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Abstract: With the increasing demand for wireless location services, it is of great interest to reduce
the deployment cost of positioning systems. For this reason, indoor positioning based on WiFi
has attracted great attention. Compared with the received signal strength indicator (RSSI), channel
state information (CSI) captures the radio propagation environment more accurately. However,
it is necessary to take signal bandwidth, interferences, noises, and other factors into account for
accurate CSI-based positioning. In this paper, we propose a novel dictionary filtering method that
uses the direct weight determination method of a neural network to denoise the dictionary and
uses compressive sensing (CS) to extract the channel impulse response (CIR). A high-precision time-
of-arrival (TOA) is then estimated by peak search. A median value filtering algorithm is used to
locate target devices based on the time-difference-of-arrival (TDOA) technique. We demonstrate
the superior performance of the proposed scheme experimentally, using data collected with a WiFi
positioning testbed. Compared with the fingerprint location method, the proposed location method
does not require a site survey in advance and therefore enables a fast system deployment.

Keywords: channel state information; channel estimation; compressive sensing

1. Introduction

Due to the emergence of 5G and 6G technology, people have higher and higher
requirements for indoor positioning [1,2]. According to Market&Markets research data,
the global market size related to indoor location is expected to reach USD 18.74 billion by
2025 [3]. The huge market demand has become a key driver of location-based applications
in the future. However, despite the growing demand in a large market, it is not easy to
provide a viable indoor positioning solution in many cases. One of the key challenges
facing distance-based positioning systems is that the reflection and refraction of wireless
signals in indoor environments may lead to a serious decrease in positioning accuracy.

At present, in addition to satellite-based positioning technology [1,2], various posi-
tioning technologies are available, such as Bluetooth [4,5], radar [6,7], radio frequency
identification [8], ultra-wideband [9], geomagnetic field [10], visible light [11], thermal
infrared [12], sound [13], 5G cellular networks [3], and so on. Most of these positioning
technologies, however, require additional hardware anchor points and therefore incur
additional costs. With the widespread deployment of WiFi systems, it is advantageous to
exploit the ubiquitous WiFi [14–16] for positioning, which provides broader convenience
for the promotion of technology and business cases.

There are currently two CSI-based positioning technologies, which are based on
fingerprint and triangulation, respectively. The fingerprint-based localization method
needs to collect CSI data at various locations of the deployment site in advance. The FILA
approach proposed by Kaishun et al. [17] achieves a 50 percent accuracy at less than 0.6 m
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in the laboratory. The C-Map proposed by WEN et al. [18] achieves an average positioning
error in the comprehensive environment of 0.97 m. CHAUR-HEH et al. [19] adopted a
convolutional neural network to localization in a room, which performs the best, resulting
in a maximal localization error of 0.92 m with a probability of 99.97%. YUAN et al. In [20],
a multi-view discriminant learning approach was developed for indoor localization that
exploits both the amplitude and the phase information of CSI to create feature images for
each location, and the minimum distance errors for the laboratory and corridor experiments
were 0.205 m and 0.109 m, respectively. In [21], the authors proposed to transform the
measured data from CSI into images, extract their features, and use deep learning networks
to estimate localization, and achieved an accuracy of more than 90% in laboratories. In
[22], the authors proposed to transform the measured data of CSI into images and use the
classification ability of the convolutional neural network (CNN) for localization, and 70%
of the test cases had a localization error under 1.5 m. The fingerprinting-based approach
achieves a relatively high positioning accuracy, but requires the deployment site to be
surveyed in advance and whenever the environment is changed, which increases the
operating costs of commercial applications.

Data fusion-based positioning can achieve a higher positioning accuracy. Zhao
et al. [23] proposed a data fusion method of fingerprinting using RSS and CSI data from sin-
gle access points, which can achieve a positioning accuracy of 1.79 m in a typical laboratory.
Li et al. [24] proposed an enhanced particle-filter-based positioning method that combines
CSI information and inertial sensor information to achieve an average accuracy of 1.3 m.
However, such techniques require more data sources and therefore are not favorable for
commercial applications.

Triangulation-based positioning uses angle and/or distance measurements to locate
targets. Unlike fingerprinting-based approaches, it does not require data collection in
advance, which brings great convenience to commercial deployment. The systems only
needs to be updated when the anchor points are moved, which involves surveying the
coordinates of anchors only. In [25], Manikanta et al. used multiple measurements of
the angle-of-arrival to achieve positioning on standard WiFi equipment, and 60% of the
localization error reached approximately one-meter in indoor office deployment. In [14],
WiFi devices were located by using the round-trip delay and angle of arrival (AOA)
measurements, which require changes to the firmware of target devices. The multiple
signal classification (MUSIC) algorithm proposed by Schmidt et al. [26] had a good effect
in terms of resolution, estimation accuracy, and stability under the condition of multiple
antennas. ArrayTrack [27] proposed by Jie et al. is similar to [26], requiring eight antennas.

This paper proposes a novel algorithm to estimate the TOA from CSI, which enables
an accurate localization of standard WiFi devices. The main contributions of this work are
as follows:

1. A novel algorithm based on the CS is proposed to analyze the CSI and extract the CIR.
2. A dictionary denoising method based on the direct weight determination of a neural

network is derived for denoising CIR signals in compressed sensing. The sparsity of a
dictionary is used as the sparse matrix of compressed sensing to estimate the TOA,
which improves the accuracy of estimation.

3. The proposed method is validated experimentally and shown to outperform conven-
tional approaches based on MUSIC or estimating signal parameters via rotational
invariance techniques (ESPRIT).

The remainder of this paper is organized as follows. The system model, including
system architecture and signal structure, is presented in Section 2. The problem-solving
process is presented in Section 3. We present the process of solving TOA by the signal
reconstruction proposed. Experimental validation is provided in Section 4, followed by
concluding remarks in Section 5.
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2. System Model

In this section, we briefly introduce the localization testbed that we used, and then
introduce the experiment data collected with the system.

2.1. System Architecture

In this paper, as shown in Figure 1, we used the WiFi-based wireless ad hoc system
for positioning (WiFi-WASP) [2,28,29] developed by the Commonwealth Scientific and
Industrial Research Organization (CSIRO) of Australia for our experiments. We installed
six custom-built WiFi sniffers as anchors for localization in a conference hall and placed an
access point (AP) approximately in the middle of the conference hall. The sniffer measures
the time stamp of the communication between the sniffers and the AP to estimate the
clock offset and offset of the system clock. The sniffers also measure the time stamp of the
communication between the target and the AP to locate the target. A computer was placed
in the conference hall to collect time stamps collected by sniffers and estimate the location
of target devices by using the TDOA. The system is passive and does not interfere with
existing standard WiFi systems.

Sniffer Sniffer

Sniffer
Access Point

Sniffer
Sniffer

Target Device

Sniffer

Figure 1. Structure of the TDOA-based passive WiFi localization system.

In WiFi-WASP systems, the sniffer clock is post-synchronized by estimating and
compensating for clock skew and clock offset to estimate the arrival time of packets based
on a common reference clock [30]. This indicates that the locations of the sniffers and the
target device is sj = [xj, yj, zj]

T(j = 1, ..., N), where cv = [x, y, z]T is the coordinate value of
the device and N is the number of sniffers. Each sniffer in the system has a local clock that
is not synchronized with each other or with any external references. Assuming that the
target device transmits a packet at tTx, the arrival time of the corresponding radio signal
measured by each sniffer is

rj = (1 + αj)(tTx +
dj

c
+ β j + ∆tj + mj), j = 1, . . . , J, (1)

where αj and β j denote the clock skew and clock offset of sniffer j, dj , |sj− cv| denotes the
distance between the target device and sniffer j, c is the speed of light, δtj is the hardware
delay (e.g., delay caused by radio frequency (RF) circuitry), and mj is the time measurement
error. During system operation, the measured packet arrival time is corrected according
to the relevant AGC settings. Since the values of α and ∆t are small, in order to directly
subtract excessive hardware delay from rj, Equation (1) can be rewritten as

rj = ∆tj + (1 + αj)(tTx +
dj

c
+ β j + mj), j = 1, . . . , J, (2)
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By estimating the clock skew αj, clock offset β j, and the hardware delay ∆tj of sniffer
j, as well as the measurement value of rj, the measurement value trj of the synchronous
arrival time of sniffer j (less than 0.5 s) in a small time can be estimated, which can be
expressed as

trj =
rj − ∆tj

1 + αj
− β j −mj, (3)

Suppose a standard WiFi device transmits two packets in succession at tn and tn+1,
respectively. αj can be written approximately as

αj − αk ≈
rn+1

j − rn
j

rn+1
k − rn

k

− 1 (4)

where j and k are different sniffers. By assigning one of the sniffers as the reference clock
(i.e., αj = 0), the clock skews of other sniffers can be obtained from (4).

Since the locations of the sniffers are also known, the distance between the transmitter
and the sniffer can be readily obtained. Thus, β j can be written approximately as

β j − βk ≈
rj

1 + α̂j
− rk

1 + α̂k
−

dj

c
+

dk
c

(5)

where j and k represent different sniffers and α̂ represents the clock skew estimated by (4).

2.2. Signal Structure

The WiFi-WASP system equipment used the orthogonal frequency-division multiplex-
ing (OFDM) modulation scheme. Figure 2 illustrates the system model for obtaining the
TOA calculation considered in this paper from OFDM [31]. At the receiving end, the analog
data collected by the antenna went through the processes of the analog/digital converter,
the serial transmission data were then converted to parallel data, circular prefixes were
removed, discrete Fourier transform was conducted [32], and, finally, the frequency domain
CSIs were obtained for localization. The CSI in the frequency domain is given by

H( f ) =
L−1

∑
k=0

αkexp(−j2π( f0 + n4 f )τk), k ∈ [1, L], (6)

where f0 is the central frequency and4 f represents the frequency space between adjacent
subcarriers. αk and τk denote the complex Gaussian channel coefficient and the time delay
of the k-th signal propagation path, respectively. L is the number of multipath components.
Since the system adopts an 80 MHz bandwidth, there were 256 subcarriers in total, and the
subcarrier space was 80 MHz/256 = 312.5 khz. The number of CSI values in the frequency
domain was 245 because 11 subcarriers were unused. f denotes the center frequency of
each subcarrier. We denote τ = {τ0, τ1, ..., τL−1} as the set of true L time delays.

Multipath propagation characterized by the channel frequency response (CFR) in the
frequency domain signals includes the amplitude–frequency response and phase–frequency
response, while, in wireless channels, amplitude attenuation, phase offset, and time delay
can be characterized by CIR. In the CS method, assuming that the sparse matrix is an
identity matrix and there is only a rotation factor in the sparse matrix, the multiplication
of the sparse matrix by the time domain signal is equivalent to performing the Fourier
transform. The physical meaning of the sparse matrix is to transform the signal to be
sampled into another domain, and, in this domain, the signal is sparse. Thus, we used the
CS method to convert the CFR into the CIR in the time domain to estimate the TOA, and
we obtained

h(τ) =
L−1

∑
k=0

αkδ(τ − τk), k ∈ [1, L], (7)
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where ak and τk denote the amplitude of the multipath component and the complex
attenuation and propagation delay of the kth path, respectively. δ(τ) is the Dirac delta
function and L is the number of multipath components, while 1 ≤ k ≤ L are in ascending
order. In a line-of-sight (LOS) environment, the first peak of the impulse response is known
to be a good choice for the TOA of the direct path.

S/P Remove CP DFT

Gradient 
descent is used 
to estimate TOA

A/D

CIR is estimated 
using CS

Frequency domain samples

Time domain channel impulse response

RX

TX

Normal 
communication 

data

RF signal propagation

Target device Access Point Computer

Access point sends   communication data

Sniffer  receives   communication data

TX
Normal 

communication 
data

Target device sends   communication data

Sniffer

Figure 2. System model for the TOA computation in WiFi-WASP localization using OFDM.

3. Proposed Approach

In this section, the direct weight determination method based on a neural network is
introduced to filter dictionary atoms, and the filtering effect is proven by using the quintic
polynomial. In order to increase the resolution of TOA, an augmented matrix was added for
compressed sensing, and the sparsity and coherence of the proposed method are proven.

Figure 3 illustrates the steps taken to locate a target based on CSI collected by the
considered WiFi positioning testbed. A Hamming window was first applied to the CSI
to prevent frequency leakage. In order to estimate high-precision TOA, we used neural
network weight determination method to filter dictionary atoms. The phase space re-
construction theory was used to reconstruct the input signal to address the problem of
insufficient input training signals. The sparsity of dictionary was used as the sparse matrix
of compressed sensing, and the resolution of TOA was improved by adding and expanding
matrix. However, in a non-LOS or multipath environment, the first arrival path tends to
decay significantly and its signal strength may be lower than the reflection path. A peak
filtering algorithm was employed to improve the accuracy of estimated TOA. The system
clocks among anchors were then synchronized and used to correct the measured TOA
values. Finally, the target was located based on the differences between the TOA measured
by different anchors.

3.1. Frequency Domain Windowing

In the process of digital signal processing, we can only transform the limited length of
signal data, so it is necessary to carry out signal truncation. Even if it is a periodic signal,
if the truncation time is not an integer multiple of the period, then the intercepted signal
will have frequency leakage. To minimize this leakage error, we need to use a weighting
function, also known as a window function. There are many kinds of window functions,
such as rectangular window, Hann window, and Hamming window. Rectangle window
only requires an accurate reading of the main lobe frequency, regardless of amplitude
accuracy. Hann window is superior to rectangular window, but the main lobe of Hann
window is widened, which is equivalent to the analysis bandwidth broadening, and the
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frequency resolution decreases. If the test signal has multiple frequency components, the
spectrum performance is very complex, and the purpose of the test is more concerned with
the frequency points rather than the size of the energy, so Hann window should be selected.
Both Hamming window and Hann window are cosine windows, also known as improved
ascending cosine windows, but the weighting coefficient is different, which makes the
sidelobe smaller, and the sidelobe attenuation speed of the Hamming window is slower
than that of Hann window. Due to the fact that the amplitude–frequency characteristic of
Hamming window is that the side lobe attenuation is large [33], the peak attenuation of the
main lobe and the first side lobe can reach 40 dB. Thus, we have

w(l) = α0 − (1− α0) · cos(
2πl

L− 1
), 0 ≤ l ≤ L− 1, (8)

where α0 = 25/46, and this value is intended to generate zero-crossing at the frequency
5π/(L− 1). Since the sample point is 256, L = 256. Therefore, the CFR data after applying
the Hamming window is expressed as

F = H ·w, (9)

where H = [h1, h2, · · · , hl , · · · , hL]
T ∈ C is the frequency domain CSI collected by WiFi-

WASP system, w = [w0, w1, · · · , wl , · · · , wL−1] ∈ R is the Hamming window, and F =
[s1, s2, · · · , sk, · · · , sK]

T ∈ C.

CSI  from  WiFi 

Training signal space is 
constructed by phase 
space reconstruction 

theory

Dictionary filtering is 
constructed by neural 
network direct weight 

method

Peak filtering estimates 
the first TOA

Estimated system time 
synchronization and clock 

offset

Revised TOA

TDOA is used for 
positioning

Hamming window 
weighting function 
processing signal

Compressed sensing 
sparse recovery CIR

The resolution of CIR can 
be improved by adding 

accretion matrix

Figure 3. Algorithm framework is based on CSI localization.

3.2. Dictionary Atomic Filtering

In order to solve the problem of insufficient data of neural network training, the
phase space reconstruction theory is proposed to reconstruct signal space. A direct weight
determination method based on neural network is proposed to realize dictionary atomic
filtering, and its effectiveness is verified.
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3.2.1. The Phase Space Reconstructs the Input Signal

The theory of phase space reconstruction holds that the prime mover system model
can be reconstructed from an observation of the system. The evolution of any component
in the system is determined by the other components interacting with it, so the information
of these related components implies that, in the development process of any component,
a spatial system model of the original signal can be reconstructed with an observation of
the system.

Due to the fact that each set of signals sampled is different, there are too little data
to train the dictionary. According to the phase space reconstruction theory [34,35], for
the noise signal F ∈ CK×1 sampled from WiFi-WASP system and through the Hamming
window, it can be embedded into the attritor orbit matrix F in dimension K so as to solve
the problem of insufficient training data F.

F =


s1, s2, · · · , sK−N+1
s2, s3, · · · , sK−N+2
...

...
. . .

...
sN , sN+1, · · · , sK

, (10)

where F ∈ CN×K.

3.2.2. Dictionary Learning Algorithms

The dictionary learning model is widely concerned and has been successfully applied
in various fields of signal processing, such as signal processing, image processing, image
fusion, video key frame extraction, and so on. In the field of signal processing, sparse repre-
sentation of signals is a simple and effective signal coding method, which describes signals
by using linear combinations of as few basis vectors as possible in the basis space. The span
of basis vectors is also called a dictionary, and the basis vectors in the corresponding space
are atoms.

The dictionary learning algorithm is also very suitable for signal recovery and re-
construction and image noise and blur removal applications. For the dictionary learning
algorithm of signal denoising, the trained data can be divided into two categories [36].
First, the method that uses data without noise for dictionary learning is called the external
prior dictionary learning algorithm. Second, the method of using noisy data for dictionary
learning is called the internal prior dictionary learning algorithm. The external prior dic-
tionary learning algorithm is not adaptive to signal denoising, and it may not be able to
reconstruct some fine-scale noise signals well. Compared with the external prior dictionary
learning algorithm, the internal prior dictionary learning algorithm adopts the signal data
containing noise as the training data; although it has good adaptability, the prior learning is
greatly affected by noise. The denoising effect of using such a dictionary to denoise signals
is inevitably lower than that of using a fixed atom dictionary. Therefore, reducing the
atomic noise of a learning dictionary will definitely improve the denoising effect of signals.
The main idea of dictionary learning is to use the dictionary matrix Ψ ∈ RN∗K, which
contains K atoms ψk and a sparse linear representation of the original sample Y ∈ RN∗L,
where m represents the number of samples, n represents the attributes of samples, and, in
the ideal case, Y = ΨX. This can be transformed into an optimization problem.

min
Ψ,X
‖Y −ΨX‖2

F,

s.t.∀i, ‖Xi‖0 ≤ T0,
(11)

where X ∈ RK×L is the sparse decomposition coefficient of the signal, and Xi is the
row vector in the matrix. ‖Xi‖0 represents the zero-order norm, which represents the
number of non-zero numbers in a vector. T0 represents the maximum sparsity of ‖Xi‖0.
There are two optimization variables Ψ and X to solve this optimization problem. It is
common to fix one optimization variable, optimize the other variable, and so on. The sparse
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matrix X in Formula (11) is solved by the least absolute shrinkage and selection operator
classical algorithm.

3.2.3. Direct Weight Determination of Neural Networks

Neural networks with their massively parallel processing, distributed storage, and
elastic topology, and other significant characteristics of highly redundant and nonlinear
arithmetic, such as the control and nonlinear signal processing, pattern recognition, and
robots, have been widely used in such fields as [37]. According to the model of the artificial
neural network, the structure can be divided into a feedforward network (also known as a
multilayer perceptron network) and the feedback network (also known as the Hopfield
net). Among neural network models, the back propagation (BP) neural network model is
one of the most widely used neural network models at present. Its core is the error back
propagation algorithm, and its model is shown in Figure 4.

x1

x2

xn

xN

y1

Input 
data

Hidden layer 
L1

Output 
data

y2

yj

yJ

Error backpropagation

nl
liw

JI JO

Figure 4. BP neural network model.

The model shows a three-layer BP neural network model that includes an input layer,
hidden layer, and output layer. The input layer contains N neurons, so the corresponding
input Ii = [x1, x2, · · · , xn, · · · , xN ] is an N dimension vector. There are L neurons in the
hidden layer and the excitation function is denoted as f1. In addition, the expected output
Oi is an I dimensional vector and ωnl is the connection weight between the n neuron of
the input layer and the L neuron of the hidden layer, whereas vl j is used to represent the
connection weight between the l neuron of the hidden layer and the j neuron of the output
layer. ϑl and θj are used to represent the threshold value of the neuron at the hidden layer
and the neuron at the output layer, respectively.

ν1 denotes the first l hidden layer neurons of the output, and yj represents the actual
output of the j neuron in the output layer, Oi = [Oi1, Oi2, · · · , Oij, · · · , OI J ] for the sample
output. According to the direction of negative gradient descent, the BP algorithm iteratively
adjusts the weights and thresholds of the network to achieve the reduction in the error
function value, and its weight ωnland vl j correction iterative formula can be described as{

ωnl ←− ωnl + ∆ωnl

vl j ←− vl j + ∆vl j,
(12)
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where 

∆vl j = −η
∂E

∂vl j
= −η

∂E
∂yj
·

∂yj

vl j
= η(Oij − yj) · f ′2 · vl

∆ωnl = −η
∂E

∂ωl j
= −η

∂E
∂yj
·

∂yj

∂vl
· ∂vl

∂ωl

= η
J

∑
j=1

(Oij − yj) · f ′2 ·vl j · f ′1 · xn.

(13)

In the above formula, vl represents the output of the lth neuron, yj represents the
output of the jth neuron, and E represents the neural network learning error function
corresponding to the jth sample pair under the incremental processing mode. Their
derivation formulas are as follows:

vl = f1

(
N

∑
n=1

ωnl xn − ϑl

)
, l = 1, 2, · · · , L

yj = f2

(
L

∑
l=1

vl jvl − θj

)
, j = 1, 2, · · · , J

E =
1
2

J

∑
j=1

(yj −Oij)
2,

(14)

The BP network has some problems, such as a slow convergence, local minimization,
and fixed learning rate. To solve these problems, Zhang yu-nong et al. proposed an
improved power-excited forward neural network model by using polynomial interpolation
and approximation theory [38]. Different from the traditional idea of obtaining neural
network weights through lengthy BP iterative training, the direct weight determination
method can directly obtain the weights, greatly shortening the determination time of
network weights. It overcomes the inherent defect that the traditional iterative training
algorithm is susceptible to a dynamic learning process and that it is difficult to determine
the optimal topology of the neural network. This model can still be regarded as a BP neural
network model, as shown in Figure 5. In this figure, the number of hidden layer neurons is
n, and the connection weight between hidden layer neurons and output layer neurons is
denoted as vj, j = 0, 1 · · · , n− 1, but the relation between the input xand the output y of
the neural network can be obtained as y = v0x0 + v1x1 + v2x2 + · · ·+ vn−1xn−1.

Output 
data

x

x0

x1

x2

xn-1

Output LayerInput Layer

y

l

l

l

l

Hidden Layer

1

0

2

1−n

Figure 5. An improved power-excited forward neural network model.
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In the figure, the sample set (xi, yi), i = 1, 2, · · · , n is used to train the power-excited

forward neural network, and the learning error function E is defined as E = 1
2

n
∑

i=1
(yi −

n−1
∑

p=0
vpxp

i ). Therefore, the weight iterative formula can be expressed as:

vj(k + 1) = vj(k)− η
∂E
∂vj

= vj(k)− η
m

∑
i=1

xj
i

[(
n−1

∑
p=0

vpxp
i − yi

)]
,

(15)

where j = [1, 2, · · · , n− 1]. Let v = [v0, v1, · · · , vn−1]
T ∈ Rn and y = [y0, y1, · · · , yn−1]

T ∈
Rm, respectively, where the superscript T expresses the matrix transpose operation. Let
X for

X =


x0

1 x1
1 x2

1 · · · xn−1
1

x0
2 x1

2 x2
2 · · · xn−1

2

. . .
...

x0
m x1

m x2
m · · · xn−1

m

 ∈ Rm×n. (16)

Thus, Formula (15) can be expressed in matrix vector form as follows:

v(k + 1) = v(k)− ηXT [Xv(k)− y]. (17)

For Formula (15), when the network training reaches the steady state, we have

lim
k→+∞

v(k + 1) = lim
k→+∞

v(k) = v, (18)

Then, there is −ηXT [Xw− y] = 0. The optimal weight of the power-excited neural
network can be directly determined as v by using the matrix pseudo-inverse idea as
follows:

v(k) = (XTX)−1XTy. (19)

It can be seen from the above that the direct weight determination method can auto-
matically, quickly, effectively, and accurately determine the optimal weight, so as to achieve
network performance optimization.

3.2.4. Dictionary Atomic Denoising Verification

Regardless of using the recursive least squares dictionary learning algorithm (RLS-
DLA), K-singular value decomposition (K-SVD)K-SVD, or other dictionary learning al-
gorithms, as long as the training data contain noise, the resulting dictionary is bound to
contain noise. In order to prove that the dictionary atom trained by RLS-DLA contains noise
and verify the effect of dictionary learning by the direct weight determination method, we
set the real quintic polynomial phase signal as the input signal, which can be expressed as

y(n) = A(n)sin(
5

∑
i=0

ai(n M)i) + v(n), n ∈ [0, N], (20)

where a(n) = 1. v(n) is Gaussian white noise, and the signal-to-noise ratio was set
to 10 dB. In order to avoid the ambiguity of ai, it follows |ai| ≤ π

m!nm−1∆m , so we have
a = (a5, a4, a3, a2, a1, a0) = (4e− 10, 4e− 9, 2.75e− 6, 1.5e− 3, π/8, π/3).

According to the algorithm idea of a neural network, a dictionary learning algorithm
for denoising polynomial phase signals based on the direct weight determination method
is proposed. D ∈ RN×L initializes the dictionary. Each column in the dictionary represents
an atom, and L represents the number of atoms in the dictionary. Since a redundant
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dictionary is used, L� N. Y ∈ RN×K represents the training set, where K � L; thus, the
coefficient matrix W ∈ RL×K. Since the denoising signal itself is used as training data, the
observation length of the signal needs to be considered. In the processing of polynomial
phase signals, the signal length is not very long, and the number of trained signals K in the
training signal set Y is much larger than the number of atoms in the redundant dictionary.
Therefore, if the length of the object signal y(i)(i = 1, 2, · · · , M) is not long enough, in
order to satisfy K � L, the training signal set Y is reconstructed by referring to the phase
space reconstruction theory, which can be expressed as

Y =


y1, y2, · · · , yN−K+1
y2, y3, · · · , yN−K+2
...

...
. . .

...
yK, yK+1, · · · , yN

. (21)

At the same time, any observed signal in segment K is taken as the initial dictionary D,
and the ith atom di = [di1, di2, · · · , diN ]

T of dictionary D is obtained. The input excitation
matrix X can be expressed as

X =


x0

1, x1
1, · · · , xn−1

1
x0

2, x1
2, · · · , xn−1

2
...

...
. . .

...
x0

N , x1
N , · · · , xn−1

N

. (22)

According to the neural network weight determination method, w = (XTX)−1XTdi. There-
fore, the predicted atomic value after filtering can be obtained as d∗i = Xw, and the filtered
dictionary can be expressed as D∗ = [d∗1 , d∗2 , · · · , d∗i · · · , d∗L].

As shown in Figure 6, it can be seen from the figure that the real quintic polynomial
phase signal with additive Gaussian white noise is a smooth curve after learning by the
direct weight determination method. The dictionary atom after RLS-DLA learning obvi-
ously contains additive white Gaussian noise. Therefore, the dictionary composed of atoms
learned by the direct weight determination method is denoised by sparse representation,
and the denoising effect is very obvious.
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The denoised atom by neural networks

RLS-DLA dictionary atomic denoising

Figure 6. Comparison of neural network and RLS-DLA denoising.

3.3. Sparse Blind the TOA Offset Estimation

In this section, sparse dictionary learning is used to represent signals sparsely. Mean-
while, in order to improve the resolution of TOA, the signal aug-expanding matrix is added
and its sparsity and coherence are proven.
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3.3.1. Construction of Sparse Basis Matrix

Sparsity is the premise of the compressed sensing algorithm and the necessary con-
dition for signals. However, most signals do not meet the conditions of sparsity or com-
pressibility. In this case, signals need to be transformed into sparse signals in a certain
transform domain, and the transformed signals become compressible signals. The signal
<(F) = [ς1, ς2, · · · , ςl , · · · , ςL]

T ∈ R sampled by us was a discrete signal in the frequency
domain with dimension L. The dictionary Ψ estimated by the direct weight determination
method was used to estimate the sparse representation coefficient α as the sparse matrix.
The signal <(F) can be expressed as

<(F) = Ψα, (23)

where Ψ ∈ RL×L, and L = 256 is the number of dimensions of F of the sampled signal.
α = [α1, α1, · · · , αl , · · · , αL]

T is the coefficient vector, which is another representation of F
and is sparse on ΨL×L.

3.3.2. Construction of Measurement Matrix

In the whole process of compressed sensing, the design of the measurement matrix is a
key step. The properties of the measurement matrix are related to whether the compression
can be achieved and whether the signal can be reconstructed accurately. How can an
appropriate observation matrix be designed, which can not only achieve the purpose
of compressed sampling but also ensure that the signal can be reconstructed without
distortion? The restricted isometry property (RIP) can solve this problem in theory [39]. The
random Gaussian measurement matrix is the most widely used in compressed sensing. We
constructed a matrix Φ with the size of K ∗ L, and each element in the matrix independently
followed a Gaussian distribution with mean value υ = 0 and variance of σ =

√
1/K, which

can be expressed as follows

Φk,l ∼ N(υ, σ), l ∈ [1, L], k ∈ [1, K], (24)

where L is the dimensions of the sampled data, and N is the normal distribution function.
K is the number of CIR dimensions to be restored. The random Gaussian measurement
matrix has a strong randomness. It can be proven that, when the measurement number
K ≥ cM log(L/M) of the random Gaussian measurement matrix, RIP conditions will be
met with a great probability. In general, there is M << K ≤ L, and c is a tiny constant. In
the compressed sensing process, a random Gaussian measurement matrix is widely used
mainly because it is not related to most orthogonal bases or orthogonal dictionaries, and
the number of measurements required for accurate reconstruction is relatively small.

3.3.3. CIR Resolution Augmentation Matrix

In order to improve the time domain resolution and recover CIR to estimate a more
accurate TOA, we constructed a matrix to extend the arrival delay τ [40], which can be
expressed as

Snk = sinc(π(Ank)/T), n ∈ [1, N], k ∈ [1, K], (25)

where sinc is a filter constructed by the sinc function, often used in anti-aliasing techniques.
T is the sampling period. N is the resolution of CIR of data to be restored, and N is the
control parameter of the resolution of data to be restored, which can be used to improve
the resolution of data to be restored, and N > K. AN×K ∈ R can be represented as

A =


0, ν1,1, · · · , ν1,k−1
−ν2,2, −ν2,1, · · · , ν2,k−3
−ν3,4, −ν3,3, · · · , ν3,k−5

. . .
...

−νn,2∗(n−1), νn,2∗(n−1)−1, · · · , νn,k−2∗(n−1)−1

, (26)
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where ν is the sampling interval and SN×K ∈ R.

3.3.4. Sparse Recovery

The K ∗ L dimension matrix formed by the product of measurement matrix ΦK×L and
transformation basis ΨL×L is called the perception matrix, and observes the signal and
obtains the observation vector y = [y1, y2, · · · , yn, · · · , yN ]

T ∈ R. The observed signal can
be expressed as

y = Φ<(F) = ΦΨα. (27)

Meanwhile, in order to improve the resolution, we constructed a matrix SN×K to
extend the arrival delay, so (27) can be expressed as

y = SΦ<(F) = SΦΨα. (28)

In the context of CS, the CIR reconstruction problem is now formulated as

min
α
‖α‖0,

s.t.‖y− SΦΨα‖2
2 ≤ ε,

(29)

where, for some small ε, ‖ · ‖0 denotes l0-norm, which counts the number of non-zero
elements, and ‖ · ‖2 stands for l2-norm. Note that ε approximates σ2 if we have enough
data. However, l0-norm minimization is a complex combinatorial problem [41]. In order
to improve the computational efficiency, it is usually extended to l1-norm minimization,
because it can be solved by convex optimization [42,43]. Compared with the inverse
Fourier transform, this CS-based approach enhances sparsity and effectively minimizes the
pseudo-sidelobe.

3.3.5. CS with Complex-Valued Targets

The CS estimates a sparse signal vector in a probabilistic manner. It maximizes the
posterior probability of the sparse signal vector at a given observed value. In the posterior
probability maximization, the CS theory is applicable to the processing of real data, while
CSI data are complex. In order to apply this theory to TOA estimation, observation data
should be realizable in order to build an optimization model of a real number field [44].
For the application of CS in complex valued CIR estimation, Equation (28) is first extended
to the equivalent real-valued form by

H̃ =

[
<(ΦΨS) −=(ΦΨS)
=(ΦΨS) <(ΦΨS)

]
∗
[
<(α)
=(α)

]
= S̃Φ̃Ψ̃α̃,

(30)

where H̃ ∈ R2N×1, Φ̃ ∈ R2K×2L, Ψ̃ ∈ R2L×2L, S̃ ∈ R2N×2K, and α̃ ∈ R2L×1. This expansion
increases the dimension of the observation matrix and separates the reconstruction of real
and imaginary values of a channel magnitude in each delay tap.

3.3.6. Sparse and Coherence Proof

In the whole process of compressed sensing, the design of a measurement matrix is a
key step. The properties of the measurement matrix are related to whether the compression
can be achieved and whether the signal can be reconstructed accurately. For a given
measured value y, the solution of Formula (28) is an underdetermined problem. Candes et
al. proposed a solution: as long as the measurement matrix conforms to the RIP, a definite
solution can be obtained; that is, the existence, accuracy, and uniqueness of the original
signal reconstruction can be guaranteed. RIP is defined as:

(1− δ)‖x‖2
2 ≤ ‖x‖2

2 ≤ (1 + δ)‖x‖2
2, (31)
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where δ is a constant and δ ∈ (0, 1). ‖ · ‖2 stands for `2-norm. In this paper, the measurement
matrix is a random Gaussian measurement matrix, and there is a high probability that RIP
conditions are met.

According to Baraniuk, the equivalent condition of RIP is that the observation matrix
Φ and the sparse representation basis Ψ are irrelevant. However, since we added the S
matrix to improve the CIR resolution, the equivalent condition of RIP is therefore irrelevant
between Φ, Ψ and S. In practical application, we can use an equivalent condition of
criterion, namely incoherence, to guide the design of the measurement matrix. Incoherency
means that the row vector Φi of the matrix observation system Φ cannot be sparsely
represented by the column vector Ψi in the basis Ψ, nor can it be represented by the column
vectors of the Si matrix. It can be measured by coherence and is expressed as

µ(Φ, Ψ, S) = max
1≤k≤K,1≤l≤L,1≤n≤N

| 〈Φk, Ψl , Sn〉 | . (32)

In this paper, ΦK×L is a sensing matrix of random normal distribution with mean
υ = 0 and variance σ =

√
1/K. According to the normal distribution function, the ratio

within 3
√

1/K is approximately 99.73%, so

0 ≤ |ΦK×L
kl |1 . 3

√
1/K, k ∈ [1, K], l ∈ [1, L]. (33)

The sparse matrix Ψ estimated by dictionary learning is derived from collected CSI
data. The indoor location signal model of the wiFI-WASP system used to collect CSI data is
suitable for the Saleh–Valenzuela propagation model. The Saleh–Valenzuela propagation
model is an indoor radio channel statistical multipath model that fits well with our mea-
surements, through which, the received signal rays arrive in clusters. These rays have an
independent uniform phase, as well as independent Rayleigh amplitudes whose variances
decay exponentially with the cluster and ray delay. Light in clusters and within clusters
forms Poisson arrival processes with different but fixed rates. According to the model, the
received signal amplitude follows a normal distribution, which can be expressed as

ak = N(0, σ2
k ) + jN(0, σ2

k ), (34)

where k indicates the number of paths and N(0, σ2
k ) shows a value that is in accordance

with the normal distribution. Equation (34) creates the Rayleigh fading. The variance σ2
k is

the average power of the k path, so the strength of the paths within the clusters is given
as [45,46]:

σ2(k) = e−Tl /Γe−τil/γ, (35)

where Tl is the arrival time of the lth cluster and τil is the arrival time of the ith path in the
lth cluster. We set the time constants Tl and τil or the inter and intra cluster as 300 ns and
5 ns, respectively, as Poisson distributions. Γ is a constant of cluster arrival decay time, γ
indicates a constant of ray arrival decay time, Γ = 60 ns, and γ = 20 ns. According to the
normal distribution function, the ratio within 3

√
1/σ2(k) is approximately 99.73%. Thus, it

can be seen that the range of l1 norm of any element in Ψ can be expressed as

0 ≤ |ΨL×L
uv |1 . 3σ. (36)

The sinc function of CIR resolution enhancement matrix SN×K can be expressed as

Snk = sinc
πAnk

T
=

sin((πAnk)/T)
πAnk/T

, n ∈ [1, N], k ∈ [1, K]. (37)

Obviously, the value range of any element in matrix S is

0 ≤ |Snk|1 ≤ 1. (38)
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Therefore, the coherence of Φ, Ψ, and S when multiplied by any rows and columns is
in the range of

0 < µ(Φ, Ψ, S) .
9Lσ√

K
, (39)

where the coherence of µ is closely related to the number of rows and columns of Φ and Ψ,
but not to the number of rows and columns of S and σ � 1. Since the elements in the S
matrix are generally less than 1, it is still helpful for incoherence µ.

4. Experimental Results

The performance of the proposed algorithm was evaluated under outdoor line-of-
sight (LOS) conditions and indoor conditions, respectively. In each experiment, an 802.11ac
wireless LAN was built, and six sniffers were deployed, running in 149 channels with a
bandwidth of 80 MHz. One target device was used for location verification and one PC
was used to collect data from the sniffer and target device online to estimate the location of
the target device.

In practical applications with LOS propagation, usually the first peak of the impulse
response is the TOA of the direct path. However, in a non-LOS or multipath environment,
the first-arrival path usually attenuates significantly and may even have a lower signal
intensity than the reflection path. In addition, multiple reflected signals that overlap
the direct path signal distort the first peak of the combined signal [10]. Existing ToA
estimation algorithms are based on thresholding the first peak, using a prior model [3], or
the MUSIC/ESPRIT algorithm. The performance of the proposed approach was compared
against MUSIC and ESPRIT.

4.1. Outdoor Test

The system was tested under outdoor LOS conditions to evaluate its performance. We
deployed six sniffers around a WiFi network for the outdoor LOS tests with one AP and one
WiFi dongle. The topology of the system is shown in Figure 7. The size of the experimental
area was 900 m2. The target moved across the test area. Figure 5 shows the positioning
results for the outdoor test. It can be seen that the positioning results are consistent with
the actual locations.
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Figure 7. Positioning results in outdoor LOS environments.

Figure 8 shows the positioning accuracy of our system when the TOA is estimated
using the CS and MUSIC and ESPRIT algorithm. It can be seen that the 72-percentile
positioning error is 0.5 m, and 1 m in 90% with the CS. Compared with MUSIC and ESPRIT’s
TOA estimation methods, the accuracy of CS’s TOA estimation method is much higher.
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Figure 8. Cumulative distribution function of the positioning errors for the outdoor LOS test.

4.2. Indoor Test

Localization accuracy depends on the multipath environment, the materials used in
the walls, the presence of metal objects, the density of sniffer deployment, and many other
factors, so indoor localization testing is an important step in validating wireless positioning
methods. The assembly hall covers an area of around 70 m2. We deployed six sniffers and a
standard Wi-Fi device in the conference hall and placed them at known locations to collect
data from 17 locations of target devices inside the conference hall. Figure 9 shows the
real and estimated location of the target. It can be seen that, except for the poor reflection
effect of the seat in the Y-axis direction, the estimated location is consistent with the actual
location, which can meet the needs of many indoor positions.

Figure 10 shows the positioning effect when using CS, MUSIC, and ESPRIT algorithms
to estimate the TOA. We observed that CS achieves a localization error of approximately
the 48th percentile at 0.5 m and 1 m, respectively. Compared with MUSIC and ESPRIT’s
TOA estimation method, CS’s TOA estimation method has a higher accuracy. The SpotFi
positioning system is an indoor localization method proposed by m. Kotaru et al. The
SpotFi localization system has three antennas and is deployed in the indoor office with
5–6 AP. The localization error of approximately 18% is 0.5 m and approximately 60% is 1
m [25]. The ArrayTrack localization system is an indoor localization method proposed by
Jie Xiong et al. In the same experimental environment as SpotFi, the localization error of
approximately 30 % is 1 m.
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Figure 9. Estimated target locations in the indoor experiment.
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Figure 10. Cumulative distribution function of the positioning errors for the indoor test.

5. Conclusions

With the increasing demand for positioning, it is difficult for existing positioning
methods to meet the convenience of deployment equipment without satellite positioning.
The proposed TOA estimation method is expected to better adapt to the business require-
ments of equipment deployment. In this paper, a method based on a neural network to
determine the direct weight of dictionary filtering was designed, and the filtering effect
is proven by quintic polynomial. The learned dictionary was used as the sparse matrix of
compressed sensing, the augmentation and expansion matrix was added to increase the
CIR resolution after sparse recovery, and the sparsity of the dictionary, measurement matrix,
augmentation, and expansion matrix was proven. The proposed algorithm was validated
by experiments on the indoor and outdoor positioning system. The results show that
the proposed algorithm has a high positioning accuracy. Compared with the fingerprint
positioning method, the positioning method adopted in this paper has the advantage of
not needing to sample the data in the positioning environment in advance, so it has a broad
application prospect.
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RSSI Received signal strength indicator
CSI Channel state information
CS Compressive sensing
CIR Channel impulse response
TOA Time-of-arrival
TDOA Time-difference-of-arrival
AP Access point
WiFi-WASP WiFi-based wireless ad hoc system for positioning
OFDM Orthogonal frequency-division multiplexing
LOS Line-of-sight
BP Back propagation
RLS-DLA Recursive least squares dictionary learning algorithm
RIP Restricted isometry property
CNN Convolutional neural network
AOA Angle of arrival
MUSIC Multiple signal classification
ESPRIT Estimating signal parameters via rotational invariance techniques
CFR Channel frequency response
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