
Citation: Yan, Y.; Sun, P.; Zhang, J.;

Ma, Y.; Zhao, L.; Qin, Y. Dynamic

QoS Prediction Algorithm Based on

Kalman Filter Modification. Sensors

2022, 22, 5651. https://doi.org/

10.3390/s22155651

Academic Editors: Zheng Chen,

Chuxiong Hu, Ze Wang and

Mingxing Yuan

Received: 24 June 2022

Accepted: 25 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dynamic QoS Prediction Algorithm Based on Kalman
Filter Modification
Yunfei Yan 1, Peng Sun 1,*, Jieyong Zhang 1, Yutang Ma 1, Liang Zhao 1 and Yueyi Qin 2

1 Information and Navigation College, Air Force Engineering University, Xi’an 710077, China;
yyf435382221@163.com (Y.Y.); dumu3110728@126.com (J.Z.); tuzhong0804@163.com (Y.M.);
op33561165565@163.com (L.Z.)

2 School of Economics and Management, Chang’an University, Xi’an 710077, China; 13335377128@163.com
* Correspondence: sunfly2182022@163.com

Abstract: With the widespread adoption of service-oriented architectures (SOA), services with the
same functionality but the different Quality of Service (QoS) are proliferating, which is challenging
the ability of users to build high-quality services. It is often costly for users to evaluate the QoS
of all feasible services; therefore, it is necessary to investigate QoS prediction algorithms to help
users find services that meet their needs. In this paper, we propose a QoS prediction algorithm
called the MFDK model, which is able to fill in historical sparse QoS values by a non-negative
matrix decomposition algorithm and predict future QoS values by a deep neural network. In
addition, this model uses a Kalman filter algorithm to correct the model prediction values with
real-time QoS observations to reduce its prediction error. Through extensive simulation experiments
on the WS-DREAM dataset, we analytically validate that the MFDK model has better prediction
accuracy compared to the baseline model, and it can maintain good prediction results under dif-
ferent tensor densities and observation densities. We further demonstrate the rationality of our
proposed model and its prediction performance through model ablation experiments and parameter
tuning experiments.

Keywords: service recommendation; Quality of Service; service computing; deep learning

1. Introduction
1.1. Background and Motivation

With the widespread use of Service-Oriented Architecture (SOA) in software develop-
ment efforts, the reusability and interoperability of services have been greatly enhanced while
promoting continuous progress in research on service clustering and classification [1–3], ser-
vice recommendation [4–6], and service combination [7–9]. With the popularity of SOA
architectures, the number of available web services has grown exponentially, which has
resulted in a large number of functionally identical or similar services in the network.
Quality of Service (QoS) is a set of service non-functional evaluation metrics widely used
nowadays, through which the merits of network services with the same functions can be
easily measured. It has become an important challenge to construct high-quality services
that meet the non-functional needs of users from a large number of services with the same
function [10].

For example, when using a service or building a combination of services, users can
usually select a large number of candidates whose functionality meets the requirements of
the user, but it is difficult to visualize whether the QoS properties of these services meet the
requirements, which contains two main aspects of the problem.

Objectively, services are usually deployed in cloud servers, and users invoke these
services remotely through the network. Therefore, the QoS felt by the client will be
affected by both the state of the service itself and the network environment, such as the
service operation state, service load, network fluctuation situation, and network congestion,

Sensors 2022, 22, 5651. https://doi.org/10.3390/s22155651 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155651
https://doi.org/10.3390/s22155651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22155651
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155651?type=check_update&version=2

Sensors 2022, 22, 5651 2 of 20

making the QoS a real-time changing value. This is also the reason why different users get
different QoS experiences for the same service. Therefore, it is difficult for users to obtain a
credible QoS directly.

Subjectively, it is a costly task for users to actively evaluate the QoS value of a service.
On the one hand, service providers usually charge for executing service invocations, which
can cause significant financial expenses; on the other hand, continuous observation of all
compliant services for the purpose of QoS assessment consumes a lot of time and resources.
Therefore, it is often difficult for users themselves to evaluate the service QoS by means of
service invocations.

In summary, at a high cost, users can usually only invoke a limited number of services
with sparse QoS in order to comprehensively evaluate the QoS properties of services and
avoid consuming high costs. How to predict the missing QoS becomes the core problem of
building high-quality web services today.

1.2. Related Works

Prediction problems are studies in which people speculate about the trends that
will emerge in the future based on the development patterns of historical things. Re-
search on prediction problems is developing rapidly in a wide range of fields such as
epidemiology [11,12], network science [13,14], engineering management [15,16], and cloud
computing [17,18]. In the field of service recommendation, current research on QoS predic-
tion problems can be divided into two categories, static QoS prediction methods [19–23]
and dynamic QoS prediction methods [24–31].

Static QoS prediction problems often perform QoS prediction under fixed time slices
according to the contextual relationships between users and services such as location
information and network information. Studies based on collaborative filtering (CF) methods
usually fall into this category of problems. CF-based QoS prediction methods can be
classified as neighborhood-based and model-based. The neighborhood-based CF algorithm
assumes a stable similarity relationship between users or services. The similarity between
users can be calculated by using historical QoS values as features and filling in the missing
QoS values with historical information between similar users. Shao et al. [19] first used
a collaborative filtering approach for QoS prediction. This study mainly constructs the
QoS matrix of users and services, obtains a similarity relationship between users, and
finally predicts the missing QoS of the target users. Zheng et al. [20], based on the previous
work, proposed the method of integrating user similarity and service similarity for QoS
prediction, which effectively improves the accuracy of QoS prediction.

Model-based CF algorithms acquire the implicit relationships between users and
services by building specific models to predict the desired QoS values. Xia et al. [21]
first extracted multi-source features through a combination of matrix decomposition and
neural networks and improved the prediction capability of sparse QoS data by deep neural
networks for feature learning. Zou et al. [22] proposed a domain-integrated deep ma-
trix decomposition algorithm, which improves the ability to obtain implicit features of
users and services through the fusion of deep neural networks and matrix decomposition.
Nguyen et al. [23] proposed an attention probability matrix model, which learns la-
tent features by introducing a neural attention network on the basis of probability ma-
trix decomposition and proposes a neural network architecture to learn latent features
of services.

However, in the real environment, different users will access the same service at
different times. At the same time, the QoS value of the same service will change over
time, which will make the QoS value of the service invoked by the user always in dynamic
change. Having the ability to predict QoS changes for future time slices would better meet
the demand of users for high-quality services.

A dynamic QoS prediction algorithm aims to predict the future QoS development
pattern based on historical QoS data features, and this method is now becoming a new
research hotspot. The main research directions of current dynamic QoS prediction algo-

Sensors 2022, 22, 5651 3 of 20

rithms can be divided into feature engineering-based methods and deep learning-based
methods. Feature engineering-based QoS prediction methods are often developed based
on time series prediction algorithms [24–26]. Yan et al. [24] considered the QoS prediction
problem as a time series prediction problem and proposed an SVD-based ARIMA model
for predicting multiple QoS values, which effectively improved the prediction accuracy
of QoS. Hu et al. [25] proposed a personalized QoS prediction method, which combined
a Kalman filter with an ARIMA model to provide the traditional ARIMA model with the
ability to obtain feedback and correct the prediction. Keshavarzi et al. [26] proposed an
online QoS time series prediction method combining clustering and minimum description
length (MDL), which first clusters similar time series, and then the model generator uses
MDL to obtain similar features from the time series.

Feature engineering-based methods often require targeted feature extraction methods
designed for time series characteristics, which require skilled feature extraction theory
and a high level of manual technical experience. In contrast, deep learning-based QoS
prediction methods mainly use a deep neural network to obtain time series features, which
has a low technical cost and significant effect improvement compared with traditional
methods. Currently, dynamic QoS prediction algorithms based on deep learning frequently
use previous QoS values as input, record their time series features, and then forecast
QoS values at future points [27,28]. Jin et al. [29] divided the QoS prediction process into
predictions based on historical time slices and predictions based on current time slices and
proposed a two-stage method TWQP, which effectively solved the dynamic QoS prediction
problem under different situations. Zhang et al. [30] proposed a multivariate time series
QoS prediction approach that uses phase space reconstruction to translate multivariate
historical data into a dynamic system and then uses a radial basis function (RBF) neural
network modified by the Levenberg–Marquardt (LM) algorithm to execute a dynamic
multi-step prediction. Zou et al. [31] provide a GRU-based deep neural network to mine
the user and service temporal properties between users and services to predict unknown
QoS. Additionally, they suggested an enhanced temporal characterization of users and
services. However, there are two problems in the above research: firstly, the traditional
deep learning-based QoS prediction algorithm fails to consider the real-time QoS values
generated by the user when invoking the service as augmented information to be utilized
in the prediction, making it impossible to further improve the model prediction accuracy.
Secondly, the traditional deep learning models cannot fill in historical sparse QoS datasets
during training, which affects the prediction accuracy of the models. A summary of the
related work is shown in Table 1.

1.3. Main Contributions

To address the aforementioned issue, we propose MFDK, a three-part dynamic QoS
prediction model: first, the user–service–time data is formed as a third-order tensor and
decomposed into non-negative Tuckers to fill in the missing values in the tensor. Second,
the tensor data is put into a CNN-BiLSTM deep learning model for training, and finally,
the model predictions are adjusted by fusing QoS realistic observations through a Kalman
filtering algorithm.

The main contributions of this paper are as follows.

• A new dynamic QoS prediction model called MFDK is built, which consists of three
parts: missing data filling, deep learning model training, and Kalman filtering correc-
tion. The method can effectively solve the dynamic QoS prediction problem in the
QoS sparse case.

• In comparison to typical deep learning models, a Kalman filter-based deep learning
predictive value correction technique is developed, which has the benefit of more
thoroughly merging the real-time QoS data induced by users and the model prediction
data to increase the model prediction accuracy.

Sensors 2022, 22, 5651 4 of 20

• Extensive experiments have been undertaken on the realistic dataset WS-DREAM. The
experimental results indicate that our proposed framework is superior to the baseline
model in terms of QoS forecast accuracy.

Table 1. Comparison of methods and results of research in related work.

Algorithm Category Approach Prediction Accuracy of QoS References

Static QoS
prediction algorithm

Neighborhood-based
CF algorithm

A CF-based approach for
mining the similarity of

users.

Outperforms common
collaborative filtering

algorithms and average
prediction algorithms in terms
of response time, availability,

and latency

Shao et al. [19]

WSRec: a improved
CF-based approach for

combining the traditional
user-based and item-based

CF methods.

Better than UMAEN, IMEAN,
UPCC, IPCC algorithms in
terms of response time and

failure rate

Zheng et al. [20]

Model-based
CF algorithm

JDNMFL: A method based
on a combination of

matrix decomposition and
neural networks,

including multi-source
feature extraction and

feature
interaction learning.

Better than UPCC, IPCC,
UIPCC, PMF, FM algorithms

in terms of response time
and throughput

Xia et al. [21]

NDMF: A method
integrates user

neighborhood selected by
a collaborative way into

an enhanced matrix
factorization model via
deep neural network.

Outperforms the 12 baseline
models in the article in terms

of response time
and throughput

Zou et al. [22]

AMF: A method combines
probabilistic matrix

decomposition and neural
attention networks for

QoS prediction.

Outperforms the 8 baseline
models in the article in terms

of Normalized Discounted
Cumulative Gain (NDCG) and
Mean average precision (MAP)

Nguyen et al. [23]

Dynamic QoS
prediction algorithm

Feature engineering-
based algorithm

A method combines a
truncated singular value

decomposition (SVD) and
a classical ARIMA model.

Better than UPCC, IPCC,
SerRec algorithms in terms of
response time and throughput

Yan et al. [24]

A method combines
Kalman filtering and

classical ARIMA model.
Afterwards, personalized
QoS prediction is achieved

by an modified
neighborhood-based

CF algorithm.

Better than ARIMA, WSRec
algorithms in terms of

response time and throughput
Hu et al. [25]

A method combines time
series clustering,

minimum description
length and dynamic time

warping similarity.
Afterwards, the most
appropriate service

quality prediction scheme
is provided to the user

via multi-cloud.

Better than UPCC, IPCC,
combined UPCC and IPCC,

LASSO algorithms in terms of
response time and throughput

Keshavarzi et al. [26]

Sensors 2022, 22, 5651 5 of 20

Table 1. Cont.

Algorithm Category Approach Prediction Accuracy of QoS References

Dynamic QoS
prediction algorithm

Deep learning-based QoS
prediction algorithm

TWQP: A two-stage QoS
prediction method that
performs predictions in
the historical time slice

and the current time
slice, respectively.

Outperforms the 6 baseline
models in the article in terms

of response time
and throughput

Jin et al. [29]

MulA-LMRBF: A method
to input historical QoS
data using phase-space
reconstruction method,

afterwards implementing
dynamic multi-step

prediction by RBF neural
network improved

by Levenberg–
Marquardt algorithm.

Outperforms the 5 baseline
models in the article in terms

of response time
and throughput

Zhang et al. [30]

DeepTSQP: A method
propose a deep neural

network with gated
recurrent units (GRU),
learning, and mining

temporal features among
users and services.

Outperforms the 9 baseline
models in the article in terms

of response time
and throughput

Zou et al. [31]

2. Preliminaries
2.1. Tucker Decomposition

Tucker decomposition is one of the main tensor decomposition methods. The funda-
mental concept is to approximate the decomposition of the initial tensor as the product of
the kernel tensor and the factor matrix. Using the third-order tensor, as an illustration, the
decomposition has the form depicted in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21

The main contributions of this paper are as follows.
• A new dynamic QoS prediction model called MFDK is built, which consists of three

parts: missing data filling, deep learning model training, and Kalman filtering cor-
rection. The method can effectively solve the dynamic QoS prediction problem in the
QoS sparse case.

• In comparison to typical deep learning models, a Kalman filter-based deep learning
predictive value correction technique is developed, which has the benefit of more
thoroughly merging the real-time QoS data induced by users and the model predic-
tion data to increase the model prediction accuracy.

• Extensive experiments have been undertaken on the realistic dataset WS-DREAM.
The experimental results indicate that our proposed framework is superior to the
baseline model in terms of QoS forecast accuracy.

2. Preliminaries
2.1. Tucker Decomposition

Tucker decomposition is one of the main tensor decomposition methods. The funda-
mental concept is to approximate the decomposition of the initial tensor as the product of
the kernel tensor and the factor matrix. Using the third-order tensor, as an illustration, the
decomposition has the form depicted in Figure 1.

≈ (1)A
(2)A

(3)A

Figure 1. Schematic diagram of Tucker decomposition.

Given a tensor 1 2 NI I I× × ×∈ R , then the Tucker decomposition process of the tensor
 can be expressed as:

(1) (2) ()
1 2 3

ˆ N
N≈ = × × × ×A A A (1)

where ̂ is the approximation tensor of , 1 2 NJ J J× × ×∈ R is the core tensor, and

{ }()

1
n n

NI Jn

n

×

=
∈A R are the factor matrices. Solving the Tucker decomposition problem can

be transformed into an optimization problem, as in Equation (2):
2ˆmin
F

− (2)

In this paper, the multiplicative updating algorithm is used to iteratively solve the
problem. The objective function equation can be expressed as:

2() ()
() ()min n n
n n F⊗ − X A G A（ ） (3)

where ()nX is the mode-n matrix of tensor and ()nG is the mode-n expansion matrix
of the tensor . We define () (1) (2) () (1) (2) (1)n n n N n+ + −

⊗ = ⊗ ⊗ ⊗ ⊗ ⊗A A A A A A A , which

Figure 1. Schematic diagram of Tucker decomposition.

Given a tensor X ∈ RI1×I2×···×IN , then the Tucker decomposition process of the tensor
X can be expressed as:

X ≈ X̂ = G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N) (1)

Sensors 2022, 22, 5651 6 of 20

where X̂ is the approximation tensor of X , G ∈ RJ1×J2×···×JN is the core tensor, and{
A(n) ∈ RIn×Jn

}N

n=1
are the factor matrices. Solving the Tucker decomposition problem

can be transformed into an optimization problem, as in Equation (2):

min‖X − X̂ ‖2
F (2)

In this paper, the multiplicative updating algorithm is used to iteratively solve the
problem. The objective function equation can be expressed as:

min‖
[
X(n) −A(n)G(n)(A

(n)
⊗)
]
‖

2

F
(3)

where X(n) is the mode-n matrix of tensor X and G(n) is the mode-n expansion matrix

of the tensor G. We define A(n)
⊗ = A(n+1) ⊗ A(n+2) · · · ⊗ A(N) ⊗ A(1) ⊗ A(2) ⊗ · · ·A(n−1),

which collects Kronecker products of mode matrices except A(n), where ⊗ is the Kronecker
product. Then the updated equations for the factor matrices and the core tensor are:

A(n) ← A(n) ∗

[
X(n)G

(n)
A

T
]

[
A(n)G(n)

A G(n)
A

T
] (4)

G ← G ∗ X×1A(1)T···×nA(N)T

G×1A(1)TA(1) ···×nA(N)TA(N)

N = 1, 2, 3.
(5)

where G(n)
A = G(n)(A

(n)
⊗)T, and ∗ is the Hadamard products. After performing the update,

the model can be controlled to converge by setting the convergence threshold or by setting
the number of iterations.

2.2. Kalman Filter

The Kalman filter algorithm mainly includes the time update equation and the state
update equation, assuming the existence of a linear system with state and observation
equations as follows:

xk = Axk−1 + Buk−1 + wk−1 (6)

zk = Hxk + vk (7)

where xk and xk−1 are the states of the system at time k and k − 1, respectively, uk−1 is the
control variable at time k − 1, A and B are the state transfer matrix and the input state
transfer matrix, respectively, zk is the observation at time k, H is the transformation matrix
from state variable to observation variable, and wk−1 and vk are Gaussian-distributed noise.

The time update equation for the Kalman filter is:

x̂k = Ax̂k−1 + Buk−1 (8)

Pk = APk−1AT + Q (9)

where x̂k is the prior state estimate at time k, x̂k−1 is the posterior state estimate at time
k − 1, Pk is the prior estimate covariance at time k, Pk−1 is the posterior estimate covariance
at time k − 1, and Q is the state noise covariance. The state update equation is:

Kk =
PkHT

HPkHT + R
(10)

x̂k = x̂k + Kk(zk −Hx̂k) (11)

Pk = (I−KkH)Pk (12)

Sensors 2022, 22, 5651 7 of 20

where Kk is the Kalman filter gain matrix, x̂k is the a posteriori state estimate at time k, Pk is
the a posteriori estimated covariance at time k − 1, and zk is the observed value at time k.
R is the observation noise covariance.

3. The Proposed Model
3.1. Description of the Problem

Before going into detail about the model proposed in this paper, a formal description
of the problem solved in this paper is given.

Assuming that there exists a set of I users U = {u1, u2 · · · ui · · · uI}, a set of J services
S =

{
s1, s2 · · · sj · · · sJ

}
, and a set of K time slices T = {t1, t2 · · · tk · · · tK}, afterward,

a third-order tensor Y ∈ RI×J×K can be constructed such that Yijk, the elements of Y ,
represent the QoS values generated when the user i invokes the service j at time k. In real
environments, the obtained QoS values are usually very sparse, which also makes the
QoS tensor Y very sparse. As shown in Figure 2, the problem addressed in this paper is
whether the QoS value at moment k + 1 can be predicted under the sparse case of Y . To
solve this problem, this paper proposes a dynamic QoS prediction method, MFDK, whose
main process is described as follows.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21

3. The Proposed Model
3.1. Description of the Problem

Before going into detail about the model proposed in this paper, a formal description
of the problem solved in this paper is given.

Assuming that there exists a set of I users 1 2{ , }i IU u u u u= , a set of J services

1 2{ , }j JS s s s s= , and a set of K time slices 1 2{ , }k KT t t t t= , afterward, a third-
order tensor I J K× ×∈ R can be constructed such that ijk , the elements of , repre-
sent the QoS values generated when the user i invokes the service j at time k. In real envi-
ronments, the obtained QoS values are usually very sparse, which also makes the QoS
tensor very sparse. As shown in Figure 2, the problem addressed in this paper is
whether the QoS value at moment k + 1 can be predicted under the sparse case of . To
solve this problem, this paper proposes a dynamic QoS prediction method, MFDK, whose
main process is described as follows.

s1 s2 s3
sj

u1

u2

u3

ui

t1
t2 t3

tk

t1 t2

tk tk+1
Figure 2. Users–service–time tensor.

As seen in Figure 3, the historical QoS data is first converted into a user–service–time
third-order tensor and then decomposed into a non-negative Tucker to fill in missing data.
QoS predictions are obtained after dividing the full third-order tensor into a training and
validation set and feeding it to a deep neural network for training. The final QoS predic-
tions are obtained by combining the predictions produced by the deep neural network
with the reality observations through the Kalman filter.

QoS
Historical Data

Building User-
Service -Time

Tensor

Non-Negative
Tucker

Decomposition

Divided into
Training Set and
Validation Set

CNN-BiLSTM Model Kalman Filter

QoS
prediction data

Step 1
Missing Data Filling

Step 2
Deep Learning Predictive Models

QoS
Predicted Value

Step 3
Modified model predictions

Corrected QoS
Predicted ValueModel Training

QoS
Observations

Transformed to
Time Vector

Set

Figure 3. General structure of the MFDK model.

Figure 2. Users–service–time tensor.

As seen in Figure 3, the historical QoS data is first converted into a user–service–time
third-order tensor and then decomposed into a non-negative Tucker to fill in missing data.
QoS predictions are obtained after dividing the full third-order tensor into a training and
validation set and feeding it to a deep neural network for training. The final QoS predictions
are obtained by combining the predictions produced by the deep neural network with the
reality observations through the Kalman filter.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 21

3. The Proposed Model
3.1. Description of the Problem

Before going into detail about the model proposed in this paper, a formal description
of the problem solved in this paper is given.

Assuming that there exists a set of I users 1 2{ , }i IU u u u u= , a set of J services

1 2{ , }j JS s s s s= , and a set of K time slices 1 2{ , }k KT t t t t= , afterward, a third-
order tensor I J K× ×∈ R can be constructed such that ijk , the elements of , repre-
sent the QoS values generated when the user i invokes the service j at time k. In real envi-
ronments, the obtained QoS values are usually very sparse, which also makes the QoS
tensor very sparse. As shown in Figure 2, the problem addressed in this paper is
whether the QoS value at moment k + 1 can be predicted under the sparse case of . To
solve this problem, this paper proposes a dynamic QoS prediction method, MFDK, whose
main process is described as follows.

s1 s2 s3
sj

u1

u2

u3

ui

t1
t2 t3

tk

t1 t2

tk tk+1
Figure 2. Users–service–time tensor.

As seen in Figure 3, the historical QoS data is first converted into a user–service–time
third-order tensor and then decomposed into a non-negative Tucker to fill in missing data.
QoS predictions are obtained after dividing the full third-order tensor into a training and
validation set and feeding it to a deep neural network for training. The final QoS predic-
tions are obtained by combining the predictions produced by the deep neural network
with the reality observations through the Kalman filter.

QoS
Historical Data

Building User-
Service -Time

Tensor

Non-Negative
Tucker

Decomposition

Divided into
Training Set and
Validation Set

CNN-BiLSTM Model Kalman Filter

QoS
prediction data

Step 1
Missing Data Filling

Step 2
Deep Learning Predictive Models

QoS
Predicted Value

Step 3
Modified model predictions

Corrected QoS
Predicted ValueModel Training

QoS
Observations

Transformed to
Time Vector

Set

Figure 3. General structure of the MFDK model. Figure 3. General structure of the MFDK model.

Sensors 2022, 22, 5651 8 of 20

3.2. Missing Data Filling Based on Non-Negative Tucker Decomposition

The Tucker decomposition algorithm mentioned in Section 2.1 can serve to fill the
missing values in the tensor to a certain extent; however, in practice, the missing values
filled by Tucker decomposition can be negative, which has no practical significance in a
QoS tensor with positive values. To improve the accuracy of the model prediction, this
paper adds a non-negativity constraint to the Tucker decomposition, i.e., the missing data
is filled by a non-negative Tucker decomposition. Thus, the objective function of the QoS
tensor Y ∈ RI×J×K for non-negative Tucker decomposition can be expressed as:

min
n=1,2,3

‖Y − Ŷ‖2
F

s.t. Ŷijk > 0, n = 1, 2, 3
(13)

where Ŷijk is the element in the tensor to be predicted. Combined with the equations
in Section 2.1, the non-negative Tucker decomposition Algorithm 1 can be summarized
as follows:

Algorithm 1: Non-negative Tucker decomposition.

Inputs: user-service-time tensor Y , rank on each modal I, J, K
Output: Tensor after filling sparse values Y
1: BEGIN
2: Initialize the core tensor G and the factorization matrices A(1), A(2), and A(3)

3: REPEAT
4: for n in 3 do:
5: Iteratively update each factor matrix.

A(n) ← A(n) ∗
[
X(n)G(n)

A
T
]

[
A(n)G(n)

A G(n)
A

T
]

6: end for
7: Updating the core tensor.

G ← G ∗ y×1A(1)T×2A(2)T×3A(3)T

G×1A(1)TA(1)×2A(2)TA(2)×3A(3)TA(3)

8: Calculate the updated tensor.
Ŷ = G ×1 A(1)×2 A(2)×3 A(3)

9: Tensor iterative update.
Y ← Ŷ
10: until the error converges or the maximum number of iterations is reached
11: END

3.3. CNN-BiLSTM Based Time Series Prediction Model
3.3.1. Training Dataset Construction

After filling in the historical data, a CNN-BiLSTM neural network model is constructed
in this paper to train on the historical data. Prior to training, the user–service–time tensor
needs to be constructed as training data that can be fed into the neural network. To make
predictions of QoS values for future time slices, the tensor is expanded into fibers forming
along the time dimension, as in Figure 4.

In this paper, the first K− 1 time slices of each vector after unfolding are used as
model training data and the Kth step is predicted to achieve QoS prediction for future
time slices.

3.3.2. Convolutional Neural Network

In this paper, the local features of QoS time series are extracted by convolution neural
network. The advantage of CNN lies in its ability of local feature extraction and parameter
sharing. Convolutional kernels are used by the convolutional layer to convolve local
regions of the QoS time series in order to create corresponding features and reduce the risk
of over-fitting through the parameter sharing of the convolution kernel. The process of
convolution kernel convolution operation is as follows:

Ft = ϕ(Wtxt−1 + bt) (14)

Sensors 2022, 22, 5651 9 of 20

where Ft represents the result of the convolution operation of the t-th convolution kernel; ϕ
represents the nonlinear activation function; and Wt, xt−1, and bt represent the filter kernel,
the input of the CNN layer, and bias term of the t-th convolution kernel.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

Expanding along
the time dimension

Service Dimension

U
se

rs
 D

im
en

si
on

Time Fibers

Figure 4. Schematic representation of tensor expansion into fiber patterns.

In this paper, the first 1K− time slices of each vector after unfolding are used as
model training data and the K th step is predicted to achieve QoS prediction for future
time slices.

3.3.2. Convolutional Neural Network
In this paper, the local features of QoS time series are extracted by convolution neural

network. The advantage of CNN lies in its ability of local feature extraction and parameter
sharing. Convolutional kernels are used by the convolutional layer to convolve local re-
gions of the QoS time series in order to create corresponding features and reduce the risk
of over-fitting through the parameter sharing of the convolution kernel. The process of
convolution kernel convolution operation is as follows:

1()−= +t t t tF W x bϕ (14)

where tF represents the result of the convolution operation of the t-th convolution ker-
nel; ϕ represents the nonlinear activation function; and tW , 1−tx , and tb represent the
filter kernel, the input of the CNN layer, and bias term of the t-th convolution kernel.

The output of convolution layer is shown as the connection of all convolution kernel
calculation results, which is shown as:

1 2[, , ,]n=output F F F (15)

where n represents the maximum number of convolution kernels in the convolution
layer; output represents the final output of the convolution layer.

3.3.3. Bidirectional Long Short-Term Memory Neural Network
In this paper, a BiLSTM layer is added after the CNN layer to obtain the global char-

acteristics of time series. BiLSTM is a unique RNN structure. It is composed of a two-layer
LSTM network, which can obtain sequence features from two directions. The core struc-
ture of the LSTM consists of an input gate, a forgetting gate, a memory unit, and an output
gate. Input information enters the LSTM unit through the input gate, determines the in-
formation to be retained and forgotten through the forgetting gate, and finally outputs the
information through the output gate. Through such a unique gate structure, LSTM allevi-
ates the problems of gradient disappearance and gradient explosion in traditional RNN
networks. The structure of the LSTM unit is shown in Figure 5.

Figure 4. Schematic representation of tensor expansion into fiber patterns.

The output of convolution layer is shown as the connection of all convolution kernel
calculation results, which is shown as:

output = [F1, F2, · · · , Fn] (15)

where n represents the maximum number of convolution kernels in the convolution layer;
output represents the final output of the convolution layer.

3.3.3. Bidirectional Long Short-Term Memory Neural Network

In this paper, a BiLSTM layer is added after the CNN layer to obtain the global
characteristics of time series. BiLSTM is a unique RNN structure. It is composed of a
two-layer LSTM network, which can obtain sequence features from two directions. The
core structure of the LSTM consists of an input gate, a forgetting gate, a memory unit, and
an output gate. Input information enters the LSTM unit through the input gate, determines
the information to be retained and forgotten through the forgetting gate, and finally outputs
the information through the output gate. Through such a unique gate structure, LSTM
alleviates the problems of gradient disappearance and gradient explosion in traditional
RNN networks. The structure of the LSTM unit is shown in Figure 5.

The calculation process of forgetting gate is as follows:

ft = σ(Wf · [ht−1, xt] + bf) (16)

where ft is the output of the forgetting gate; xt represents the input feature sequence; and
ht−1 represents the output sequence of the previous time. Wf is the weight matrix of the
forgetting gate; bf represents the offset matrix; and σ is the sigmoid activation function,
whose expression is:

σ(x) =
1

1 + e−x (17)

The calculation process of input gate and memory unit is as follows:

it = σ(Wi · [ht−1, xt] + bi) (18)

∼
Ct = tanh(Wc · [ht−1, xt] + bc) (19)

Ct = ft*Ct−1+it*
∼
Ct (20)

Sensors 2022, 22, 5651 10 of 20

where ht−1 and xt generate the intermediate variable
∼
Ct through the activation function

tanh, and at the same time, it, as the output of the input gate, calculates the value of
the memory state Ct together with ft; Wi and Wc are weight matrices; bi and bc are
offset matrices.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21

σ σ σtanh

tanh

1tC −

1th −

tx

tf
ti

tC

to

th

tC

th

Figure 5. An LSTM unit structure.

The calculation process of forgetting gate is as follows:

1([,])σ= ⋅ +t f t - t ff W h x b (16)

where tf is the output of the forgetting gate; tx represents the input feature sequence;
and 1t -h represents the output sequence of the previous time. fW is the weight matrix

of the forgetting gate; fb represents the offset matrix; and σ is the sigmoid activation
function, whose expression is:

1()
1 xx
e

σ −=
+

 (17)

The calculation process of input gate and memory unit is as follows:

1([,])σ= ⋅ +t i t - t ii W h x b (18)

1= tanh([,])⋅ +t c t - t cC W h x b

 (19)

1=t t t - t tC f * C + i * C

 (20)

where 1t -h and tx generate the intermediate variable tC

 through the activation func-
tion tanh , and at the same time, ti , as the output of the input gate, calculates the value
of the memory state tC together with tf ; iW and cW are weight matrices; ib and

cb are offset matrices.
Finally, the output information of the LSTM unit is determined through the output

gate, whose expression is:

([,])σ= ⋅ +t o t -1 t oo W h x b (21)

tanh()= ∗t t th o C (22)

where to represents the output of the output gate, which together with tC determines
the short-term memory th of the LSTM unit at time t. The BiLSTM network used in this
paper consists of the above LSTM units. Its composition is shown in Figure 6.

Figure 5. An LSTM unit structure.

Finally, the output information of the LSTM unit is determined through the output
gate, whose expression is:

ot = σ(Wo · [ht−1, xt] + bo) (21)

ht = ot ∗ tanh(Ct) (22)

where ot represents the output of the output gate, which together with Ct determines the
short-term memory ht of the LSTM unit at time t. The BiLSTM network used in this paper
consists of the above LSTM units. Its composition is shown in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 21

LSTM

LSTM

h0

x0

LSTM

LSTM

h1

x1

LSTM

LSTM

hn

xn

……

……

0h
←

nh
→

nh
←

0h
→

Figure 6. Bidirectional long short-term memory (BiLSTM) neural network structure.

The BiLSTM network is composed of forward LSTM layer and reverse LSTM layer,
whose expression is:

[,]t n n=h h h

 (23)

where nh

 is the calculation result of the forward LSTM network, nh

 is the calculation
result of the reverse LSTM network, and th is the final output of the BiLSTM network.
In this way, BiLSTM can well obtain the global feature information of time series.

3.3.4. The Overall Structure of The Model
In order to fully obtain the temporal characteristics of historical QoS data, a neural

network model based on CNN and BiLSTM is adopted in this paper. Due to its circular
structure, a recurrent neural network (RNN) has good advantages in capturing the char-
acteristics of time series. However, the traditional RNN neural network faces the challenge
of gradient disappearance and gradient explosion. In order to fully obtain the character-
istics of historical QoS data and improve the universality of the network, this paper uses
a BiLSTM neural network to obtain the time series characteristics of historical QoS data.
The structure of a BiLSTM neural network can obtain features from the forward and re-
verse of time series, which greatly improves the feature capture ability of the model while
alleviating the problems of gradient disappearance and gradient explosion. On this basis,
the CNN layer is added to the BiLSTM model to enhance the model’s ability to obtain
local features of time series.

As shown in Figure 7, since the normalized data will make the model complete con-
vergence faster, the QoS data will be normalized first. In this paper, we use the maximum-
minimum normalization to operate on the data, and the calculation formula is:

min

max min
norm

X XX
X X

−
=

−
 (24)

where X is the original data in the time series, minX is the minimum value in the time
series, maxX is the maximum value in the time series, and normX is the normalized data.

Figure 6. Bidirectional long short-term memory (BiLSTM) neural network structure.

The BiLSTM network is composed of forward LSTM layer and reverse LSTM layer,
whose expression is:

ht = [
→
h n,
←
h n] (23)

Sensors 2022, 22, 5651 11 of 20

where
→
h n is the calculation result of the forward LSTM network,

←
h n is the calculation

result of the reverse LSTM network, and ht is the final output of the BiLSTM network. In
this way, BiLSTM can well obtain the global feature information of time series.

3.3.4. The Overall Structure of The Model

In order to fully obtain the temporal characteristics of historical QoS data, a neural
network model based on CNN and BiLSTM is adopted in this paper. Due to its circu-
lar structure, a recurrent neural network (RNN) has good advantages in capturing the
characteristics of time series. However, the traditional RNN neural network faces the
challenge of gradient disappearance and gradient explosion. In order to fully obtain the
characteristics of historical QoS data and improve the universality of the network, this
paper uses a BiLSTM neural network to obtain the time series characteristics of historical
QoS data. The structure of a BiLSTM neural network can obtain features from the forward
and reverse of time series, which greatly improves the feature capture ability of the model
while alleviating the problems of gradient disappearance and gradient explosion. On this
basis, the CNN layer is added to the BiLSTM model to enhance the model’s ability to obtain
local features of time series.

As shown in Figure 7, since the normalized data will make the model complete con-
vergence faster, the QoS data will be normalized first. In this paper, we use the maximum-
minimum normalization to operate on the data, and the calculation formula is:

Xnorm =
X− Xmin

Xmax− Xmin
(24)

where X is the original data in the time series, Xmin is the minimum value in the time series,
Xmax is the maximum value in the time series, and Xnorm is the normalized data.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21

QoS Training
Dataset Data Normalization

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

BiLSTMFully Connected Layer

Model Output

1-Dimension CNN

QoS Predicted Value

Flatten

Figure 7. CNN-BiLSTM Neural Network Structure.

In this paper, the local features in the time series are first extracted using a one-di-
mensional CNN layer. For the features of the QoS time series, this model uses a convolu-
tional layer with a window length of 5 and a total of 64 one-dimensional convolutional
kernels to extract features from the time series.

The main purpose of the BiLSTM neural network is to further learn the overall tem-
poral characteristics of the time series context based on the local features acquired by the
CNN network. The model uses BiLSTM layers containing 64 LSTM units per layer.

After the output of the BiLSTM layer, the model is expanded into a one-dimensional
sequence through the flatten layer and a single element is output as the next moment QoS
prediction through the fully connected layer. The Adams optimizer algorithm was used
to continuously update the model parameters by monitoring the training error “MAE”.
The batch size was 32, and the maximum number of training epochs was 200.

3.4. Kalman Filter-Based Deep Learning Predictive Value Correction Algorithm
3.4.1. Derivation of the Algorithm Formula

The application of deep learning in the time series prediction process is often based
on the prediction results of the model itself as the final prediction value, while in a realistic
QoS prediction application environment, real-time QoS observations will also be con-
stantly available during the calculation of deep learning prediction values. If the real-time
QoS observations can be combined with the prediction values of deep neural networks, it
will be possible to improve the prediction accuracy based on the deep neural network
prediction. Based on the above ideas, this paper proposes a Kalman filter-based correction
algorithm for deep learning prediction values. Based on the Kalman filter formula in Sec-
tion 1.2, this algorithm treats the predicted values of the deep neural network as the next
predicted values of the Kalman filter, and the predicted QoS values are all in elemental
form. Then the state equation will be transformable into:

ˆk kx net= (25)

Figure 7. CNN-BiLSTM Neural Network Structure.

In this paper, the local features in the time series are first extracted using a one-
dimensional CNN layer. For the features of the QoS time series, this model uses a convo-
lutional layer with a window length of 5 and a total of 64 one-dimensional convolutional
kernels to extract features from the time series.

Sensors 2022, 22, 5651 12 of 20

The main purpose of the BiLSTM neural network is to further learn the overall tem-
poral characteristics of the time series context based on the local features acquired by the
CNN network. The model uses BiLSTM layers containing 64 LSTM units per layer.

After the output of the BiLSTM layer, the model is expanded into a one-dimensional
sequence through the flatten layer and a single element is output as the next moment QoS
prediction through the fully connected layer. The Adams optimizer algorithm was used to
continuously update the model parameters by monitoring the training error “MAE”. The
batch size was 32, and the maximum number of training epochs was 200.

3.4. Kalman Filter-Based Deep Learning Predictive Value Correction Algorithm
3.4.1. Derivation of the Algorithm Formula

The application of deep learning in the time series prediction process is often based on
the prediction results of the model itself as the final prediction value, while in a realistic
QoS prediction application environment, real-time QoS observations will also be constantly
available during the calculation of deep learning prediction values. If the real-time QoS
observations can be combined with the prediction values of deep neural networks, it will be
possible to improve the prediction accuracy based on the deep neural network prediction.
Based on the above ideas, this paper proposes a Kalman filter-based correction algorithm
for deep learning prediction values. Based on the Kalman filter formula in Section 1.2, this
algorithm treats the predicted values of the deep neural network as the next predicted
values of the Kalman filter, and the predicted QoS values are all in elemental form. Then
the state equation will be transformable into:

x̂k = netk (25)

Pk = lossk−1 + Q (26)

where netk is the prediction value of the neural network at moment k − 1 and lossk−1
is the prediction error of the neural network at moment k − 1. To calculate the error
of the prediction process and quantify the value of lossk−1, assume that there exists a
time-variable state transfer variable Ak−1 such that:

x̂k = netk = Ak−1netk−1 (27)

Then Equation (9) can be transformed into:

Pk = Pk−1 Ak−1
2 + Q (28)

where Ak−1 =
netk

netk−1
; then, substituting Equations (21) and (22) into the state update

equation gives:

Kk =
Pk

Pk + R
(29)

Knetk = netk + Kk(QoSk− netk) (30)

where QoSk is the observed value at moment k and Knetk is the predicted value at moment
k corrected by the Kalman filter.

In summary, the Algorithm 2 is summarized as follows.

Sensors 2022, 22, 5651 13 of 20

Algorithm 2: Kalman filter-based deep learning predictive value correction algorithm.

Inputs: netk:predicted value of the model at moment k,
QoSk:real-time QoS observations at moment k

Output: Knetk:Kalman filtered predictions at moment k
1: BEGIN
2: Kalman filter initialization: Q, R, P0, net1, k = 2
3: REPEAT
4: Set the model predictions to the Kalman filter one-step predictions.
x̂k = netk
5: Calculate the state transfer variables Ak−1 :
Ak−1 =

netk
netk−1

6: Calculate the covariance from Ak−1:
Pk = Pk−1 Ak−1

2 + Q
7: Calculate the Kalman filter gain Kk:

Kk =
Pk

Pk+R

8: Calculation of Kalman filter corrected model predictions:
Knetk = netk + Kk(QoSk− netk)
9: Calculation of post-prediction covariance:
Pk = (1− Kk)Pk
10: k = k + 1
11: until end of algorithm
12: END

3.4.2. Optimization Strategies in the Face of Sparse Observations

Algorithm 2 achieves an effective combination of model predictions and real-time
QoS observations. However, in practice, real-time QoS observations are also sparse, and
missing observations added to the Kalman filtering process may lead to an increase in
algorithm error. In this paper, an algorithm optimization strategy is proposed for the case
of sparse observations. Algorithm 3 is the optimized algorithm, and the specific contents
are as follows

Algorithm 3: Kalman filter-based deep learning prediction correction algorithm under sparse observations.

Inputs: netk:predicted value of the model at moment k,
QoSk:real-time QoS observations at moment k

Output: Knetk:Kalman filtered predictions at moment k
1: BEGIN
2: Kalman filter initialization:Q, R, P0, net1, k = 2
3: REPEAT
4: Set the model predictions to the Kalman filter one-step predictions:
x̂k = netk
5: Calculate the state transfer variables Ak−1 :
Ak−1 =

netk
netk−1

6: Calculate the covariance from Ak−1:
Pk = Pk−1 Ak−1

2 + Q
7: Calculate the Kalman filter gain Kk:

Kk =
Pk

Pk+R

8: Determine if a QoS observation is missing.
if QoSk 6= 0
9: Calculation of Kalman filter corrected model predictions.
Knetk = netk + Kk(QoSk− netk)
10: else
11: Use the model predictions as Kalman filter corrections.
Knetk = netk
12: end if
13: Calculation of post-prediction covariance.
Pk = (1− Kk)Pk
14: k = k + 1
15: until the end of the algorithm
16: END

Sensors 2022, 22, 5651 14 of 20

4. Experimental Results and Analysis
4.1. Preparation
4.1.1. Data Set and Experimental Environment

This paper conducts experiments on a response time dataset from the WS-DREAM-
dataset 2 dataset, which is widely used in the field of QoS prediction. It contains response
time data generated by 142 users interacting with 4500 web services over 64 time slices.
The experiments in this paper construct the data in the dataset as a tensor and then perform
missing value filling, expand the tensor fibrillation into a time series vector according to
the method in Section 3.3.1, and keep the first 63 time slices in the vector as historical data
for training and predicting the outcome of the next time slice. The value of the 64th time
slice is taken as the true value. When dividing the dataset, 85% of the vectors were used as
the deep learning model training set and the remaining 15% were used as model validation
for training.

This experiment is based on the Intel (R) core (TM) i7-10875h CPU at 2.30 GHz. On
the Windows platform of the processor, the NVIDIA Geforce GTX 2060 graphics processor
and CUDA version 11.1.114 are used for the training process of deep learning. All codes
are programmed through the PyCharm platform.

4.1.2. Evaluation Indicators

The mean absolute error (MAE) and root mean square error (RMSE) are used in the
experiments in this paper as evaluation metrics in the dynamic QoS prediction process.
The MAE and RMSE are defined as:

MAE =

n
∑

i=1
|reali− predictedi|

n
(31)

RMSE =

√√√√√ n
∑

i=1
(reali− predictedi)

2

n
(32)

where n is the number of predicted QoS values, and reali and predictedi are the true and
predicted values, respectively. The smaller the MAE and RMSE values, the greater the
prediction effect of the relevant model.

4.2. Model Comparison Experiments

This section compares the MFDK algorithm proposed in this paper with existing time
series prediction algorithms and time-aware QoS prediction-based algorithms.

One of them is the ARIMA [24] algorithm (Autoregressive Integrated Moving Average
model, ARIMA), which is a classical time series prediction algorithm that performs model
prediction by smoothed time series parameters obtained after differencing.

TCN [32] (Temporal Convolutional Network, TCN) is a type of convolutional neural
network that uses causal convolution and dilated convolution to enable the convolutional
neural network to handle time series prediction problems. It is a new model that outper-
forms traditional neural networks such as LSTM and RNN in prediction performance.

WSPred [33] is a time series aware QoS prediction algorithm based on tensor decom-
position, which predicts missing values by performing a third-order tensor decomposition
on the user–service–time tensor.

CLUS [34] clusters the user service time tensor into different clusters through the
K-means algorithm and uses the similarity relationship within the cluster to predict QoS.

The PMF [35] (Probabilistic Matrix Factorization) method performs QoS prediction by
means of probabilistic matrix factorization.

To test the adaptability of the different methods in a realistic QoS sparse environment,
we randomly removed data from the tensor to control the tensor density; e.g., a tensor
with a tensor density of 0.1 represents a tensor where we randomly removed 90% of the

Sensors 2022, 22, 5651 15 of 20

elements of the original tensor. We finally compared the RMSE and MAE metrics of the
different prediction methods for tensor densities equal to 0.1, 0.15, 0.2, 0.25, and 0.3. The
final experimental results are shown in Table 2.

Table 2. Results of model comparison experiments.

Forecasting Methodology

Tensor Density

0.1 0.15 0.2 0.25 0.3

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA [24] 2.9209 1.0471 2.8388 1.0225 2.7578 0.9866 2.6186 0.9376 2.5119 0.9008
TCN [32] 3.0182 1.1188 2.9754 1.0966 2.9146 1.0773 2.9422 1.0682 2.8556 1.0502

WSPred [33] 1.7878 0.7684 1.7737 0.7563 1.7864 0.7653 1.7708 0.7512 1.7921 0.7638
CLUS [34] 2.2625 0.8858 2.2494 0.8557 2.2168 0.8296 2.1782 0.8082 2.1434 0.7926
PMF [35] 2.2441 0.9336 2.0951 0.8951 1.9961 0.8667 1.9271 0.8448 1.8773 0.8271
MFDK 0.9282 0.5901 0.9169 0.5825 0.9019 0.5784 0.9042 0.5759 0.9006 0.5770

The experimental results demonstrate that the prediction accuracy of each model
generally improves as the tensor density increases. The RMSE and MAE indices of the
model proposed in this paper are lower than those of the comparison models under
various tensor densities, indicating that the MFDK model has superior QoS prediction
capability. Specifically, the ARIMA model has limited capacity to capture sparse time series
characteristics and cannot fill in missing data, making it hard to construct an appropriate
prediction model for sparse data. The TCN algorithm is a deep learning method that
captures the features of time series data excellently. However, the capacity for generalization
and prediction of a TCN network trained on sparse data would be considerably diminished.
This further demonstrates the significance of data filling for historical data. The PMF,
CLUS, and WSPred algorithm models have better prediction capabilities compared to
the ARIMA and TCN models, with their RMSE metrics decreasing by averages of 53.2%,
23.5%, and 34.6%, respectively, and their MAE metrics decreasing by averages of 28.6%,
17.3%, and 12.1%, respectively. This is due to the capacity of time-aware QoS prediction
algorithms to fill in sparse data. They are better at adapting to sparse data than ARIMA
and TCN algorithms. Among these, the WSpred algorithm outperforms PMF and CLUS
in terms of prediction accuracy. This is because the WSpred algorithm iteratively predicts
missing values in a gradient descent manner using a third-order tensor containing time
series relationships, and the prediction accuracy is greater. However, the aforementioned
model lacks the combination of real-time QoS observations, and its prediction impact is still
insufficient when compared to the MFDK model. To summarize, the MFDK model with
sparse data filling and real-time QoS observations has greatly increased QoS prediction
accuracy when compared to baseline QoS prediction approaches.

4.3. Model Ablation Experiments

The experiments in this part are designed to check the functions of the various compo-
nents of the model provided in this study to further evaluate the model’s rationality and
predictive capacity. The Tucker + net and net + Kalman models are created by deleting the
Kalman filter correction and non-negative matrix decomposition parts of the MFDK model,
respectively, while the net model merely keeps the neural network prediction element of
the MFDK model. The outcomes of their experiments are displayed in Figure 8.

Based on the experimental findings, it is evident that as tensor density increases, the
overall prediction accuracy of each model improves. Among these, the MFDK model
achieves better experimental results, with average reductions of 69.4% and 44.0% in RMSE
and Mae indicators, respectively, compared with net. From the experimental results of
the Tucker + net model and net + Kalman model, it can be seen that, relative to the net
model, the RMSE and MAE of the former decreased by averages of 66.9% and 30.0%, while
the RMSE and MAE of the latter decreased by averages of 23.7% and 28.7%, which were
less than the former. This is because the non-negative matrix decomposition predicts the

Sensors 2022, 22, 5651 16 of 20

missing QoS data, fills the sparsity of the training data, considerably enhances the capacity
of the neural network to forecast, and greatly increases the overall prediction accuracy
of the model. The experimental findings in this part demonstrate that both non-negative
matrix factorization and the Kalman filter have significantly enhanced the neural network’s
prediction outcomes, proving that the MFDK model has good performance.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

Tucker + net model and net + Kalman model, it can be seen that, relative to the net model,
the RMSE and MAE of the former decreased by averages of 66.9% and 30.0%, while the
RMSE and MAE of the latter decreased by averages of 23.7% and 28.7%, which were less
than the former. This is because the non-negative matrix decomposition predicts the miss-
ing QoS data, fills the sparsity of the training data, considerably enhances the capacity of
the neural network to forecast, and greatly increases the overall prediction accuracy of the
model. The experimental findings in this part demonstrate that both non-negative matrix
factorization and the Kalman filter have significantly enhanced the neural network’s pre-
diction outcomes, proving that the MFDK model has good performance.

0.10 0.15 0.20 0.25 0.30
Tensor density

0.50

1.00

1.50

2.00

2.50

3.00

3.50

RM
SE

4.00

MFDK

tucker+net

net+kalman

net

0.10 0.15 0.20 0.25 0.30
0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

M
AE

Tensor density
MFDK

tucker+net

net+kalman

net
(a) (b)

Figure 8. Results of model ablation experiments. (a) Variation of RMSE at different tensor densities
in the ablation experiment; (b) variation of MAE at different tensor densities in the ablation experi-
ment.

4.4. Effect of Observation Sparsity on Model Performance
In the real environment, the real-time observation value of the QoS value is also

sparse. This section mainly tests the adaptability of MFDK model to the sparsity of differ-
ent observations and its applicability in the real environment. This experiment verifies the
prediction performance of the model under different tensor densities when the observa-
tion value densities are 1, 0.9, 0.7, 0.5, 0.3, and 0.1. The experimental results are shown in
Figure 9 below.

It can be seen from the experimental results that the overall prediction accuracy of
the model shows an upward trend with the increase of tensor density, and the prediction
accuracy of the model is also rising with the increase of observation density. Specifically,
starting from the observation density of 0.1, the RMSE and MAE of the model will de-
crease by 16.6% on average every time the observation density increases by 0.2. When the
observation density is one, that is, the observation value has no sparsity, the prediction
effect of the model reaches the best, and the RMSE and MAE are 0.3752 and 0.2736 on
average. It can be further concluded from the experiment that the MFDK model can well
adapt to the observed values under different sparsities. At the same time, the predicted
values of the model can be modified by integrating the observed values with the Kalman
filter algorithm, which can effectively improve the prediction accuracy of the model. The
lower the sparsity of the observed values, the better the prediction effect of the model.

Figure 8. Results of model ablation experiments. (a) Variation of RMSE at different tensor densities in
the ablation experiment; (b) variation of MAE at different tensor densities in the ablation experiment.

4.4. Effect of Observation Sparsity on Model Performance

In the real environment, the real-time observation value of the QoS value is also sparse.
This section mainly tests the adaptability of MFDK model to the sparsity of different
observations and its applicability in the real environment. This experiment verifies the
prediction performance of the model under different tensor densities when the observation
value densities are 1, 0.9, 0.7, 0.5, 0.3, and 0.1. The experimental results are shown in
Figure 9 below.

It can be seen from the experimental results that the overall prediction accuracy of
the model shows an upward trend with the increase of tensor density, and the prediction
accuracy of the model is also rising with the increase of observation density. Specifically,
starting from the observation density of 0.1, the RMSE and MAE of the model will decrease
by 16.6% on average every time the observation density increases by 0.2. When the
observation density is one, that is, the observation value has no sparsity, the prediction
effect of the model reaches the best, and the RMSE and MAE are 0.3752 and 0.2736 on
average. It can be further concluded from the experiment that the MFDK model can well
adapt to the observed values under different sparsities. At the same time, the predicted
values of the model can be modified by integrating the observed values with the Kalman
filter algorithm, which can effectively improve the prediction accuracy of the model. The
lower the sparsity of the observed values, the better the prediction effect of the model.

Sensors 2022, 22, 5651 17 of 20Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

0.10 0.15 0.20 0.25 0.30
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
A

E

Tensor density
Density of observations=1

Density of observations=0.9

Density of observations=0.7

Density of observations=0.5

Density of observations=0.3

Density of observations=0.1

0.10 0.15 0.20 0.25 0.30
0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

RM
SE

Tensor density
Density of observations=1

Density of observations=0.9

Density of observations=0.7

Density of observations=0.5

Density of observations=0.3

Density of observations=0.1

(a) (b)

Figure 9. Experimental results on the variation of the sparsity of the observations. (a) MAE variation
for different tensor densities in the observation variation; (b) RMSE variation at different tensor
densities in the observation variation.

4.5. Effect of Kalman Filter Parameters on Model Performance
The experiment in this section mainly discusses the influence of changes in state noise

covariance Q and observation noise covariance R in Kalman filter parameters on the pre-
diction performance of the model. Q and R are the initial parameters in the Kalman filter
algorithm, and their values represent the confidence of the Kalman filter to the predicted
value of the model and the actual observed value, respectively, thus affecting the correc-
tion ability of the predicted value of the model. It should be noted that in the actual cal-
culation process, Q and R do not affect the Kalman filter process alone. According to For-
mulas (22) and (23), Q and R jointly determine the calculation process of Kalman filter
gain. Therefore, this experiment will discuss the change of the prediction ability of the
model under the conditions of [0,20]Q∈ and [0,20]R∈ , when the observed value den-
sity is 0.5 and the tensor densities are 0.1, 0.3, and 0.5, respectively. The experimental re-
sults are as follows.

As shown in Figure 10, the three-dimensional chart is composed of the x-axis as the
state noise covariance Q, the y-axis as the observation noise covariance R, and the z-axis
as the model evaluation indicators RMSE and MAE, respectively. From the chart, it can
be concluded that the changes of R and Q values have an important impact on the predic-
tion accuracy of the model. Specifically, with the continuous improvement of tensor den-
sity, the overall prediction accuracy of the model is also rising. Further, in each group of
experiments, when the R value decreases and Q value increases, RMSE and MAE decline
as a whole, and the prediction ability of the model increases; This is because with the
decrease of R value and the increase of Q value, the gain value of Kalman filter will in-
crease, the ability of Kalman filter to correct the predicted value of the model will be en-
hanced, and the prediction accuracy will also be improved. From this analysis, we can
draw a conclusion: the changes of Kalman filter parameters R and Q have a significant
impact on the prediction accuracy of the model. When initializing Kalman filter parame-
ters, increasing Q and decreasing R will further improve the prediction accuracy of the
model.

Figure 9. Experimental results on the variation of the sparsity of the observations. (a) MAE variation
for different tensor densities in the observation variation; (b) RMSE variation at different tensor
densities in the observation variation.

4.5. Effect of Kalman Filter Parameters on Model Performance

The experiment in this section mainly discusses the influence of changes in state
noise covariance Q and observation noise covariance R in Kalman filter parameters on the
prediction performance of the model. Q and R are the initial parameters in the Kalman
filter algorithm, and their values represent the confidence of the Kalman filter to the
predicted value of the model and the actual observed value, respectively, thus affecting
the correction ability of the predicted value of the model. It should be noted that in the
actual calculation process, Q and R do not affect the Kalman filter process alone. According
to Formulas (22) and (23), Q and R jointly determine the calculation process of Kalman
filter gain. Therefore, this experiment will discuss the change of the prediction ability of
the model under the conditions of Q ∈ [0, 20] and R ∈ [0, 20], when the observed value
density is 0.5 and the tensor densities are 0.1, 0.3, and 0.5, respectively. The experimental
results are as follows.

As shown in Figure 10, the three-dimensional chart is composed of the x-axis as
the state noise covariance Q, the y-axis as the observation noise covariance R, and the
z-axis as the model evaluation indicators RMSE and MAE, respectively. From the chart,
it can be concluded that the changes of R and Q values have an important impact on
the prediction accuracy of the model. Specifically, with the continuous improvement of
tensor density, the overall prediction accuracy of the model is also rising. Further, in each
group of experiments, when the R value decreases and Q value increases, RMSE and MAE
decline as a whole, and the prediction ability of the model increases; This is because with
the decrease of R value and the increase of Q value, the gain value of Kalman filter will
increase, the ability of Kalman filter to correct the predicted value of the model will be
enhanced, and the prediction accuracy will also be improved. From this analysis, we can
draw a conclusion: the changes of Kalman filter parameters R and Q have a significant
impact on the prediction accuracy of the model. When initializing Kalman filter parameters,
increasing Q and decreasing R will further improve the prediction accuracy of the model.

Sensors 2022, 22, 5651 18 of 20

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21

M
A

E

RM
SE

(a) (d)

M
A

E

RM
SE

(b) (e)

M
A

E

RM
SE

(c) (f)

Figure 10. Experimental results of Kalman filter parameter variations. (a) Variation of MAE at tensor
density of 0.1; (b) variation of MAE at tensor density of 0.3; (c) variation of MAE at tensor density
of 0.5; (d) variation of PMSE at tensor density of 0.1; (e) variation of PMSE at tensor density of 0.3;
(f) variation of PMSE at tensor density of 0.5.

Figure 10. Experimental results of Kalman filter parameter variations. (a) Variation of MAE at tensor
density of 0.1; (b) variation of MAE at tensor density of 0.3; (c) variation of MAE at tensor density
of 0.5; (d) variation of PMSE at tensor density of 0.1; (e) variation of PMSE at tensor density of 0.3;
(f) variation of PMSE at tensor density of 0.5.

Sensors 2022, 22, 5651 19 of 20

5. Conclusions

This study introduces MFDK, a novel dynamic QoS prediction approach. The approach
is divided into three sections. To begin, non-negative Tucker decomposition is used to fill
in the sparse values in historical data; after that, the historical QoS data is transformed into
training data, which is then transferred to the CNN-BiLSTM deep learning model we built
for training, and the QoS value of the future time slice is predicted. Finally, the prediction
values are adjusted using the real-time QoS method introduced in this research, which
combines the real observation values with the Kalman filter to obtain more accurate QoS
prediction data. The MFDK model successfully handles the challenges of historical QoS
data filling and real-time QoS data fusion via trials. Experiments on the WS-dream dataset
revealed that the MFDK model outperforms the classic dynamic QoS prediction approach.

In the future work, the development direction of the MFDK model will be investigated
in two aspects: on the one hand, it will continue to improve the filling ability of sparse
QoS data. Information such as user geographic location and user–service–similarity rela-
tionships can be combined to make the historical data filling results of the MFDK model
more accurate; on the other hand, the performance of the deep learning network will be
improved so that the ability of the new neural network to capture time series features can
be enhanced.

Author Contributions: Conceptualization, Y.Y., P.S., J.Z., Y.M., L.Z. and Y.Q.; methodology, Y.Y., P.S.
and J.Z.; software, Y.Y., Y.M. and L.Z.; validation, Y.Y.; formal analysis, Y.Y. and P.S.; data curation,
Y.Y.; writing—original draft preparation, Y.Y., P.S. and J.Z.; writing—review and editing, Y.Y., P.S. and
J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: No applicable.

Data Availability Statement: The dataset used in this study is derived from the open dataset of Web
services research, wsdream-dataset2, publicly available at the Chinese University of Hong Kong.
https://github.com/wsdream/wsdream-dataset (accessed on 18 June 2022). The experimental
results of CLUS, WSPred, and PMF are cited in Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R.
Lyu, “Benchmarking and Improving QoS Prediction Approaches for Web Service Recommendation”,
available online: http://wsdream.github.io/WSRec (accessed on 18 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, M.; Liu, J.; Zhou, D.; Cao, B.; Wen, Y. Multi-Relational Topic Model-Based Approach for Web Services Clustering. Chin. J.

Comput. 2019, 42, 820–836. [CrossRef]
2. He, Y.; Sun, P.; Jiao, Z.; Zhang, J.; Wang, H. Semantic-Driven Clustering Method of Combat Resource Service. J. Air Force Eng.

Univ. Nat. Sci. Ed. 2020, 21, 101–107. [CrossRef]
3. Liu, X.; Shaleen, A.; Ding, C.; Yu, Q. An LDA-SVM active learning framework for web service classification. In Proceedings of the

2016 IEEE International Conference on Web Services, San Francisco, CA, USA, 27 June–2 July 2016. [CrossRef]
4. Cao, B.; Xiao, Q.; Zhang, X.; Liu, J. An API service recommendation method via combining self-organization map-based

functionality clustering and deep factorization machine-based quality prediction. Chin. J. Comput. 2019, 42, 1367–1383. [CrossRef]
5. Fang, C. Research on Technologies of Cloud Service Selection and Recommendation Based on QoS. Master’s Thesis, PLA Strategic

Support Force Information Engineering University, Zhengzhou, China, April 2018.
6. Zhang, Y.; Yin, C.; Wu, Q.; He, Q.; Zhu, H. Location-Aware Deep Collaborative Filtering for Service Recommendation. IEEE Trans.

Syst. Man Cybern. Syst. 2021, 51, 3796–3807. [CrossRef]
7. Liao, S.; Sun, P.; Liu, X.; Zhong, Y. Service composition optimization based on improved krill herd algorithm. J. Comput. Appl.

2021, 41, 3652–3657. [CrossRef]
8. Tao, F.; LaiLi, Y.; Xu, L.; Zhang, L. FC-PACO-RM: A Parallel Method for Service Composition Optimal-Selection in Cloud

Manufacturing System. IEEE Trans. Ind. Inform. 2013, 9, 2023–2033. [CrossRef]
9. Haytamy, S.; Omara, F. A deep learning based framework for optimizing cloud consumer QoS-based service composition.

Computing 2020, 102, 1117–1137. [CrossRef]

https://github.com/wsdream/wsdream-dataset
http://wsdream.github.io/WSRec
http://doi.org/10.11897/SP.J.1016.2019.00820
http://doi.org/10.3969/J.ISSN.1009-3516.2020.04.016
http://doi.org/10.1109/ICWS.2016.16
http://doi.org/10.11897/SP.J.1016.2019.01367
http://doi.org/10.1109/TSMC.2019.2931723
http://doi.org/10.11772/J.ISSN.1001-9081.2021040699
http://doi.org/10.1109/TII.2012.2232936
http://doi.org/10.1007/s00607-019-00784-7

Sensors 2022, 22, 5651 20 of 20

10. Fu, Y.; Ding, D.; Seid, A. Using Nearest Graph QoS Prediction Method for Service Recommendation in the Cloud. Wirel. Commun.
Mob. Comput. 2018, 2018, 8680758. [CrossRef]

11. Kumari, R.; Kumar, S.; Poonia, R.C.; Singh, V.; Raja, L.; Bhatnagar, V.; Agarwal, P. Analysis and Predictions of Spread, Recovery,
and Death Caused by COVID-19 in India. Big Data Min. Anal. 2021, 4, 65–75. [CrossRef]

12. Gupta, V.K.; Gupta, A.; Kumar, D.; Sardana, A. Prediction of COVID-19 Confirmed, Death, and Cured Cases in India Using
Random Forest Model. Big Data Min. Anal. 2021, 4, 116–123. [CrossRef]

13. Gu, W.; Gao, F.; Li, R.; Zhang, J. Learning Universal Network Representation via Link Prediction by Graph Convolutional Neural
Network. J. Soc. Comput. 2021, 2, 43–51. [CrossRef]

14. Ahmad, F.; Ahmad, A.; Hussain, I.; Muhammad, G.; Uddin, Z.; AlQahtani, S.A. Proactive Caching in D2D Assisted Multitier
Cellular Network. Sensors 2022, 22, 5078. [CrossRef] [PubMed]

15. Fadaie, S.; Mehravar, M.; Webb, D.J.; Zhang, W. Nearshore Contamination Monitoring in Sandy Soils Using Polymer Optical
Fibre Bragg Grating Sensing Systems. Sensors 2022, 22, 5213. [CrossRef] [PubMed]

16. Mihigo, I.N.; Zennaro, M.; Uwitonze, A.; Rwigema, J.; Rovai, M. On-Device IoT-Based Predictive Maintenance Analytics Model:
Comparing TinyLSTM and TinyModel from Edge Impulse. Sensors 2022, 22, 5174. [CrossRef] [PubMed]

17. Ma, Y.; Sun, H.; Chen, Y.; Zhang, J.; Xu, Y.; Wang, X.; Hui, P. DeepPredict: A Zone Preference Prediction System for Online
Lodging Platforms. J. Soc. Comput. 2021, 2, 52–70. [CrossRef]

18. Fathy, C.; Saleh, S.N. Integrating Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for Detecting
Weapons in Video Surveillance Systems. Sensors 2022, 22, 5075. [CrossRef]

19. Shao, L.; Zhang, J.; Wei, Y.; Zhao, J.; Xie, B.; Mei, H. Personalized QoS Prediction for Web Services via Collaborative Filtering.
In Proceedings of the IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, UT, USA, 9–13 July 2007.
[CrossRef]

20. Zheng, Z.; Ma, H.; Michael, R.L.; Lrwin, K. QoS-Aware Web Service Recommendation by Collaborative Filtering. IEEE Trans. Serv.
Comput. 2011, 4, 140152. [CrossRef]

21. Xia, Y.; Ding, D.; Chang, Z.; Li, F. Joint Deep Networks based Multi-source Feature Learning for QoS Prediction. IEEE Trans. Serv.
Comput. 2021, in press. [CrossRef]

22. Zou, G.; Chen, J.; He, Q.; Li, K.; Zhang, B.; Gan, Y. NDMF: Neighborhood-Integrated Deep Matrix Factorization for Service QoS
Prediction. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2717–2730. [CrossRef]

23. Nguyen, M.; Yu, J.; Nguyen, T.; Han, Y. Attentional matrix factorization with context and co-invocation for service recommenda-
tion. Expert Syst. Appl. 2021, 186, 115698. [CrossRef]

24. Yan, C.; Zhang, Y.; Zhong, W.; Zhang, C.; Xin, B. A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction in Mobile
Edge Computing. Tsinghua Sci. Technol. 2022, 27, 315–324. [CrossRef]

25. Hu, Y.; Peng, Q.; Hu, X.; Yang, R. Web Service Recommendation Based on Time Series Forecasting and Collaborative Filtering. In
Proceedings of the 2015 IEEE International Conference on Web Services, New York, NY, USA, 27 June–2 July 2015. [CrossRef]

26. Amin, K.; Abolfazl, T.H.; Mahdi, B. Online QoS Prediction in the Cloud Environments Using Hybrid Time-Series Data Mining
Approach. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2021, 45, 461–478. [CrossRef]

27. Wu, H.; Zhang, Z.; Luo, J.; Yue, K.; Hsu, C.H. Multiple Attributes QoS Prediction via Deep Neural Model with Contexts. IEEE
Trans. Serv. Comput. 2021, 14, 1084–1096. [CrossRef]

28. Huang, W.; Zhang, P.; Chen, Y.; Zhou, M.; Yusuf, A.T.; Abdullah, A. QoS Prediction Model of Cloud Services Based on Deep
Learning. J. Autom. Sin. 2022, 9, 564–566. [CrossRef]

29. Jin, Y.; Guo, W.; Zhang, Y. A Time-Aware Dynamic Service Quality Prediction Approach for Services. Tsinghua Sci. Technol. 2020,
25, 227–238. [CrossRef]

30. Zhang, P.; Wang, L.; Li, W.; Hareton, L.; Song, W. A Web Service QoS Forecasting Approach Based on Multivariate Time Series. In
Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017. [CrossRef]

31. Zou, G.; Li, T.; Jiang, M.; Hu, S.; Cao, C.; Zhang, B.; Gan, Y.; Chen, Y. DeepTSQP: Temporal-aware service QoS prediction via deep
neural network and feature integration. Knowl.-Based Syst. 2022, 241, 1–14. [CrossRef]

32. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271.
33. Zhang, Y.; Zheng, Z.; Michael, R.L. WSPred: A Time-Aware Personalized QoS Prediction Framework for Web Services.

In Proceedings of the 2011 IEEE 22nd International Symposium on Software Reliability Engineering, Hiroshima, Japan,
29 November–2 December 2011. [CrossRef]

34. Marin, S.; Goran, D.; Sinisa, S. Prediction of Atomic Web Services Reliability for QoS-Aware Recommendation. IEEE Trans. Serv.
Comput. 2014, 8, 425–438. [CrossRef]

35. Zheng, Z.; Ma, H.; Michael, R.L.; Irwin, K. Collaborative Web Service QoS Prediction via Neighborhood Integrated Matrix
Factorization. IEEE Trans. Serv. Comput. 2012, 6, 289–299. [CrossRef]

http://doi.org/10.1155/2018/8680758
http://doi.org/10.26599/BDMA.2020.9020013
http://doi.org/10.26599/BDMA.2020.9020016
http://doi.org/10.23919/JSC.2021.0001
http://doi.org/10.3390/s22145078
http://www.ncbi.nlm.nih.gov/pubmed/35890758
http://doi.org/10.3390/s22145213
http://www.ncbi.nlm.nih.gov/pubmed/35890892
http://doi.org/10.3390/s22145174
http://www.ncbi.nlm.nih.gov/pubmed/35890854
http://doi.org/10.23919/JSC.2021.0004
http://doi.org/10.3390/s22145075
http://doi.org/10.1109/ICWS.2007.140
http://doi.org/10.1109/TSC.2010.52
http://doi.org/10.1109/TSC.2021.3050178
http://doi.org/10.1109/TNSM.2020.3027185
http://doi.org/10.1016/j.eswa.2021.115698
http://doi.org/10.26599/TST.2021.9010040
http://doi.org/10.1109/ICWS.2015.40
http://doi.org/10.1007/s40998-020-00371-z
http://doi.org/10.1109/TSC.2018.2859986
http://doi.org/10.1109/JAS.2021.1004392
http://doi.org/10.26599/TST.2019.9010007
http://doi.org/10.1109/ICWS.2017.27
http://doi.org/10.1016/j.knosys.2021.108062
http://doi.org/10.1109/ISSRE.2011.17
http://doi.org/10.1109/TSC.2014.2346492
http://doi.org/10.1109/TSC.2011.59

	Introduction
	Background and Motivation
	Related Works
	Main Contributions

	Preliminaries
	Tucker Decomposition
	Kalman Filter

	The Proposed Model
	Description of the Problem
	Missing Data Filling Based on Non-Negative Tucker Decomposition
	CNN-BiLSTM Based Time Series Prediction Model
	Training Dataset Construction
	Convolutional Neural Network
	Bidirectional Long Short-Term Memory Neural Network
	The Overall Structure of The Model

	Kalman Filter-Based Deep Learning Predictive Value Correction Algorithm
	Derivation of the Algorithm Formula
	Optimization Strategies in the Face of Sparse Observations

	Experimental Results and Analysis
	Preparation
	Data Set and Experimental Environment
	Evaluation Indicators

	Model Comparison Experiments
	Model Ablation Experiments
	Effect of Observation Sparsity on Model Performance
	Effect of Kalman Filter Parameters on Model Performance

	Conclusions
	References

