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Abstract: This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS
resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory
environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed
for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimen-
tal setup is then assembled to sense indoor particles that are present in the laboratory environment.
The challenges associated with particle deposition as a result of assembling the portable experi-
mental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass
of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction
technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle
mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms
and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is
estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is
approximately 60 femtograms for a 9.2 s integration time.

Keywords: MEMS; oscillators; sensors; resonant frequency; nanoparticles; particulate matter;
resonators; indoor particles; silver nanoparticles

1. Introduction

The advent of miniaturized sensors integrated into wired or wireless sensor networks
has made it possible to monitor environmental parameters continuously and with high
fidelity [1,2]. One such area of interest where these sensors can overcome the limitations
associated with current monitoring instruments is gravimetric sensing. While a range of
technologies have been developed for gravimetric sensing, several of these are limited by
their size, portability, cost, power consumption and inability to measure over a range of
analytes of interest. Microelectromechanical systems (MEMS) and CMOS technologies
provide a promising integration platform [3] in this context, enabling the miniaturization
and integration of gravimetric sensors for gas analysis and particulate monitoring while
addressing a number of the limitations associated with current technologies [4].

An application scenario in the context of gravimetric sensing where MEMS sensors
can provide an added advantage is in the sensing of ultrafine particles that are less than
100 nanometers in diameter. The significance of sensing ultrafine particles [5–7] has been
widely recognized due to their detrimental effects on human health, as discussed in [8–17].
Current approaches include commercial condensation particle counters, but these provide
an estimate of number concentration rather than a direct measure of total mass or mass
concentration and require a system to enlarge the particles to a sufficiently large diameter
through vapor condensation prior to detection. Additionally, once particulates are collected
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onto the surface of a MEMS sensor, other techniques can be applied for further characteri-
zation including compositional analysis [18]. This paper demonstrates the applicability of
MEMS sensors, specifically piezoelectric-on-silicon resonant mass sensors, for detecting
ultrafine particles following on previous work [19] applied to two use cases viz. (1) to
characterize silver nanoparticles generated in a laboratory setup and (2) to the detection of
particulate matter in an indoor environment.

An additional feature of MEMS sensors that is beneficial for this purpose is the
potential for miniaturization and integration, including fabrication compatibility with
standard Complementary Metal Oxide Semiconductor (CMOS) Very Large Scale Integration
(VLSI) processes [20]. Specifically, MEMS oscillators have been previously demonstrated
as critical building blocks for several types of sensors, including mass sensors, biological
sensors that detect molecular interactions, electrometers, accelerometers, AFM probes,
and pressure sensors. In all these transducers, the performance of the MEMS oscillator is
crucial, and is frequently a limiting factor in the overall system performance [21]. It should
be noted that piezoelectric-on-silicon MEMS resonators have emerged as a promising
candidate as building blocks for oscillators and sensors combining the benefits of good
electromechanical coupling and improved power handling under ambient conditions
relative to equivalent capacitive MEMS devices [22–24]. These features consequently
enable improvements in terms of phase noise and frequency stability of the oscillator
implementation that integrates the piezoelectric-on-silicon resonator as the frequency
determining element [25]. Leveraging these benefits of piezoelectric transduction, several
papers in the literature have demonstrated applications to gravimetric sensing including to
particulate matter detection and mass sensing in liquids [26–58].

In this paper, we report on piezoelectrically transduced, bulk acoustic MEMS res-
onators embedded in a phase-locked oscillator loop to detect ultrafine particles such as
the silver nanoparticles generated in the laboratory and particles observed in an indoor
environment. The focus of this paper is on validating the performance of such sensors for
sensing nanoparticles, either in a natural indoor setting or those created in a controlled
laboratory process. The devices operate by monitoring the output frequency shift of the
MEMS oscillators due to ultrafine particles adsorbing onto the resonator surface.

2. Materials and Methods

This section is divided into two parts, as shown in Figure 1: first, the different compo-
nents assembled to construct the experimental setup required to conduct silver nanoparticle
deposition and indoor particle deposition, and thereby to characterize the MEMS resonators,
are detailed. Second, the experimental procedure for conducting a sensitivity and stability
assessment of the MEMS resonators is outlined.
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Figure 1. Organization structure of the materials and methods section.

2.1. Experimental Setup Components

This paper details two types of experimental setup—(i) an indoor particle real-time
monitoring setup and (ii) a silver nanoparticle real-time monitoring setup. In particular,
two types of indoor particle deposition are performed, and, in both cases, the indoor
particles present in the room atmosphere are not size selected. The difference between the
two types of indoor particle deposition lies in that the first set of indoor particle deposition
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has a T-shaped tubing arrangement, and such tubing arrangement is removed in the second
case, to assess the impact of tubing arrangement on the deposition of particles onto the
MEMS resonator surface.

Figure 2 depicts the different components assembled to construct the experimental
setup required to characterize the MEMS resonators and conduct particle deposition on the
resonator surface.
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2.1.1. MEMS Impactor Stage (MIS)

The MEMS resonator is positioned within the MEMS Impactor Stage (MIS) and particle
deposition is performed on the resonator surface based on the principle of inertial impaction.
In this technique, particles in air flow greater than a certain size will pass through a nozzle
inlet to reach the surface of the MEMS resonator acting as the impaction plate. A vacuum
pump is connected at the MIS exhaust in order to draw the particles towards the MEMS
resonator surface through the nozzle inlet. More details regarding the functioning of the
MIS can be found in [7,19,59].

Figure 3 depicts the MEMS Impactor Stage (MIS) used in particle deposition experi-
ments; Figure 3 (left) shows the MEMS Impactor Stage in its sealed position, and Figure 3
(right) shows an exploded view of the MEMS Impactor Stage, with the letters (A–G) corre-
sponding to the location of the inlet, outlet, signal port, redundant port, temperature/RH
port, stage alignment control, and camera viewports, respectively. The key parameters of
the MEMS Impactor Stage affecting particle deposition on the MEMS resonator surface are
the nozzle jet diameter, impaction plate dimensions, throat length of the nozzle, distance
between the nozzle throat length and the impactor plate. The MEMS Impactor Stage de-
scribed herein is designed such that the cut-off diameter indicating 50% collection efficiency
is small enough to allow sufficient deposition by impaction [60].
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2.1.2. MEMS Resonators Design, Fabrication and Transduction

The MEMS resonator used in this experiment is a square plate with a side length of
200 µm and a silicon device layer thickness of 10 µm. The square-plate resonator is fixed
at its two corners by T-shaped anchor beams. An AlN layer is deposited over the silicon
device layer to enable piezoelectric transduction. Metal electrodes are patterned on top
of the piezoelectric material for driving the resonator and sensing the motional response.
Interconnects to these electrodes are routed over the connecting tether supports.

An ac voltage is applied through the drive electrode to excite the resonator into
motion. As a result, a time-varying force is applied to the resonator, with the applied
forcing frequency equal to the frequency of the applied ac signal. The output electrical
signal is detected by a sense electrode patterned on the same substrate, as shown in Figure 4.
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Figure 4. (a) Bright-field and (b,c) dark-field microscopic images of the microfabricated 200 µm
side-length square-plate MEMS resonator suspended by T-shaped anchor beams.

The designed MEMS resonator is fabricated by MEMSCAP Inc., USA in a commercial
foundry using a silicon-on-insulator MEMS process [61]. The MEMS die is packaged in
a chip carrier, attached to the PCB board, and installed within the MIS. As previously
illustrated in Figure 3, the electrical connections to the PCB board are established through
the inlet and outlet ports of the MIS and the dimensions of the MEMS resonators are
outlined in Table 1.

Table 1. Dimensions of the MEMS resonators.

Parameter Value

Resonator area 0.04 mm2

Resonator thickness 10 µm

Resonator mass 0.9316 µg

Resonator side length 200 µm

AlN film thickness 500 nm

Al/Cr electrode thickness 1 µm

2.1.3. Resonator Equivalent Circuit Model

The MEMS resonator can be described by an electrical equivalent consisting of a series
LCR circuit [62], as shown in Figure 5.
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Figure 5. Equivalent electrical circuit representation of the MEMS resonator.

In Figure 5, Rm represents the motional resistance, Cm represents the motional ca-
pacitance, Lm represents the motional inductance, and C f is the feedthrough capacitance
between drive and sense electrodes. The parasitic feedthrough may have substrate cou-
pling sources and couples the drive voltage over to the motional current sensing port. The
MEMS resonator modelled as a series LCR circuit has a series resonance (ωm) defined by
the following equation:

ωm = (LmCm)
−1/2 (1)

A phase-locked loop to achieve accurate resonant frequency tracking is accomplished
using the HF2LI lock-in amplifier (Zurich Instruments). High-resolution measurements are
possible using this frequency tracking approach.

Measurements of the equivalent series LCR circuit parameters can also be extracted
from the open-loop frequency sweep response recorded by the HF2LI lock-in amplifier.
Figure 6 depicts the measured open-loop frequency sweep response of the MEMS resonator
described in this work.
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The linear equivalent circuit model parameters extracted from open-loop frequency
sweep measurement observed in Figure 6 are summarized in Table 2.
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Table 2. Extracted equivalent circuit MEMS resonator parameters.

Parameter Value

Resonant Frequency, ωm 5.99960621 MHz

Motional Resistance, Rm 24.383 kΩ

Motional Inductance, Lm 535.84 mH

Motional Capacitance, Cm 1.3133 fF

Q factor, Q 828.42

2.1.4. Indoor Particles Experimental Setup

As mentioned previously, two types of indoor particle deposition are performed–with
and without T-shaped tubing arrangement. The first type of indoor particle deposition
involved a T-shaped tubing arrangement, as shown in Figure 7. The T-shaped tubing
arrangement connects the particle reference instrument, the condensation particle counter,
and the MEMS Impactor Stage in parallel through a common inlet. The MEMS Impactor
Stage measures the mass of the particles entering at its inlet and which gets deposited on
the resonator surface through inertial impaction mechanism. The condensation particle
counter (CPC) measures the particle number concentration entering at its inlet, providing a
reference instrument for comparison.
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Figure 7. Experimental setup for drawing indoor particles towards MEMS resonators through inertial
impaction. A T-shaped tubing arrangement split a common inlet—one to the CPC and the other to
the MEMS Impactor Stage nozzle.

The second set of indoor particle deposition involved removing the T-shaped tubing
arrangement from the experimental setup demonstrated in Figure 7 and is illustrated in
Figure 8. Since the MEMS Impactor Stage is composed of a nozzle inlet, a small inlet tube
protruding from the nozzle inlet is used for drawing particles towards the MEMS resonator
based on inertial impaction technique. The diameter of the single jet nozzle used in this
experiment is approximately 0.14 mm and the set flow rate is 0.6 L/min.
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Figure 8. Experimental setup for drawing indoor particles towards MEMS resonators through inertial
impaction. CPC and the MEMS resonator monitored indoor particles independently.

Therefore, in this experimental setup, individual tubes are connected to the conden-
sation particle counter (CPC) and the MEMS Impactor Stage (MIS) setup, respectively, as
shown in Figure 8. Furthermore, Figure 9 depicts the experimental setup for the second set
of indoor particle deposition as seen in the laboratory.

Figure 9. Laboratory experimental setup without T-shaped tubing arrangement to draw indoor
particles towards the MEMS resonator.
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2.1.5. Silver Nanoparticles Generation Experimental Setup

The silver nanoparticle generator has a glass test tube arrangement as depicted in
Figure 10, used to produce silver nanoparticles in the laboratory [63]. Nitrogen gas is
passed onto a small piece of silver (Ag) placed at the bottom of the glass test tube. The glass
test tube is then heated by a ceramic heater arrangement governed by a PID temperature
controller, while an insulator arrangement enclosed the test tube. Due to the applied heat,
the silver nanoparticle fumes generated inside the test tube, containing the nanoparticles is
made to pass to the outlet of the test tube. A Scanning Mobility Particle Analyzer (SMPS)
connected in parallel with the MEMS Impactor Stage was connected to the common outlet
of the glass test tube. The size distribution of the generated silver nanoparticles was
recorded using the Scanning Mobility Particle Analyzer, and the particle size was recorded
to be approximately 50 nm. Since the generated silver nanoparticle concentration was
too high (in the order of #107 particles/cm3) to be recorded by the condensation particle
counter (CPC 3025A) used in this experiment, the generated particles were simply passed
onto the MEMS Impactor Stage inlet. Figure 10 describes an outline of the experimental
setup used for silver nanoparticle deposition experiment.

Temperature 
Controller 

Mass 
Flow 

Controller 

Mass 
Flow 

Controller 

MEMS 
Impactor 

Stage 

Scanning 
Mobility 
Particle 
Analyser

Vacuum pump 
& exhaust

Used as a 
reference for 

particle 
concentration

N2/Air 
inlet

Heating 
element

S-type 
thermocouple
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Figure 10. Experimental setup interfacing the source of silver nanoparticles to the MEMS Impactor
Stage for deposition on MEMS resonator surface by inertial impaction.

2.2. Experimental Procedure

The experiment in this research study is primarily concerned with depositing both
laboratory-generated silver nanoparticles and indoor particles observed in a room atmo-
sphere onto the surface of the MEMS resonator. A HF2LI lock-in amplifier was used to
determine the mass sensitivity of the MEMS resonator to the deposited nanoparticles. This
section details the experimental procedure used to deposit silver nanoparticles and indoor
particles onto the MEMS resonator surface.

2.2.1. The Silver Nanoparticle Deposition Experiment

The experiment began with the collection of 50 nm silver nanoparticles onto the
200 µm side-length square-plate MEMS resonator positioned within the MEMS Impactor
Stage (MIS) setup. Using a single jet nozzle with a diameter of approximately 0.14 mm and
a flow rate of 0.6 L/min, the vacuum pump was used to draw the nanoparticles towards
the MEMS resonator surface through inertial impaction. The particle deposition procedure
onto the MEMS resonator is described in detail in [7]. The silver nanoparticle deposition
experiments were carried out using a T-shaped tubing arrangement in which the silver
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nanoparticles drawn through a common inlet were split into two ends. The CPC inlet,
which functioned as the reference instrument, was connected to one end of the tube, and
the MEMS Impactor Stage was connected to the other, allowing the CPC to simultaneously
monitor the silver nanoparticles deposited on the MEMS resonator surface. However, as
previously stated in Section 2.1.5, the CPC (3025A) did not read the exact concentration of
silver nanoparticles generated during the experiment because the particle concentration
exceeded its inherent detection limit. By establishing a closed-loop using the PLL function
in the HF2LI lock-in amplifier, real-time deposition of the 50 nm silver nanoparticles onto
the MEMS resonator surface was monitored.

The open-loop frequency response of the MEMS resonator was measured after certain
time intervals of silver nanoparticle deposition on its surface. Although the monitoring of
silver nanoparticle deposition was intended to be continuous, there were some unforeseen
interruptions of the resonance tracking in the HF2LI during particle deposition resulting in
a piece-wise compilation of the datasets over certain time periods.

Figures 11 and 12 depict the silver nanoparticles deposited onto the MEMS resonator
surface during this experiment. The silver nanoparticles are seen deposited both inside and
outside the resonator surface during the experiment given the relatively small dimensions
of the resonator compared to the rest of the arrangement [7]. However, only the silver
nanoparticles collected on top of the resonator surface are considered for analysis.
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Figure 12. Darkfield microscopic images of silver nanoparticles deposited onto (a) the MEMS
resonator surface and (b) those that deposited outside the resonator surface, respectively.

2.2.2. The Indoor Particle Deposition Experiment

As explained in Section 2.1.4, since the first set of indoor particle deposition required a
T-shaped tubing arrangement, the indoor particles were first collected on a blank silicon
substrate for approximately 3 h. This deposition is to ensure that only indoor particles
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were collected on the resonator surface and to extract any other type of particles stuck
to the walls of the tube from previous particle deposition experiments [5–7]. In this
experiment, the indoor particles were not size selected, and the bright-field and dark-field
images of indoor particles collected on a blank silicon substrate are shown in Figure 13 as
microscopic images.
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Figure 13. (a) Bright field and (b) dark-field microscopic images of the indoor particles deposited on
a blank silicon substrate prior to the deposition on the MEMS resonator.

Following the deposition on a blank silicon substrate, the indoor particles were col-
lected onto the MEMS resonator with a side length of 200 µm, and the resonant frequency
shift was tracked continuously. In addition, the open-loop frequency response of the MEMS
resonator was recorded prior to deposition on the MEMS resonator using the HF2LI lock-in
amplifier as described in Section 2.1.3.

The first set of indoor particle deposition experiment began by depositing indoor
particles observed in the room atmosphere onto the MEMS resonator surface for approxi-
mately 2.6 h. Initially, the vacuum pump was not turned on to draw the particles towards
the resonator surface, and the CPC monitored the indoor particle concentration indepen-
dently. This step was carried out to determine whether the particle concentration was stable
enough for the indoor particles to be deposited on the MEMS resonator surface. When
the indoor particle concentration measured by the CPC stabilized after initial 1.5 h, the
vacuum pump was activated, and the indoor particles were drawn towards the MEMS
resonator surface.

In this first set of indoor particle deposition experiment, the indoor particle monitoring
with the MEMS resonator began at time t = 0 and lasted initially for 18.65 min. The
experiment was interrupted for approximately 2 min due to the HF2LI lock-in amplifier
losing lock. Once this was rectified, the indoor particle monitoring continued at time
t = 20 min until time t = 122 min. After this period, the vacuum pump was turned off for
approximately 2 min, and again the MEMS resonator continued measuring indoor particle
mass from time t = 124 min to time t = 138.5 min. Following this period, the experiment was
halted for approximately 3 min, during which time the vacuum pump was turned off. The
experiment was then repeated at time t = 141 min until it was terminated. Therefore, in this
first set of indoor particle deposition experiments, the data collected from time t = 0 min
until time t = 156 min were analyzed.

Figure 14 depicts the indoor particles deposited on the 200 µm side-length square-plate
MEMS resonator in the first type of indoor particle deposition experiment. It should be
noted that the indoor particles were not size selected for the experimental work reported in
this study.
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Figure 14. Indoor particles deposited on the MEMS resonator surface by inertial impaction.

The second type of indoor particle deposition experiments was performed on the
MEMS resonator for approximately 2 h continuously, similar to the first set, and the
resonant frequency was tracked in real time. The goals of this experiment are twofold:
(1) to obtain the deposition of indoor particles on the surface of the MEMS resonator
without the use of a T-shaped tubing arrangement and, as a result, to determine the impact
of the tubing arrangement on particle deposition, and (2) to continuously monitor the
resonant frequency shift data with few time intervals between measurements. Accordingly,
the CPC and the MEMS resonator read the indoor particle concentration independently in
the second set of indoor particle deposition experiments.

2.2.3. The Frequency Stability Experiment

Long-term frequency stability measurements for the 200 µm side-length square-plate
MEMS resonator are obtained by monitoring the resonant frequency by establishing a
phase-locked loop for the desired mode occurring at 5.999 MHz using the HF2LI lock-in
amplifier. The Allan deviation of the resonant frequency at this mode is calculated to
estimate the stability of the output frequency. The MEMS resonator is integrated into a low-
noise phase-locked loop circuit using the HF2LI lock-in amplifier to track the mechanical
resonance frequency continuously. The output frequency is logged on a PC as a time series
for further analysis [64].

3. Theory and Modelling of the MEMS Resonator

The relationship between the resonant frequency and mass sensitivity is stated in
this section, considering the requirements of a MEMS sensor to detect the smallest mass
possible. The mechanical resonance is modelled by a mass spring damper system in which
the mass m attached to a linear spring of stiffness k oscillates, as shown in Figure 15. In
practice, energy dissipation is introduced to the system by adding a damping term b.
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Figure 15. Mass spring damper representation of the MEMS resonator.

Therefore, in the undamped case, a resonant MEMS sensor is simply a harmonic
oscillator with the resonant frequency f0 given by:

f0 =
1

2π

√
k
m

(2)

where k is the stiffness of the sensor, and m is the mass of the sensor [65]. By adding a small
amount of mass ∆m to the MEMS sensor, the frequency shift corresponding to the mass
change is approximated to the first order and is expressed as:

∆ f = −1
2

∆m
m

f0 (3)

In other words, knowing the frequency before and after mass addition determines the
amount of mass (ultrafine particles, in this case) added to the MEMS sensor. Another key
metric of the MEMS sensor is the quality factor which is given by:

Q =
f0

δ f
(4)

where δ f is the half-power bandwidth, and f0 is the resonant frequency. The quality factor
determines the frequency shift resolution and hence the minimum detectable mass on the
resonator surface.

The resonant frequency of the MEMS sensor is impacted by noise processes and envi-
ronmental conditions due to temperature [66]. The Allan deviation provides a quantifiable
measure of the frequency stability of the MEMS sensor under such conditions [67]. The
equation that relates the minimum detectable mass and Allan deviation of the output
frequency is given by:

σδM, f =
σf(
∆ f
∆m

) (5)

where σf is the Allan deviation of the MEMS oscillator output frequency for a given
integration time, and ∆ f /∆m is the frequency-to-mass sensitivity [7].

4. Results

The results section describes the experimental results obtained for the sensitivity
analysis and stability analysis of the MEMS resonator for silver nanoparticle deposition
real-time monitoring and indoor particle deposition real-time monitoring, respectively.
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4.1. Sensitivity Analysis

This section presents the experimental results of real-time monitoring of the resonant
frequency during 50 nm silver nanoparticle deposition and unsized indoor particle deposition.

4.1.1. Silver Nanoparticle Deposition

The experimental results depicted in Figure 16 represent the open-loop frequency
sweep responses of the MEMS resonator after certain time intervals of deposition as
described in Section 2.2.1.
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Figure 16. Open-loop frequency sweep response of the MEMS resonator after certain periods of silver
nanoparticle deposition on the MEMS resonator surface.

The resonant frequency change and the Q factor change of the MEMS resonator
corresponding to the frequency response illustrated in Figure 16 is elaborated in Table 3.

Table 3. Resonant frequency and Q factor changes after certain periods of particle deposition.

Silver Nanoparticle Deposition Resonant Frequency (MHz) Q factor

After 20 min of
silver nanoparticle deposition 5,735,573.28 813.374

After 75 min of
silver nanoparticle deposition 5,735,774.76 813.403

After 90 min of
silver nanoparticle deposition 5,719,478.28 790.794

Similarly, the real-time monitoring of the silver nanoparticle deposition is plotted
in Figure 17 for the entire time duration of deposition with a few time intervals in be-
tween. Throughout the entire time of deposition, a decrease in frequency shift is observed,
with discretely stepped frequency shifts tracked by the phase-locked loop of the HF2LI
lock-in amplifier.
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Figure 17. Real−time resonant frequency monitoring data for the silver nanoparticle deposition on
the MEMS resonator surface. The piecewise linear fit function is used for this real-time resonant
frequency monitoring data.

4.1.2. Indoor Particle Deposition

As explained in Section 2.2.2, Figure 18 highlights the indoor particle concentration
monitored by the CPC reference instrument for approximately 4.27 h in the first set of
indoor particle deposition with T-shaped tubing arrangement.
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Figure 18. Indoor particle concentration monitored by the CPC reference instrument for approxi-
mately 4.27 h in the first set of indoor particle deposition experiment.

Figure 18 demonstrates that the indoor particle concentration has nearly stabilized
after initial 1.5 h (after 90 min), after which the vacuum pump was activated to draw
the indoor particles towards the MEMS resonator through inertial impaction. Figure 19
depicts the particle number concentration distribution plot over the entire period that
the CPC monitored the indoor particle concentration. This figure highlights that the
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maximum density of particle number concentration approximately 5000–6000 particles/cm3

is typically measured over the collection period. This, in turn, demonstrates that sufficient
indoor particles were available for both impaction/collection on the MEMS resonator and
measurement by the MEMS resonator.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 25 
 

 

maximum density of particle number concentration approximately 5000–6000 parti-

cles/cm3 is typically measured over the collection period. This, in turn, demonstrates that 

sufficient indoor particles were available for both impaction/collection on the MEMS res-

onator and measurement by the MEMS resonator. 

 

Figure 19. Particle number concentration distribution of the indoor particles monitored by the CPC 

reference instrument in the first set of deposition experiment. 

The indoor particle mass monitored by the MEMS resonator based on resonant fre-

quency shift is shown in Figure 20. In this experiment, the results corresponding to the 

frequency shift of the MEMS resonator are plotted, elucidating the resonant frequency 

change over the entire period of indoor particle deposition. 

 

Figure 20. Indoor particle mass measured by the MEMS resonator over time in the first set of indoor 

particle deposition experiment. 

In this first set of indoor particle deposition experiments, the data collected from time 

t = 0 min until time t = 156 min were analyzed. 

Figure 19. Particle number concentration distribution of the indoor particles monitored by the CPC
reference instrument in the first set of deposition experiment.

The indoor particle mass monitored by the MEMS resonator based on resonant fre-
quency shift is shown in Figure 20. In this experiment, the results corresponding to the
frequency shift of the MEMS resonator are plotted, elucidating the resonant frequency
change over the entire period of indoor particle deposition.
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Figure 20. Indoor particle mass measured by the MEMS resonator over time in the first set of indoor
particle deposition experiment.

In this first set of indoor particle deposition experiments, the data collected from time
t = 0 min until time t = 156 min were analyzed.
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In the second set of indoor particle deposition experiment without the T-shaped
tubing arrangement, the particle number concentration was recorded by the CPC reference
instrument independently. The CPC data demonstrated in Figures 21 and 22 indicate
the indoor particle concentration monitored for the entire time duration of 2 h, in the
second set of indoor particle deposition experiments. It can be seen from Figure 22 that
the indoor particle concentration recorded by the CPC in the second set is equivalent to
the indoor environment particle concentration recorded for the first set of indoor particle
deposition experiment.
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Figure 21. Indoor particle concentration monitored by the CPC reference instrument for approxi-
mately 2 h in the second set of deposition experiment.
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Figure 22. Particle number concentration distribution of the indoor particles monitored by the CPC
reference instrument.

The MEMS resonant frequency shift data corresponding to the second set of indoor
particle deposition experiment is plotted in Figure 23. For approximately two hours, the
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resonant frequency of approximately 5.99 MHz was tracked in this experiment while the
CPC and MEMS resonator independently monitored the indoor particle concentration.
The corresponding data indicate that the frequency shift is not significant in this scenario
considered without the T-shaped tubing arrangement. Therefore, the number of indoor par-
ticles deposited onto the MEMS resonator is significantly lower compared to the previous
scenario with the T-shaped tubing arrangement.
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Figure 23. Indoor particle mass measured by the MEMS resonator over time (t = 2 h) in the second
set of deposition experiment.

4.1.3. The Frequency Stability Experiment

This section reports the results of the MEMS resonator frequency stability experiments
for which the data is obtained in a closed loop for different time intervals such as 2.5, 5 and
16 h, approximately. The resonator frequency stability results demonstrated in Figure 24
indicate the Allan deviation of the resonant frequency at various time intervals.
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The minimum Allan frequency deviation observed for a resonant frequency centered
at approximately 5.99 MHz from the frequency stability plots depicted in Figure 24 is
summarized in Table 4.

Table 4. Allan deviation data for the frequency stability plots observed in Figure 21.

Frequency Stability Experiment Allan Deviation

2.5 h (7.027 samples/second with a time constant of 0.14 s) 0.4796 Hz @ 8.96 s

5 h (7.027 samples/second with a time constant of 0.14 s) 0.7178 Hz @ 2.24 s

16 h (7.027 samples/second with a time constant of 0.14 s) 0.3921 Hz @ 8.96 s

The frequency stability was also observed by varying the sample rate to 224.9 sam-
ples/s for a time duration of approximately 1.5 h. The minimum Allan deviation as seen in
the plot depicted in Figure 25 for this case is 0.193 Hz at τ = 9.2 s.
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Based on the best-case Allan deviation data obtained by monitoring the resonant
frequency in a closed-loop arrangement for 1.5 h with a time constant of 0.004 s (4 ms), the
frequency resolution can be estimated to be 32.17 ppb.

5. Discussion
5.1. Total Mass Estimation by the MEMS Resonator

In this section, the total mass accumulated on the MEMS resonator surface for both
silver nanoparticle deposition and indoor particle deposition is estimated. Equation (3)
is used to calculate the total amount of silver nanoparticles mass collected on the MEMS
resonator surface. For a given resonator mass of 0.931 micrograms, the resonant fre-
quency shift observed for the entire time duration of silver nanoparticle deposition is
approximately 25, 737.94 Hz. Depending on the corresponding frequency shift, the silver
nanoparticles mass deposited on the MEMS resonator for time t = 55.29 min is estimated as
7.993 nanograms. Similarly, the indoor particle mass deposited on the MEMS resonator for
time t = 156 min in the first set of indoor particle deposition experiments with T-shaped
tubing arrangement depending on the frequency shift is estimated to be 1.732 nanograms.
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The corresponding frequency shift of the MEMS resonator observed in this case is ap-
proximately 5578.49 Hz. Having considered the first set of indoor particle deposition
experiments and the total mass estimated, we will now consider the second set of indoor
particle deposition experiments without the T-shaped tubing arrangement.

In the second set of experiment, the indoor particle mass deposited onto the MEMS
resonator for time t = 2 h is estimated as 26.932 picograms for an observed frequency shift
of 86.72 Hz. This, in turn, clearly demonstrates the impact of T-shaped tubing arrangement
on the indoor particle deposition onto the MEMS resonator surface by highlighting the
significant difference in frequency shift for the indoor particle mass added.

5.2. Minimum Mass Detection by the MEMS Resonator

This section calculates the minimum mass that can be detected by the MEMS resonator
for both silver nanoparticle deposition and indoor particle deposition. However, depending
on the Allan deviation obtained for different sample rates, Equation (5) is used to calculate
the minimum detectable mass. The minimum Allan frequency deviation observed for the
MEMS oscillator is calculated as 0.193 Hz as noted earlier.

Therefore, the minimum silver nanoparticles mass detectable by the MEMS resonator
is estimated to be 60 femtograms using the minimum Allan deviation value. However, it
should be noted that this mass estimation is for a measurement over a particular integration
time and a particular value for another given integration time can be estimated from the
plots provided in Figures 24 and 25.

5.3. Comparison of MEMS Resonator Mass Estimation

Table 5 compares the mass sensitivity of the MEMS resonator described in this work
to that of the other similar MEMS resonators reported in the literature.

Table 5. MEMS resonators utilized for sensing nanoparticles.

Ref. Resonator Resonant Frequency Mass Sensitivity Collection
Mechanism

Transduction
Mechanism

Readout
Instrument

[59]
Silicon BAW
square-plate

resonator
3.1 MHz 29.5 Hz/ng Inertial

Impaction

Piezoelectric
actuation,

piezoelectric
sensing

Frequency
Counter

[68] Silicon FBAR 1.6 GHz 2 µg/m3 Thermophoresis
Piezoelectric
actuation and

sensing

0.25 µm CMOS
Circuit

[69] Silicon I2-BAW
resonator

2.87 MHz 0.02–0.4µg/m3 Inertial
Impaction

Thermal
actuation and
piezoresistive

sensing

Network
Analyzer

[70] Silicon resonant
cantilever 43.92 kHz 8.33 Hz/ng Dielectrophoresis

Piezoresistive
actuation,

piezoresistive
sensing

Digital
Multimeter,
Spectrum
Analyzer

[71] Silicon resonant
cantilever 43.92 kHz 10 Hz/ng Electrostatic

Precipitation

Piezoelectric
actuation,

piezoresistive
sensing

Digital
Multimeter,
Spectrum
Analyzer

[72] Silicon resonant
cantilever 221.5 kHz 36.51 Hz/ng Electrostatic

Precipitation

Piezoelectric
actuation,

piezoresistive
sensing

Digital
Multimeter,
Spectrum
Analyzer
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Table 5. Cont.

Ref. Resonator Resonant Frequency Mass Sensitivity Collection
Mechanism

Transduction
Mechanism

Readout
Instrument

[73]
Silicon BAW
square-plate

resonator
34.81 MHz 105.4 µm2/ng

Functionalized
Surface

Adsorption

Electrostatic
actuation and

sensing

Network
Analyzer

[74] Silicon FBAR 1.6 GHz 18 µg/m3 Thermophoresis
Piezoelectric
actuation and

sensing

Spectrum
Analyzer

[75] Silicon I2-BAW
resonator

61 MHz and 20 MHz 1.6 kHz/pg Inertial
Impaction

Thermal
actuation and
piezoresistive

sensing

Network
Analyzer

[76] Silicon I2-BAW
resonator

2.5 to 5.5 MHz 5 Hz/pg to 42 Hz/pg Inertial
Impaction

Thermal
actuation and
piezoresistive

sensing

Network
Analyzer

This
work

Silicon BAW
resonator 5.999 MHz 59.94 fg to 0.12 pg Inertial

Impaction

Piezoelectric
actuation and
piezoelectric

sensing

HF2LI Lock-In
Amplifier

6. Conclusions

This paper demonstrates a MEMS sensor arrangement for real-time monitoring of
silver nanoparticle deposition and indoor particles with a view toward ultimately develop-
ing a portable setup for gravimetric sensing. A 5.999 MHz piezoelectric-on-silicon MEMS
resonator is employed as the sensor element and is integrated within a MEMS Impactor
Stage arrangement for testing ultrafine particulate detection. The experimental setup is elu-
cidated in detail, with the assessment revealing the details of the setup around the MEMS
element that can impact on the response. A total mass range of up to 7.993 nanograms and a
minimum detectable mass limit ~60 femtograms to 0.12 picograms is measured depending
on the sampling time and integration times chosen. While this paper provides evidence
for the feasibility of applying MEMS resonators for particulate monitoring measurements,
significant further work would be required to develop a miniaturized instrument that fully
leverages the benefits of MEMS/electronics co-integration and further design optimization
of the fluidics and particle deposition mechanism. The results hold promise that address-
ing these aforementioned engineering optimization tasks could establish the basis for a
compact, portable and low-cost instrument for particulate monitoring.
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