm adopts the idea of target regression and only needs to perform feature
extraction once to detect the target, such as YOLO [1–4], and SSD [5]. The single-stage
detection algorithm is fast and has low accuracy. The detection performance is poor, and
it can easily miss detection. The two-stage detection algorithm first generates candidate
regions through special modules, classifies the candidate regions, and finally determines
the detection results by the Non-Maximum Suppression method [6], such as R-CNN [7],
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Fast R-CNN [8], and Faster R-CNN [9]. The two-stage detection algorithm is slow but has
high accuracy.

Object detection algorithms based on remote sensing images have been a research
hotspot in recent years. Wang et al. [10] proposed an end-to-end multi-scale visual attention
network (MS-VANs) method in 2019, by using a hopping encoder model to extract multi-
scale features from full-scale images, learning visual attention network and classification
and regression branches on each single-scale feature map, and finally using a hybrid
loss function to train the model to solve the complex background problem in remote
sensing images; Zhang et al. [11] proposed a Hierarchical robust CNN. The spatial semantic
information is represented by the extracted multi-scale convolution features, and the fully
connected layer features are superimposed to further cope with the scale change problem
and improve the robustness problem caused by image scaling and rotation, but the detection
speed is not good; Li et al. [12] proposed a remote sensing target detection algorithm
framework, including a local context feature fusion network and a region proposal network
(RPN). The dual-channel feature network combines the path learning local and context
attributes in the processing layer. On the basis of scale, multi-angle anchors are added to
adapt to multi-view problems; Pang et al. [13] proposed the Tiny-Net lightweight residual
structure, extracting features from the input process and each patch uses a classifier to
verify the existence. The network adds classifiers and detectors to each other in an end-
to-end fashion, which can further speed up the processing. Cheng et al. [14] combined
the SSD algorithm to improve the RPN network and introduced a feature fusion layer to
improve the detection performance of small objects. Liu et al. [15] proposed using the
anchor-free algorithm CenterNet, with the flexibility of a detector to detect remote sensing
images, which further proved that the CenterNet algorithm had better performance in
detection accuracy and speed than the anchored YOLOv3 algorithm but also had some
small and dense targets missed and wrongly detected. Qu et al. [16] proposed introducing
a convolutional block attention module and adaptive feature fusion method in the YOLOv3
network model to improve the detection speed and accuracy of remote sensing image
targets. Adam et al. [17] proposed the YOLT algorithm by adjusting the output layer of the
feature map, cropping the image, and using the convolutional neural network to detect
objects of different scales, which is suitable for object detection of remote sensing images
with large resolution. However, the detection of remote sensing image targets is still very
challenging because it has a series of questions such as complex backgrounds, large changes
in spatial resolution, small and many objects to be detected, irregular arrangement, and is
easily disturbed by external factors such as weather and so on.

The contributions of our study are as follows: A dense target detection method based
on YOLOv5 is proposed. In order to better match image features, the new boundary discon-
tinuous free rotation detector is used to solve the angle periodicity problem by transforming
the angle regression problem into a classification problem, and evaluating the angle error
after classification by using the long-side representation method. At the same time, the
feature network of the original network is improved. A Swin Transformer [18] module is
used to replace the original terminal full convolution operation, so as to strengthen the
feature extraction ability of the network model. At the same time, in order to find the
attention region in the specific large coverage image, we use the convolution block attention
module. In addition, the detection performance is improved by balancing the focusing loss
and combining the LRM [19] method, and the remote sensing image detection method is
further optimized.

2. Methodology
2.1. Background of YOLOv5

YOLOv5 is a single-stage target detection algorithm. According to the size of the
model, YOLOv5 has four versions, namely, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x.
The weight, width and depth of the four versions increase successively. The network model
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is mainly divided into four parts: input end, backbone end, neck end and output end. Its
network structure is shown in Figure 1.
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Figure 1. YOLOv5s network structure. It is mainly composed of three parts: backbone network, neck
network, and prediction network.

The input of YOLOv5 consists of three parts: mosaic data enhancement, adaptive
anchor box calculation and adaptive image scaling. Among them, Mosaic data enhancement
includes three methods: random scaling, random cropping, and random arrangement.
Since the trigger probability of Mosaic can be random, the image splicing position and
picture can be randomly selected, and other enhancement operations can be used to increase
the number of images of a training. In addition, it can effectively prevent over-fitting and
further enhance the robustness of the model. The splicing feature of Mosaic can greatly
improve the uneven distribution of targets in the DOTA data set, and due to the randomness
of its splicing, as the training time increases, the improvement effect will be more obvious.
The Mosaic data enhancement method uses 4 pictures, which are spliced according to
random scaling, random cropping and random arrangement. This enhancement method
can combine several pictures into one, which can not only enrich the data set, but also
greatly improve the training speed of the network, and reduce the memory requirements
of the model. In the YOLO series of algorithms, for different data sets, it is necessary to
set anchor boxes of specific length and width. In the network training phase, the model
outputs the corresponding prediction frame based on the initial anchor frame, calculates
the gap between it and the GT frame, and performs a reverse update operation to update
the parameters of the entire network. YOLOv5 will run a separate program to get the initial
anchor box function and embed it into the code. At each training time, the optimal anchor
box is adaptively calculated according to the name of the data set. Adaptive image scaling
is to scale the image to a uniform size. A method proposed by YOLOv5 can adaptively add
the least black borders to the zoomed image, which further improves the inference speed
of the YOLOv5 algorithm.

The backbone network of YOLOv5 is mainly composed of the Focus module, im-
proved CSP structure, SPP and other modules. The Focus structure mainly cuts the in-
put image through the Slice operation. For example, the original input image size is
608 × 608 × 3. After Slice and Concat operations, a 304 × 304 × 12 feature map is output;
then a 304× 304× 32 feature map is output through a Convolutional layer with 32 channels.
By reducing the number of operating parameters of Focus, the network speed is further
improved. The structure of the Focus module is shown in Figure 2. The CSP structure
consists of several bottleneck modules. The bottleneck is a classic residual structure. After
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the input passes through two convolutional layers, the Add operation is performed with
the original value to complete the residual feature transfer without increasing the output
depth. The improved CSP module sets up two CSP structures in the backbone network and
uses the CSP1-X residual structure for feature extraction to further optimize the gradient
information and reduce the amount of calculation. The SPP module adopting the spatial
pyramid idea further expands the receptive field to enrich the feature map expression
ability, and finally converts the input of different sizes to the output of the same size, which
solves the problem of inconsistent input images.
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Figure 2. Focus network structure. The structure is mainly to slice the feature into four parts, and
then perform the Concat in the channel dimension.

The Neck network still uses the FPN [20] +PAN [21] structure, which further improves
the feature fusion ability of the network. FPN adopts a downsampling operation. PAN
adopts an upper operation. YOLOv5 draws on the CSP2 structure designed by CSPNet.
It combines the conventional FPN layer with the bottom-up feature pyramid and fuses
the extracted semantic features and position features. At the same time, the feature fu-
sion of the backbone layer and the detection layer enables the model to obtain richer
feature information.

In YOLOv5, CIOU_Loss is used as the loss function of the Bounding box. Head outputs
a vector with the class probability of the target object, the object score, and the location
of the bounding box for that object. The detection network consists of three detection
layers, and feature maps of different sizes are used to detect target objects of different sizes.
Each detection layer outputs the corresponding vector, and finally generates the predicted
bounding box and category of the object in the original image and labels it.

2.2. Improved Network Structure

This paper is optimized based on the YOLOv5s network, and the improved structure is
shown in Figure 3. The overall network structure consists of three parts: backbone network,
feature fusion network and output layer. Among them, the backbone network aggregates
different images with fine granularity and forms a convolutional neural network of image
features. By introducing the MS Transformer block at the end of the backbone network,
the c3mstr module is used to replace the original full convolution operation to enhance
the model’s performance of the global awareness with lower overhead. The attention
mechanism is integrated into the feature fusion network, and the spatial attention and
channel attention modules are given the same priority to enhance the expression effect of
the image in a weighted manner. Finally, the output layer will replace the original loss
function based on the focal loss function to solve the problem of computational loss caused
by sample imbalance.
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3. Proposed Method

In remote sensing scenes, due to the perspective problem, the objects in the image are
usually small in scale and clustered, unlike the large and salient objects in natural images,
which makes it impossible to extract detailed information about the objects by using the
feature extraction network in natural scenes. If the network level is deepened, the limited
details of the small target itself will be lost. This module draws on the idea of a Swin
Transformer and proposes an MS Transformer backbone network. By adopting a window-
based multi-attention mechanism, these operations can further reduce the computational
power in the case of low-resolution feature maps, so that the feature extraction module can
better capture global information and rich contextual information.

The MS Transformer network architecture is shown in Figure 4 below. The downsam-
pling operation for feature extraction of the input image includes four processing stages.
First, the input RGB image is divided into a small non-overlapping feature map block Parti-
tion module, and the features are extracted from them according to the sequence elements
to model the semantic information globally. After the Linear Embedding operation, the
block diagram is mapped to a 96-dimensional space, and the semantic feature information
is obtained by successively using two consecutive layers of a Swin Transformer Block. At
the end of each stage, the dimension of the input is reduced through the process of Patch
Merging to further improve the receptive field of the patch and window, and make the
hierarchical feature representation better. After four processing procedures, four feature
maps with different multiples are obtained. In this paper, the dimension of the feature
maps of downsampling ratios are unified by the DW Block and then the feature maps are
normalized to obtain the output feature map.
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Figure 4. MS Transformer module structure.

The structure of the Swin Transformer Block is shown in Figure 5 below, which mainly
includes Layer Norm LN, Window-based Multi-head Self-Attention (W-MSA), and Shifted
Window Multi-head Self-Attention (Shifted). Window-based Multi-head Self-Attention,
SW-MSA) and the multilayer perceptron are constructed by residual connections. The
structure mainly uses the Window Muti-head Self-Attention module (W-MSA) to take
the local window as the unit, ensure the image features and reduce the computational
complexity by paying attention to the window. Then, the Shift Window Multi-Head Self-
Attention Module (SW-MSA) is used to translate the feature map in different directions
according to half the window length to realize the interaction between cross-window
features and enhance the feature map extraction ability.
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The overall calculation formula of the Swin Transformer module is as follows:

Ŝl = W −MSA
(

LN
(

Sl−1
))

+ Sl−1 (1)

Sl = MLP
(

LN
(

Ŝl
))

+ Ŝl (2)

Ŝl+1 = SW −MSA
(

LN
(

Sl
))

+ Sl (3)

Sl+1 = MLP
(

LN
(

Ŝl+1
))

+ Ŝl+1 (4)
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In the formula, Sl and Ŝl represent the output results of MLP and self-attention in the
first block, respectively, Sl−1 is the input image sequence, Sl+1 is the output image feature
sequence, LN is the layer normalization process, W − MSA is the window multi-head
self-attention module, and MLP is Multi-layer perceptron. SW −MSA is a shifted window
multi-head self-attention module.

A deep convolutional neural network can extract hierarchical features from images, in
which the low-level network outputs simple geometric features and the high-level network
outputs abstract semantic features. Convolutional Block Attention Model (CBAM) [22] is
a simple and effective attention module for a feedforward convolutional neural network.
Given an intermediate feature map, the CBAM module will sequentially infer the attentional
map along two independent dimensions (channel and space), and then multiply the
attentional map by the input feature map for adaptive feature optimization. The output
results of the convolution layer will first pass through a channel attention module to get
weighted results and then pass through a spatial attention module to get final weighted
results, as shown in Figure 6. In view of the complex background of remote sensing images
in this paper, which affects the feature extraction effect of detection targets, especially
the problem that features of low-resolution feature images will be lost after convolution
operation, this problem can be solved well by adding a convolution attention mechanism
into residual blocks.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16 
 

 

In the formula, 𝑆௟ and 𝑆መ௟ represent the output results of MLP  and self-attention 
in the first block, respectively, 𝑆௟ିଵ is the input image sequence, 𝑆௟ାଵ is the output image 
feature sequence, LN  is the layer normalization process, MSAW −  is the window 
multi-head self-attention module, and MLP  is Multi-layer perceptron. MSASW −  is 
a shifted window multi-head self-attention module. 

A deep convolutional neural network can extract hierarchical features from images, 
in which the low-level network outputs simple geometric features and the high-level net-
work outputs abstract semantic features. Convolutional Block Attention Model (CBAM) 
[22] is a simple and effective attention module for a feedforward convolutional neural 
network. Given an intermediate feature map, the CBAM module will sequentially infer 
the attentional map along two independent dimensions (channel and space), and then 
multiply the attentional map by the input feature map for adaptive feature optimization. 
The output results of the convolution layer will first pass through a channel attention 
module to get weighted results and then pass through a spatial attention module to get 
final weighted results, as shown in Figure 6. In view of the complex background of remote 
sensing images in this paper, which affects the feature extraction effect of detection tar-
gets, especially the problem that features of low-resolution feature images will be lost after 
convolution operation, this problem can be solved well by adding a convolution attention 
mechanism into residual blocks. 

 
Figure 6. CBAM structure diagram. 

The calculation formulas of the channel attention and spatial attention modules are: 

)))(()(vg(()( FMaxPoolMLPFPoolAMLPFMC += σ  (5)

))))(),(((f()( 77 FMaxPoolFAvgPoolConcatFMS
×= σ  (6)

In the formula, F  is the input feature map, )(FMC  is the channel attention mod-
ule, σ  is the sigmoid function, MLP  is the multi-layer perceptron of the fully con-
nected layer and the ReLU activation function. gPoolAv  is the average pooling func-
tion, and PoolMax  is the maximum pooling function. Function. f  is a 7 × 7 convolu-
tion operation. Based on Formulas (5) and (6), the output formula after introducing the 
residual network is shown in Formulas (7) and (8): 

FFMF CC ⊗= )(  (7)

FFMF SS ⊗= )(  (8)

In the formula: 𝐹௖ represents the channel attention output feature map, 𝑀௖ repre-
sents the channel attention module operation, 𝐹 represents the input feature map, ⊗  
represents element-by-element multiplication, and 𝐹௦  represents the spatial attention 
output feature map. The principle is to learn the feature map space and channel infor-
mation of the previous layer to obtain different weights, obtain the channel attention 

Figure 6. CBAM structure diagram.

The calculation formulas of the channel attention and spatial attention modules are:

MC(F) = σ(MLP(AvgPool(F) + MLP(MaxPool(F))) (5)

MS(F) = σ( f 7×7(Concat(AvgPool(F), MaxPool(F)))) (6)

In the formula, F is the input feature map, MC(F) is the channel attention module, σ
is the sigmoid function, MLP is the multi-layer perceptron of the fully connected layer and
the ReLU activation function. AvgPool is the average pooling function, and MaxPool is
the maximum pooling function. Function. f is a 7 × 7 convolution operation. Based on
Formulas (5) and (6), the output formula after introducing the residual network is shown
in Formulas (7) and (8):

FC = MC(F)⊗ F (7)

FS = MS(F)⊗ F (8)

In the formula: Fc represents the channel attention output feature map, Mc represents
the channel attention module operation, F represents the input feature map, ⊗ represents
element-by-element multiplication, and Fs represents the spatial attention output feature
map. The principle is to learn the feature map space and channel information of the previous
layer to obtain different weights, obtain the channel attention through the channel attention
mechanism, and then multiply the weights with the original feature map, respectively, to
obtain the feature map after the attention mechanism is merged and achieve the integration
of goals. By introducing the convolution block attention model, the saliency of the target in



Sensors 2022, 22, 5716 8 of 16

the image can be improved, and the feature expression ability of the target in the detection
network can be enhanced. Therefore, the detection accuracy of the target can be improved.

In the evaluation of target detection performance, the problem of unbalanced fore-
ground and background samples will always be encountered. Especially in the data set
of this paper, the background occupies a large proportion, and the proportion of the fore-
ground is too small. Most of the bounding boxes are matched by the bounding boxes
marked as background class boxes. At the same time, the number of samples of some
categories is very small, and it is easy to be dominated by other categories in the data so
that the information provided by a small number of samples cannot play a normal role in
the loss function, and ultimately it is difficult to provide a loss function that correctly guides
model training. The original YOLOv5 version uses horizontal bounding boxes, and the
loss function is divided into three parts, confidence loss, class classification loss, and box
bounding box regression loss. In the algorithm of this paper, the rotation angle information
is introduced to adjust the horizontal frame detection to the rotation frame detection. The
loss part consists of four parts: confidence loss, class classification loss, frame regression
loss, and θ angle classification loss. In order to avoid the boundary discontinuity prob-
lem caused by the calculation of the BECWithLogitsLoss function, the long-edge labeling
method, CSL [23], of the circular smooth label is used, and the final loss output is shown in
Formula (9):

Ltotal = LCIOU + Lobj + Lcls + Langel (9)

Focal Loss [24] has the function of adjusting sample imbalance and mining samples
(samples that are difficult to be learned). By increasing the weight of cross entropy Loss, it
solves the problems of positive and negative sample distribution and imbalance between
simple samples and complex samples. Cross Entropy (CE) is a commonly used loss measure
function. The formula is shown in Equation (10). p represents the probability corresponding
to the model prediction category, and y is the sample category label, with a value of 1 or 0.

CE(p, y) =
{
−loga p, y = 1
−loga(1− p), y = 0

(10)

Using the balance factor α in the cross-entropy loss can solve the problem of the uneven
proportion of positive and negative samples in the data set. By making the coefficients
of a small number of positive samples larger and the coefficients of a large number of
negative samples smaller, the model can learn more useful features. At the same time,
a hyperparameter adjustment factor y is introduced to make the loss function pay more
attention to complex and difficult samples. The formula for calculating Focal Loss is
as follows:

FL(p, y) =
{
−(1− p)yloga p, y = 1
−pyloga(1− p), y = 0

(11)

Combining Focal Loss with the balance factor, the final Focal Loss formula can be
obtained, and the calculation formula is as follows:

FL(p, y) =
{
−a(1− p)yloga p, y = 1
−(1− a)pyloga(1− p), y = 0

(12)

Due to the influence of the hyperparameter regulating factor γ, the bounding frame
loss is ignored. To solve this defect, the hyperparameter factor ξ is added to the algorithm
in this paper, which has a higher proportion in the overall Loss function and improves
the performance of the overall network in calculating Focal Loss. Meanwhile, in order to
reduce the influence of foreground–background samples in the YOLOv5 real-time detector,
LRM filters out the predicted low loss values before backpropagation, leaving only the high
loss values that are favorable to the detector.

This paper is further modified on the basis of LRM. By selecting ranking factors for
each feature graph, it is removed with inappropriate values in backpropagation, and the
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most appropriate loss value is selected as the detection value. For example, if b = 0.3 and the
feature graph size is 3 × 20 × 20, the 360 cells with the highest detection loss are selected,
and the other remaining cells are excluded from the backpropagation process. Finally, by
combining the two difficult sample mining methods, the target detection performance is
further improved, as shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 16 
 

 

Due to the influence of the hyperparameter regulating factor γ , the bounding frame 
loss is ignored. To solve this defect, the hyperparameter factor ξ  is added to the algo-
rithm in this paper, which has a higher proportion in the overall Loss function and im-
proves the performance of the overall network in calculating Focal Loss. Meanwhile, in 
order to reduce the influence of foreground–background samples in the YOLOv5 real-
time detector, LRM filters out the predicted low loss values before backpropagation, leav-
ing only the high loss values that are favorable to the detector. 

This paper is further modified on the basis of LRM. By selecting ranking factors for 
each feature graph, it is removed with inappropriate values in backpropagation, and the 
most appropriate loss value is selected as the detection value. For example, if b = 0.3 and 
the feature graph size is 3 × 20 × 20, the 360 cells with the highest detection loss are selected, 
and the other remaining cells are excluded from the backpropagation process. Finally, by 
combining the two difficult sample mining methods, the target detection performance is 
further improved, as shown in Figure 7. 

 
Figure 7. Comprehensive loss function calculation diagram. 

4. Experiments 
4.1. Data Set 

The DOTA [25] data set is an image data set used for aerial remote sensing in object 
detection, with a total of 2806 aerial images and a total of 188,282 manually annotated 
instances. The resolutions of each image range from 800 × 800 to 4000 × 4000 and the data 
set contains objects of different scales, orientations and shapes. There are 15 categories of 
labeled instances: airplanes, ships, storage tanks, baseball fields, tennis courts, basketball 
courts, ground tracks, ports, bridges, large vehicles, small vehicles, helicopters, rounda-
bouts, soccer fields, and basketball courts. There are horizontal object frame (HBB) and 
directed target frame (OBB) versions of the annotation file. This paper selects the directed 
data annotation method of the DOTA data set and converts it to long-edge representation 
for training and prediction. Because the size of the DOTA data set is too large, the input 
of the ordinary detection network will be too slow to calculate. In this paper, the image 
will be cropped before the input network, and a sub-image of 1024 × 1024 will be obtained. 

Figure 7. Comprehensive loss function calculation diagram.

4. Experiments
4.1. Data Set

The DOTA [25] data set is an image data set used for aerial remote sensing in object
detection, with a total of 2806 aerial images and a total of 188,282 manually annotated
instances. The resolutions of each image range from 800 × 800 to 4000 × 4000 and the data
set contains objects of different scales, orientations and shapes. There are 15 categories of
labeled instances: airplanes, ships, storage tanks, baseball fields, tennis courts, basketball
courts, ground tracks, ports, bridges, large vehicles, small vehicles, helicopters, round-
abouts, soccer fields, and basketball courts. There are horizontal object frame (HBB) and
directed target frame (OBB) versions of the annotation file. This paper selects the directed
data annotation method of the DOTA data set and converts it to long-edge representation
for training and prediction. Because the size of the DOTA data set is too large, the input of
the ordinary detection network will be too slow to calculate. In this paper, the image will
be cropped before the input network, and a sub-image of 1024 × 1024 will be obtained. In
order to avoid the problem of not losing edge information, the rate of reserved overlapping
area will be set at 20%. The processed training set contains 15,749 images, and the validation
set contains 5297 images.

Aiming at the diversity of the existing scale of the detection target, the target with a
large length and width is very sensitive to the change of angle, and the horizontal bounding
box is used to obtain the orientation information of the movement of the target object. In
this paper, the rotation frame annotation method is adopted. Common arbitrary rotation
frame methods include opencv representation and long edge representation. Opencv
mainly contains five parameters [x, y, w, h, θ], where θ is the acute angle between the
rotating coordinate system and the x-axis, and the counterclockwise direction is specified
as a negative angle, so the angle range is [−90◦, 0). As shown on the left of Figure 8, in the
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target rotation detection, the ideal regression method is from the black box to the red box
counterclockwise, but due to the periodicity of angles (PoA) problem, box 1© is rotated 3◦

counterclockwise to become box 2©, and box 1© is rotated through 87◦ to reach the location
of box 3©. Therefore, the losses caused by the resulting periodic jump problem caused are
great. As shown in the figure on the right, if you rotate clockwise from the black box to
the red box, you need to scale w and h at the same time, which causes the exchange of
edges (EOE) to a certain extent and increases the difficulty of regression. In this paper, the
long-side representation method is adopted. In the long-side definition method based on
180 degrees, only the angle θ has a boundary problem in the process from the black frame
to the red frame, and the influence of the loss value only comes from the angle periodicity
problem (PoA).
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For a series of problems such as a sudden increase in loss value and increased difficulty
in network learning caused by the sudden increase in angle difference and boundary
difference, the method of angle regression is converted into a classification form, and
classification can be carried out to avoid the definition that exceeds the angle range. When
converting to a simple classification problem, it is inevitable that there will be a loss of
accuracy, such as in the case of a first-class case, where it is impossible to predict the degree
of the decimal point. Moreover, the long-side representation requires the form of five
parameters, and the angle range is between 180 degrees, otherwise, there will be a problem
with variable interactivity. Based on the above problems, circular smooth labels (CSL) are
introduced to avoid edge cases. This paper also uses the Gaussian function as the window
function, as shown in Figure 9 below. Through the setting of the window function, the
angular distance between the predicted label and the ground truth label is measured, and
within a certain range, the predicted value loss corresponding to the detection value closer
to the true value is smaller.

The expression of the ring smooth label is as follows:

CSL(x) =
{

g(x), θ − r < x < θ + r
0, otherwise

(13)

g(x) = ae−(x−b)2/2c2
(14)

In the formula, g(x) is the window function, and r controls the window radius. In
this paper, the Gaussian function is selected as the window function, which can make the
obtained label reflect the angle distance between each θ, and can also give the label function
the same period according to the periodicity of angle θ, so that the time difference value at
the calculation boundary is very large and the loss is very small. The window radius, r is 6,
and the specific expression is:

CSL(x) =

{
ae−(x−b)2/2c2

, θ − 6 < x < θ + 6
0, otherwise

(15)
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In the formula, a, b, and c are real constants, and a > 0. θ is the value of the rotation angle.
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4.2. Evaluation Methods

In order to evaluate the performance of the network and validate the effectiveness of
the network model, this paper adopts the mean average precision (mAP) as the evaluation
index in object detection. In order to calculate mAP, we first need to calculate the precision
rate (Precision) and the recall rate (Recall) indicators. The accuracy rate is the ratio of the
number of predicted positive samples to all positive samples, and its calculation formula is
as follows:

P =
TP

TP + FP
× 100% (16)

In the formula, P represents the precision rate, which represents the ratio of the correct
samples to the total number of samples in the detection process. FP represents the number
of falsely detected samples in the detection process, that is, the number of samples that are
not real targets but detected, TP represents the number of correctly detected samples in the
detection process, that is, the number of samples detected by the real target, the recall rate
is used to represent the ratio of the number of positive samples detected in the network,
and its calculation formula is as follows:

R =
TP

TP + FN
× 100% (17)

In the formula, R represents recall rate, FN represents the number of correct samples
predicted to be wrong samples in the detection process, that is, the number of negative
samples incorrectly classified. To synthesize the model performance, the accurate recall
curve was used to show the balance between detectors.

Average accuracy AP refers to the curve enclosed by the recall rate. The recall is the
horizontal axis and the precision rate is the vertical axis, and the area under the curve is the
AP value. Its calculation formula is as follows:

AP =
∫ 1

0
PdR (18)
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The average accuracy rate mAP (Mean Average Precision) is used as a measure of the
algorithm performance of the model. The formula for calculating mAP is:

mAP =
1
C

c

∑
c=1

APC (19)

4.3. Experimental Results and Analysis

Part of the detection effect of the algorithm in this paper is shown in Figure 10. It can
be seen that the prediction frame is more accurate in the detection of densely arranged ships,
large vehicles, storage tank scales, etc., which further reduces the impact of the background
on the target classification. Secondly, the target information of aircraft, vehicles, ships and
so on, containing the direction of movement is further obtained; at the same time, the
overlapping problem caused by the horizontal boundary prediction frame for dense targets
is reduced. For the detection of remote sensing images with obvious scale changes, the
detection performance is further improved.
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At the same time, in order to further verify the performance of the algorithm in
this paper, this paper compares and analyzes the current popular remote sensing image
target detection algorithms, and tests the accuracy on the validation set. The comparison
algorithms include the FR-O based on Faster R-CNN [25] algorithm, the RIO [26] algorithm
for two-stage detection with a priori box, the IENet [27] algorithm without a priori box,
the R2CNN [28] algorithm based on Faster R-CNN and the R3Det [29] for refining rotating
object detectors algorithm, the RCNet [30] algorithm, the SCRDet [31] algorithm with better
robustness to small, cluttered and rotating objects, the RSDet [32] function for rotating
object loss, using the segmentation method for rotating object detection, the Mask OBB [33]
algorithm and the YOLOv5 algorithm of the horizontal box. The experimental results are
shown in Table 1.
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Table 1. Comparison of experimental results of different methods for each category. Expression for
each category in the table: PL for aircraft, BD for baseball field, BR for bridge, GTF for track and field,
SV for small car, LV for large car, SH for boat, TC for tennis court, BC for basketball court, ST for
oil storage tank, SBF for football field, RA for circular lane, HA for port, SP for swimming pool, HC
for helicopter.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13
IENet 80.20 64.54 39.82 32.07 49.71 65.01 52.58 81.45 44.66 78.51 46.54 56.73 64.40 64.24 36.75 57.14

R2CNN 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

RCNet 88.12 73.10 35.15 55.01 54.75 71.65 76.12 90.63 67.55 76.11 48.43 61.29 63.18 62.34 15.31 62.58
RIO 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.50 79.46 76.75 59.04 56.73 62.54 61.29 55.56 67.74

SCRDet 89.98 80.65 52.06 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
R3Det 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
RSDet 90.1 82.0 53.8 68.5 70.2 78.7 73.6 91.2 87.1 84.7 64.3 68.2 66.1 69.3 63.7 74.1

MaskOBB 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
YOLOv5 89.31 76.38 47.33 61.21 71.32 74.03 78.62 89.76 82.23 81.36 60.93 63.88 65.24 68.36 60.13 68.18

Ours 90.15 84.51 54.27 68.45 78.86 86.97 89.32 90.84 74.26 89.06 66.78 67.84 74.54 74.21 65.13 77.01

It can be seen from Table 1 that the overall effect of the algorithm in this paper is better
than that of the current popular detection algorithms in the detection of DOTA remote
sensing image targets. Although it is inferior to other methods in the detection of some
target categories, such as the ground runway category, which is detected best in the RIO
algorithm, and the basketball court and helicopter categories, which are detected better
in the Det algorithm. However, it is very effective for the modules added in this paper
in the categories of strong density. Especially when detecting target categories such as
airplanes, ships, tennis courts, large vehicles, and storage tanks, the detection accuracy of
the algorithm in this paper is 90.15%, 90.15%, 89.32%, 90.84%, 86.97%, and 89.06%, which
are 0.84 percentage points, 10.7 percentage points, 1.08 percentage points, 12.94 percentage
points, and 7.7 percentage points higher than the original YOLOv5 algorithm, respectively.
The average accuracy of the improved YOLOv5 algorithm proposed in this paper is higher
than other algorithms, and its mAP reaches 77.01%, which is 8.83% higher than the original
YOLOv5 algorithm. In general, it shows that the algorithm in this paper has relatively
few false detections and missed detections, which verifies the effectiveness of the added
module for remote sensing dense image detection.

4.4. Ablation Experiments

In order to fully verify the effectiveness of the module improvement in this paper,
experimental analysis is performed on the DOTA data set to verify the importance of each
proposed component. Each component is sequentially embedded into the YOLOv5s model,
and the same training techniques and environmental conditions are used in each set of
experiments. The results are shown in Table 2.

Table 2. Experimental comparisons of each combination in the feature extraction network.

Method MS
Transformer CBAM CSL Loss mAP/%

YOLOv5 68.18

1
√

74.04

2
√ √

75.53

3
√ √ √

76.72

4
√ √ √ √

77.01

In the above table, improvement 1 means using the long-side representation to realize
the rotation of the target frame, and using the classification idea to replace the influence
of periodic changes caused by the regression problem on network training; improvement
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2 means adding the MS Transformer module based on a Swin Transformer in the back-
bone network; improvement 3 means adding an attention mechanism to the Neck layer;
improvement 4 is an improvement on the loss function, combining two difficult sample
mining methods to reduce the loss value. When these four module improvement points are
added to the model, the evaluation accuracy value is increased by 8.83 percentage points,
which greatly improves the detection effects of remote sensing images with high density
and small targets.

5. Conclusions

Aiming at the problems that remote sensing images have densely arranged targets,
small targets and complex backgrounds, and the common algorithms of natural scenes
cannot meet the detection requirements, this paper proposes an improved YOLOv5 remote
sensing image target detection method. The algorithm uses a rotating frame to deal
with the problem that the horizontal bounding box struggles to obtain the orientation
information of the target object’s motion. At the same time, the ring label method is used to
reduce the influence of the change of loss value for the periodic problem caused by angle
regression. The global perception capability of the model is enhanced by incorporating
an MS Transformer into the feature extraction network, while the convolutional block
attention model, CBAM, is integrated to find attention regions in dense scenes. Finally,
a combination of two difficult sample mining methods is used to improve the focal loss
function. The experiments show that the detection accuracy of the improved algorithm
model is further improved, and the improved Focal Loss further reduces the impact of
the loss value caused by the bounding box and foreground–background samples. This
paper has generally achieved good recognition results on the DOTA data set, but the
improvement of the detection accuracy of helicopters, bridges and other categories is still
very low. Mainly due to factors such as illumination, occlusion, complex background, and
low image resolution, the next step will be to optimize and improve the model to further
improve the detection effect while ensuring speed.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, X.J.; validation, Y.H. and
Y.Z.; formal analysis, F.W.; investigation, R.Z. and G.S.; resource, Y.M.; data curation, Y.H.; project
administration, F.W., X.J., R.Z., Y.M. writing—original draft preparation, Y.H.; writing—review and
editing, G.S., Y.Z. and X.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Natural Science Foundation of China (No.62162059
and 12061072) and the Third Xinjiang Scientific Expedition Program (No. 2021xjkk1404).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern

recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
3. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
4. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
5. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European

Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.
6. Neubeck, A.; Van Gool, L. Efficient non-maximum suppression. In Proceedings of the IEEE Conference on Pattern Recognition

(ICPR), Hong Kong, China, 20–24 August 2006; pp. 850–855.
7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.



Sensors 2022, 22, 5716 15 of 16

8. Girshick, R. Fast-RCNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

10. Wang, C.; Bai, X.; Wang, S.; Zhou, J.; Ren, P. Multiscale visual attention networks for object detection in VHR remote sensing
images. IEEE Geosci Remote Sens. Lett. 2018, 16, 310–314. [CrossRef]

11. Zhang, Y.; Yuan, Y.; Feng, Y. Hierarchical and Robust Convolutional Neural Network for Very High-Resolution Remote Sensing
Object Detection. IEEE Trans Geosci Remote Sens. 2019, 57, 5535–5548. [CrossRef]

12. Li, K.; Cheng, G.; Bu, S. Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images. IEEE Trans.
Geosci. Remote Sens. 2017, 56, 2337–2348. [CrossRef]

13. Pang, J.; Li, C.; Shi, J. R2-CNN: Fast Tiny Object Detection in Large-Scale Remote Sensing Images. IEEE Trans. Geosci. Remote Sens.
2019, 56, 1–13. [CrossRef]

14. Cheng, Z.; Lü, J.G.; Bai, Y.Q. High-resolution remote sensing image object detection algorithm combining RPN network and SSD
algorithm. Sci. Surv. Mapp. 2021, 46, 9. [CrossRef]

15. Liu, Y.; Yang, J.; Cui, W. Simple, Fast, Accurate Object Detection based on Anchor-Free Method for High Resolution Remote
Sensing Images. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium,
Waikoloa Village, HI, USA, 16–26 July 2020; pp. 2443–2446.

16. Qu, Z.; Zhu, F.; Qi, C. Remote Sensing Image Target Detection: Improvement of the YOLOv3 Model with Auxiliary Networks.
Remote Sens. 2021, 13, 3908. [CrossRef]

17. Van Etten, A. You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv 2018, arXiv:1805.09512.
18. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

19. Yu, H.; Zhang, Z.; Qin, Z.; Wu, H.; Li, D.; Zhao, J.; Lu, X. Loss rank mining: A general hard example mining method for real-time
detectors. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13
July 2018; pp. 1–8.

20. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

21. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June 2018; pp. 8759–8768.

22. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

23. Yang, X.; Yan, J. Arbitrary-oriented object detection with circular smooth label. In European Conference on Computer Vision; Springer:
Cham, Switzerland, 2020; pp. 677–694.

24. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

25. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June
2018; pp. 3974–3983.

26. Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning roi transformer for detecting oriented objects in aerial images. arXiv 2018,
arXiv:1812.00155.

27. Lin, Y.; Feng, P.; Guan, J.; Wang, W.; Chambers, J. IENet: Interacting embranchment one stage anchor free detector for orientation
aerial object detection. arXiv 2019, arXiv:1912.00969.

28. Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Luo, Z. R2cnn: Rotational region cnn for orientation robust scene text
detection. arXiv 2017, arXiv:1706.09579, pp. 1–8, 1–8.

29. Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3det: Refined single-stage detector with feature refinement for rotating object.
arXiv 2019, arXiv:1908.05612.

30. Jiang, G.; Hu, P.; Ye, H.; Yang, Y. Telemetry Based on Rotation Center Point Estimation Accurate detection algorithm of sensory
target. Comput. Appl. Res. 2021, 38, 2866–2870.

31. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Fu, K. Scrdet: Towards more robust detection for small, cluttered and
rotated objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 20–26 October 2019;
pp. 8232–8241.

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/LGRS.2018.2872355
http://doi.org/10.1109/TGRS.2019.2900302
http://doi.org/10.1109/TGRS.2017.2778300
http://doi.org/10.1109/TGRS.2019.2899955
http://doi.org/10.16251/j.cnki.1009-2307.2021.04.012
http://doi.org/10.3390/rs13193908


Sensors 2022, 22, 5716 16 of 16

32. Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning modulated loss for rotated object detection. arXiv 2019, arXiv:1911.08299.
33. Wang, J.; Ding, J.; Guo, H.; Cheng, W.; Pan, T.; Yang, W. Mask OBB: A semantic attention-based mask oriented bounding box

representation for multi-category object detection in aerial images. Remote Sens. 2019, 11, 2930. [CrossRef]

http://doi.org/10.3390/rs11242930

	Introduction 
	Methodology 
	Background of YOLOv5 
	Improved Network Structure 

	Proposed Method 
	Experiments 
	Data Set 
	Evaluation Methods 
	Experimental Results and Analysis 
	Ablation Experiments 

	Conclusions 
	References

