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Abstract: With the development of machine learning, data-driven mechanical fault diagnosis methods
have been widely used in the field of PHM. Due to the limitation of the amount of fault data, it is a
difficult problem for fault diagnosis to solve the problem of unbalanced data sets. Under unbalanced
data sets, faults with little historical data are always difficult to diagnose and lead to economic
losses. In order to improve the prediction accuracy under unbalanced data sets, this paper proposes
MeanRadius-SMOTE based on the traditional SMOTE oversampling algorithm, which effectively
avoids the generation of useless samples and noise samples. This paper validates the effectiveness of
the algorithm on three linear unbalanced data sets and four step unbalanced data sets. Experimental
results show that MeanRadius-SMOTE outperforms SMOTE and LR-SMOTE in various evaluation
indicators, as well as has better robustness against different imbalance rates. In addition, MeanRadius-
SMOTE can take into account the prediction accuracy of the overall and minority class, which is of
great significance for engineering applications.

Keywords: mechanical fault diagnosis; unbalanced data set; MeanRadius-SMOTE; minority class

1. Introduction

With the continuous innovation of technology, industrial equipment has developed
rapidly in the direction of large-scale, automated, integrated, and intelligent, such as
aircraft engines, steam turbines, wind turbines, centrifuges, etc. In order to meet the
requirements of mechanical equipment reliability and precision in the industrial field,
PHM (Prognostics and Health Management) was initiated to ensure the stable operation of
mechanical equipment and reduce maintenance costs [1–3].

With the development of big data in the industrial field, data-driven mechanical fault
diagnosis research has received more and more attention [4–6]. Mechanical fault diagnosis
generally starts by extracting vibration signals from the operation of the equipment, because
vibration signals can provide sufficient fault features to reflect the fault status and serve
as the input of the prediction model [7,8]. However, due to the low frequency of some
faults, the vibration signals of such faults are too small, and the classifier cannot predict
them accurately, which is the problem of unbalanced data sets in fault diagnosis. In the
multi-classification mechanical fault diagnosis problem, the machine learning classifier
emphasizes the accuracy of the overall prediction, which leads to sacrificing the prediction
accuracy of the minority class to ensure the prediction of the majority class samples [9].
However, there are infrequent failures in some mechanical equipment, which will lead to
huge economic losses once they occur. Therefore, it is necessary to research the problem of
unbalanced data sets in mechanical fault diagnosis.

At present, the research on the problem of unbalanced data sets is relatively mature,
but this research in the mechanical fault diagnosis field has just begun [10]. Many fault
diagnosis techniques rely on reliable and complete data sets, such as multi-sensing fusion
techniques [11]. However, since machinery usually operates under normal conditions, it is
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difficult to collect enough failure data, so that the actual data set lacks completeness [12,13].
The lack of samples with specific labels can lead to data imbalance problems. In recent
years, many scholars have begun to pay attention to this problem and have given their own
methods [14,15]. Generally, the solution to the problem of unbalanced data sets is mainly
divided into data and algorithm aspects, and sometimes they are combined [16].

For the data aspect, scholars mainly use resampling technology to copy, synthesize,
delete, and perform other operations on original samples, to adjust the number of samples
to reduce the impact of unbalanced data sets. Resampling techniques are divided into
oversampling for minority class samples and undersampling for majority class samples. The
main idea of oversampling is to increase the number of minority class samples to achieve
class balance. The main methods are divided into replicating samples and generating
new samples. ROS (Random Oversampling) is to randomly replicate original samples to
expand the number of minority class samples, but it may cause the replication of noise
samples to affect the quality of the data set [17]. The method of generating new samples
derives new samples from one or more original samples, and the new samples can indirectly
reflect the features of the minority class. The most classic oversampling is the SMOTE
algorithm [18]. The SMOTE algorithm selects the line connecting the two original samples
as the range of the new sample and determines a point on the line as the new sample.
However, SMOTE still does not avoid the generation of noise samples, and the new samples
are easily affected by the distribution of the original samples, which may cause the new
samples to deviate from the actual distribution. Later scholars improved SMOTE in terms
of noise reduction and generation algorithms, such as Borderline-SMOTE [19], Adasyn [20],
LR-SMOTE [21], etc. Undersampling achieves class balance by reducing the number of
majority class samples, such as undersampling based on the clustering algorithm and ENN
(Edited Nearest Neighbor) [22]. In fact, most of the unbalanced data sets are caused by too
few samples in the minority class, so oversampling is the key research in this field [23].

For the algorithm aspect, with the rapid development of machine learning, many
classifiers have responded to the problem of unbalanced data sets. On the premise that
each sample is equal, the number of samples determines which class the classifier prefers,
so setting the weight of the sample, the threshold of the decision boundary, or the objective
function of the classifier can strengthen the ability of the classifier to combat unbalanced
data sets [24,25]. Adjusting these can make the classifier’s decision boundary less sensitive
to the sample size [26]. Moreover, adding a proper regularization term to the objective
function can reduce the impact of the imbalance rate on the classifier [27].

There is no universal solution to the problem of unbalanced data sets in mechanical
fault diagnosis; although, scholars have tried in various directions. From the perspec-
tive of features, extracting more abundant features from vibration signals is beneficial to
solving the problem, because the failure can be reflected in the energy of the vibration of
the equipment [28]. In addition to features in the time and frequency domains, there are
features based on wavelet packet energy and entropy values [29,30], and the fault features
are also extracted using a bag-of-visual-word approach from the infrared thermography
images [31]. However, the increase of features will undoubtedly increase the workload
of feature screening. From the perspective of resampling, scholars use various existing
resampling methods to conduct experiments on mechanical equipment [32]. Once there
are more failure types or concurrent failures, existing oversampling algorithms may fail.
Therefore, analyzing the commonality of mechanical faults and proposing a new oversam-
pling algorithm is the key to solving this problem in the mechanical field [33,34]. From
the perspective of the classifier, scholars mainly set the cost matrix, and change the loss
function or network structure to make the classifier aware of this imbalance [35]. These
classifiers are often only suitable for identifying faults in stationary parts, such as gears or
bearings [36].

Although new oversampling algorithms are emerging, there are still the following
problems: (1) The solutions are generally only aimed at the prediction of bearing failures
or gear failures, so the methods cannot comprehensively diagnose the running state of
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complete mechanical equipment. (2) Most of the solutions are aimed at the two-category
problem, which is obviously not practical. For a simple secondary planetary gear, there
are already as many as eight failure types. (3) The new samples are not effective enough
that the existing oversampling methods generate. Although the number has reached a
balance, it is far from enough in terms of the amount of fault-type information contained in
the sample.

In view of the existing problems, this paper improves SMOTE and proposes an
oversampling algorithm called MeanRadius-SMOTE, which is specially used to solve the
multi-classification problems in mechanical fault diagnosis. MeanRadius-SMOTE can
reduce the production of noise samples and add more samples with the ability to affect
the decision boundary, and it is easier to inherit the feature information from the original
samples. The complexity of the MeanRadius-SMOTE algorithm is not high compared
to SMOTE.

The main contributions of this paper are as follows: To solve the problem of multi-
classification unbalanced data sets in mechanical fault diagnosis, a new oversampling
algorithm, MeanRadius-SMOTE, is proposed. The algorithm takes into account the per-
formance of prediction of overall and minority class, and especially in the minority class,
prediction accuracy is greatly improved. In this paper, a large number of comparative
experiments are carried out on data sets with various specifications and imbalance rates,
and the effectiveness, stability, and robustness of the algorithm are verified.

The rest of this paper is divided into five parts. In Section 2, the SMOTE algorithm
and the improved LR-SMOTE algorithm based on SMOTE are introduced. In Section 3, the
specific process of the MeanRadius-SMOTE algorithm is introduced in detail. In Section 4,
we mainly introduce the source and processing of the data set, as well as the selection
of classifiers and evaluation indicators in the experiment. In Section 5, we introduce the
experimental process and experimental results. In the following sections, we discuss and
summarize the MeanRadius-SMOTE algorithm based on experiments, and we propose
future research directions.

2. Related Works

Since the machine learning algorithm is greedy in the face of multi-classification
problems, the classifier will give priority to ensuring the highest overall accuracy, resulting
in an inaccurate prediction of some minority class samples. In the real industrial field, in
the face of some faults with low probability but high maintenance cost, operators hope
that the model can accurately predict these faults. Therefore, this section introduces the
commonly used methods to deal with unbalanced data sets, namely, the traditional SMOTE
method and the improved LR-SMOTE method.

2.1. SMOTE

The SMOTE algorithm was proposed by Chaw La et al. in 2002 [18], and the algorithm
is an improved method based on ROS. In the SMOTE algorithm, new samples are generated
based on the original samples, which has a greater probability of obtaining effective
features than random oversampling of new samples. The steps of the SMOTE algorithm are
as follows:

(1) For each sample x in the training set, calculate their Euclidean distance to each minority
class sample xi, and obtain the k nearest neighbors of each minority class sample.

(2) According to the sample imbalance rate, set the sampling ratio N. For xi, randomly
select N samples from its k nearest neighbors, denoted as xh.

(3) According to Equation (1), build new samples based on xi and xh until the classes are
balanced, denoted as xnew.

xnew = xi + rand(0 , 1) ∗ (xh − xi) (1)
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Although the SMOTE algorithm overcomes the overfitting problem of the ROS algo-
rithm, SMOTE still has some problems with noise samples and useless samples. Many
scholars have improved SMOTE. For example, Han proposed the Borderline-SMOTE al-
gorithm [19]. The algorithm first classifies the original samples into safe, dangerous, and
noise, then uses the dangerous samples to generate new samples. It not only reduces the
interference of noise points but also enables new samples to better reflect the features of
the data set. However, how to accurately divide the three labels is a more difficult problem
for different data sets.

2.2. LR-SMOTE

Based on the SMOTE algorithm, Wang proposed the LR-SMOTE algorithm [21]. The
algorithm first uses SVM (Support Vector Machine) and K-means to remove the noise
samples in the original data set, then changes the generation rules of new samples and
considers the center of the samples to generate new samples. The specific steps of the
LR-SMOTE algorithm are as follows:

(1) Use SVM to classify the data set, and then for the wrongly classified minority samples
use the K-means method to judge and remove the noise samples.

(2) Use K-means to find the center xc of the minority class sample, calculate the distance di
from each minority class sample to the center xc, and calculate the average distance dm.

(3) For each minority class sample xi, calculate the ratio Mi of the average distance dm
and the distance di.

(4) According to the number of the same samples in the neighbor samples, set the weight
of each minority class sample, and then randomly select a minority class sample xi
and build new samples xnew according to Equation (2).

xnew = xi + rand(0 , Mi) ∗ (xc − xi) (2)

(5) Repeat steps 3 and 4 until the number of samples of the majority class and minority
class is balanced.

In the LR-SMOTE algorithm, the new samples are generated based on the functional
relationship between the sample center and each sample, rather than any two minority
samples. Therefore, the new samples will not deviate from the range of the minority
samples, and the features are closer to the original sample. LR-SMOTE provides a good
direction for generating rules so that the algorithm determines the distribution of samples
according to the sample center. This paper also proposes a new algorithm along this way
to solve the unbalanced data sets in the mechanical field. We use the MeanRadius-SMOTE
algorithm to experiment on a variety of mechanical failure data sets, and the experimental
results show that the MeanRadius-SMOTE algorithm is suitable for solving the problem of
unbalanced data sets in the mechanical field.

3. Proposed Method

In an oversampling algorithm, new samples at different geometric locations have
different improvements in classifier training. In general, the more new samples near
the decision boundary, the greater the impact on the classifier. This paper proposes the
MeanRadius-SMOTE (MR-SMOTE) algorithm considering the sample center and radius.
When using machine learning to predict mechanical failures, we deal with noise samples in
advance, so noise reduction is performed in feature preprocessing. Noise reduction is not
involved in the MeanRadius-SMOTE, and the noise reduction algorithm will be introduced
in the next section.

The MeanRadius-SMOTE algorithm mainly changes the generation rules of the
SMOTE algorithm, so that the new samples are more likely to be distributed near the
average radius of the minority class samples, and the new samples have a stronger ability
to affect the decision boundary of the classifier. In the MeanRadius-SMOTE algorithm,
the new sample is determined by k vectors of the sample center to the samples, and the
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distance between the new sample and the sample center follows a normal distribution. The
steps of the MeanRadius-SMOTE algorithm are as follows:

(1) According to each minority class sample, calculate the geometric center, denoted as
the sample center xc of the minority class sample.

(2) Calculate the Euclidean distance from each minority class sample to the sample
center, and then obtain the average distance, denoted as the sample radius dm of the
minority class.

(3) Randomly select k minority class samples, and then obtain k vectors vi from the
sample center xc to the samples. Compute the resultant vector of k vectors.

(4) Use a normal distribution with mean dm and variance dm
θ to determine the distance

between the new sample and the sample canter. According to Equation (3), build
new samples.

xnew = xc + r ∗
k

∑
i=0

vi r ∼ N(dm,
dm

θ
) (3)

(5) Repeat steps 3 and 4 until the number of samples of the majority class and minority
class is balanced.

In order to show the flow of the algorithm more conveniently, we draw the flow chart
of the MeanRadius-SMOTE algorithm, as shown in Figure 1.
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In the MeanRadius-SMOTE algorithm, k and θ are hyperparameters of the algorithm,
which are determined according to the number of minority class samples and the imbalance
rate. If k is too large, the direction of the new sample relative to the sample center will
become meaningless, and θ directly affects the distribution of the new sample. As shown
in Figure 2, new samples under different θ are likely to be distributed in colored areas.
When θ is too small, the new sample may be far from the sample center. When θ is too
large, the new sample is too conservative and cannot balance the number of positive and
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negative samples near the decision boundary. Therefore, in general, the selection range of
parameters k is 2 to 5 and the selection range of parameters θ is 4 to 10.
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For mechanical equipment, some concurrent faults and the original fault have similar
vibration states, and the two types of samples often overlap in distribution. Whether the
classifier can find an excellent decision boundary is the key to determining the accuracy of
the model. In the MeanRadius-SMOTE algorithm, most of the new samples are concen-
trated around the sample radius to ensure the validity of the new samples. The new sample
is determined by k samples and is related to the sample center, so that the new sample can
better inherit the features of the minority class. The geometric positions of new samples
generated by different oversampling algorithms have their own characteristics, so we plot
the examples of SMOTE, LR-SMOTE, and MeanRadius-SMOTE on two-dimension feature
samples, as shown in Figure 3. The information of the two-dimension feature samples is
shown in Table 1.
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Table 1. The information of the two-dimension feature samples.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Feature 1 3 4 6 7 5 2 3 5.5
Feature 2 6 3 2 4 5 2 −1 0

The new samples of SMOTE are more inclined to be generated in locations with a
high density of the original samples. Since LR-SMOTE randomly chooses a sample to
determine the orientation of the new sample, the new sample is more clustered and radial.
In MeanRadius-SMOTE, the orientation of new samples is relatively random, and the new
samples are generated around the sample radius.

4. Experimental Preparation
4.1. Data Set

Our experimental data set is the 2009 PHM data challenge of gearbox [37]. The data
set is a typical industrial gearbox data set, which contains 3 shafts, 4 gears, and 6 bearings,
and its experimental bench is shown in Figure 4. The data set tests two sets of gears: spur
gear and helical gear. The spur gear data set contains 8 health states, and the helical gear
data set contains 6 health states. The data set consists of two channels of accelerometer
signals and one channel of tachometer signals. The sampling frequency is 66.67 kHz, and
the tachometer signals are collected at 10 pulses per revolution. There are five types of shaft
speeds: 30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz, with high and low loads. In the experiment,
we chose the low load spur gear operating data at 30 Hz, and we used the vibration data of
the two acceleration channels for feature extraction, The 8 health states of spur gears are as
follows in Table 2.
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Table 2. A brief description of the faults.

Label Description

Label 1 Good
Label 2 Gear chipped and eccentric
Label 3 Gear eccentric
Label 4 Gear eccentric and broken, bearing ball fault

Label 5 Gear chipped and eccentric and broken,
bearing inner and ball and outer fault

Label 6 Gear broken, bearing inner and ball and outer
fault, shaft imbalance

Label 7 Bearing inner fault, shaft keyway sheared
Label 8 Bearing ball and outer fault, shaft imbalance

Mechanical equipment frequently fails in the harsh environment of high temperature
and high pressure due to concurrent failures composed of multiple single failures [38]. In
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the PHM dataset, there are many types of concurrent failures, such as labels 4 to 8. They
are all combinations of different types of failures in gears and bearings.

For the vibration signal, we sampled the data set using a sliding window with a stride
of 100 and a width of 1000. Then we extracted time–frequency domain features for each
vibration signal sample and add labels [39]. The formula of 23 features is shown in Table 3.

Table 3. The time–frequency domain features.

Time-Domain Feature Frequency-Domain Feature

F1 =

N
∑

n=1
x(n)

N F7 =

N
∑

n=1
(x(n)−F1)

4

(N−1)F2
4 F12 =

K
∑
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F18 =

√√√√√√
K
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fk
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K
∑
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√
N
∑

n=1
(x(n)−F1)

2

N−1
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F5
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K
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2

K−1
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K
∑
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√
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1
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N
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K
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4

KF13
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1
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where x(n) is a signal series for n = 1 − N, and N is the
number of data points.

where s(k) is a signal series for k = 1 − K, and K is the
number of spectrum lines; fk is the frequency value of the

kth spectrum line.

In the experiment, we used the K-nearest neighbor algorithm to denoise the data set.
If the five nearest samples around a sample are not of this class, we consider it to be a noise
sample and delete it. After the above preprocessing, we obtained 2656 samples per label, of
which 1000 samples per label were taken as the test set. Additional samples were used to
construct unbalanced data sets.

4.2. Classifiers

In order to comprehensively evaluate the oversampling algorithm, we chose different
classifiers to build the experimental model, which excludes the influence of the classifier
and verifies the generality of the oversampling algorithm. Through experiments in a
large number of mechanical fault diagnoses, the SVM classifier generally has a good
training effect, so we chose SVM to establish a classification model. With the continuous
development of the decision tree algorithm, the ensemble learning model is also favored by
scholars because of its excellent generalization ability. Therefore, we chose RF (Random
Forest) representing bagging ensemble mode, and GBDT (Gradient Boosting Decision Tree)
representing boosting ensemble mode for experiments.

4.3. Evaluation Indicators

Traditional evaluation indicators can well evaluate the performance of the model
in the two-category problem. However, in the multi-classification problem, due to the
partiality of the classifier, these indicators cannot comprehensively evaluate the model
on unbalanced data sets. The expectation of the oversampling algorithm in this paper is
to improve the prediction performance of the minority class without losing the overall
prediction accuracy of the classifier. Therefore, we will use the traditional evaluation
indicators and the prediction indicator of the minority class to evaluate the prediction
model. For class i samples, we define the prediction results as follows, as shown in Table 4:
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Table 4. Predicting results for class i samples.

Positive Prediction Negative Prediction

Positive class TPi FNi
Negative class FPi TNi

We choose the following four evaluation indicators:

(1) Accuracy (Acc): The Acc value is the ratio of the number of correctly predicted samples
to the total number of samples. The calculation method is as shown in Equation (4):

Acc =
∑
n

TPi + FNi

∑
n

FPi + TNi + TPi + FNi
(4)

The Acc value evaluates the overall prediction, but in the case of unbalanced data sets,
it is not a good indicator to measure the results.

(2) Macro-Precision (Mac-P): The calculation method of the Precision value for class i
samples is as shown in Equation (5):

Precisioni =
TPi

TPi + FPi
(5)

In the multi-classification problem, the Precision value is divided into Macro and
Micro methods. Micro-Precision focuses more on types of samples with a large
number of samples, so it is more susceptible to the majority class. However, Mac-P
will treat each type of sample equally, so it can better describe the model’s ability to
deal with unbalanced data sets. The calculation method is as shown in Equation (6):

Mac− P =
∑
n

Precisioni

n
(6)

(3) Macro-F1 (Mac-F1): It is contradictory to improve the Precision value and Recall value
at the same time. The F1 value is a balance point with high Precision value and high
Recall value, and its calculation method is as shown in Equation (7):

F1i =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli
(7)

In the multi-classification problem, The F1 value also has Macro and Micro methods
such as the Precision value. This paper selects Mac-F1, which can better take into
account the minority class. The calculation method is as shown in Equation (8):

Mac− F1 =
∑
n

F1i

n
(8)

(4) Precision-Minority (Presmall): In order to pay more attention to the prediction effect
of the model on the minority class samples after oversampling algorithms, we will
calculate the Precision value of the minority class as an indicator, and its calculation
method is as shown in Equation (9):

Presmall =
TPsmall

FPsmall + TPsmall
(9)

5. Experimental Design and Results

In this paper, we will design unbalanced data sets of various sizes for experiments.
According to the distribution of sample data volume within each class, unbalanced data
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sets can be divided into two forms, linear imbalance and step imbalance. The distribution
of sample data volume for the two forms is as shown in Figure 5.
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In this paper, we design three linear unbalanced data sets and four step unbalanced
data sets. In order to reduce the interference of the class on the Presmall in different experi-
ments, we set the number of samples for labels 4 to 50 as the smallest minority class. We
set the normal label as the large sample class, and the imbalance rate is designed to be 30,
20, and 15, through which the number of other labels can be determined. The details of
the seven unbalanced data sets are shown in Table 5. For line-1 to 3, their imbalance rates
are not the same. Moreover, the label linear order is shuffled. For stage-1 to 4, there are
differences in the imbalance rate and the ratio of minority class and majority class labels.

Table 5. Unbalanced data sets description.

Imbalance Forms Name
Number of Samples

Imbalance Rate
Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 Label 8

linear
line-1 1500 465 258 50 672 879 1293 1086 30
line-2 1000 864 592 50 728 321 185 457 20
line-3 750 550 450 50 150 350 650 250 15

step

stage-1 1500 50 1500 50 1500 1500 1500 50 30
stage-2 750 50 750 50 750 750 750 50 15
stage-3 1500 50 1500 50 50 50 50 1500 30
stage-4 750 50 750 50 50 50 50 750 15

In the experiment, we will use the SMOTE, LR-SMOTE, and MeanRadius-SMOTE
to oversample the seven unbalanced data sets, so that each class label becomes balanced.
Then, we conduct experiments on the original data set and the three processed data sets on
SVM, RF, and GBDT classifiers. In order to eliminate the training bias caused by random
data, all experiments were performed with 5-fold cross-validation and repeated 10 times to
obtain the average number of indicators.

The experimental results of Acc, Mac-P, and Mac-F1 on the linear unbalanced data
sets and step unbalanced data sets are shown in Tables 6 and 7, where the values with bold
mean the largest value in four compared models.

From Table 6, it can be found that the oversampling algorithm can effectively improve
Acc, Mac-P, and Mac-F1, and MeanRadius-SMOTE is the best in most cases. In some
experiments, SMOTE performs better than MeanRadius-SMOTE, but the gap between them
is very small. However, in the SVM experiment, MeanRadius-SMOTE improves the three
indicators much better than SMOTE and LR-SMOTE.

From Table 7, since there are more minority classes in the step unbalanced data sets, the
three indicators are all lower in the experiments without oversampling, and are more affected
by the imbalance rate. The SVM classifier combined with any oversampling algorithm is
better than the ensemble learning classifier, and there are obvious gaps in the three indicators.
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On the step unbalanced data sets, MeanRadius-SMOTE outperforms SMOTE and LR-SMOTE
in all cases, and the gap is especially significant on the SVM classifier.

Table 6. Experimental results of the linear unbalanced data set.

Data Set Methods
SVM RF GBDT

Acc Mac-P Mac-F1 Acc Mac-P Mac-F1 Acc Mac-P Mac-F1

line-1

None 0.8675 0.8896 0.8484 0.7726 0.8122 0.7256 0.8126 0.8243 0.7842
SMOTE 0.9045 0.9148 0.8997 0.8555 0.8685 0.8471 0.8774 0.8849 0.8731

LR-SMOTE 0.9065 0.9161 0.9012 0.8339 0.8528 0.8182 0.8662 0.8746 0.8591
MR-SMOTE 0.9206 0.9233 0.9186 0.8678 0.8730 0.8643 0.8739 0.8773 0.8698

line-2

None 0.8733 0.8945 0.8607 0.7668 0.8075 0.7243 0.8209 0.8412 0.8011
SMOTE 0.8891 0.9062 0.8836 0.8548 0.8629 0.8501 0.8626 0.8713 0.8566

LR-SMOTE 0.8923 0.9059 0.8865 0.8354 0.8497 0.8271 0.8588 0.8685 0.852
MR-SMOTE 0.9139 0.9160 0.9131 0.8675 0.8702 0.8657 0.8733 0.8780 0.8698

line-3

None 0.8754 0.8890 0.8644 0.792 0.8261 0.7583 0.8344 0.8496 0.818
SMOTE 0.8995 0.9069 0.8954 0.8646 0.8726 0.8618 0.8748 0.8782 0.8716

LR-SMOTE 0.8988 0.9058 0.8947 0.8464 0.8575 0.8415 0.8683 0.8730 0.8639
MR-SMOTE 0.9175 0.9183 0.9168 0.8691 0.8720 0.8679 0.8803 0.8807 0.8784

Table 7. Experimental results of the step unbalanced data set.

Data Set Methods
SVM RF GBDT

Acc Mac-P Mac-F1 Acc Mac-P Mac-F1 Acc Mac-P Mac-F1

Stage-1

None 0.7403 0.8207 0.7066 0.6144 0.7610 0.5051 0.6793 0.7553 0.6194
SMOTE 0.8418 0.8685 0.8332 0.7614 0.8166 0.7447 0.8250 0.8487 0.8182

LR-SMOTE 0.8566 0.8789 0.8512 0.7103 0.7950 0.6729 0.8021 0.8403 0.7915
MR-SMOTE 0.9039 0.9062 0.9023 0.844 0.8592 0.8408 0.8596 0.8706 0.8561

Stage-2

None 0.7746 0.8365 0.7528 0.6398 0.7694 0.5538 0.7193 0.7936 0.6838
SMOTE 0.8575 0.8760 0.8525 0.7790 0.8242 0.7682 0.8368 0.8551 0.8330

LR-SMOTE 0.8649 0.8833 0.8602 0.7429 0.8073 0.7202 0.8205 0.8481 0.8142
MR-SMOTE 0.9064 0.9078 0.9051 0.838 0.8529 0.8357 0.8621 0.8723 0.8601

Stage-3

None 0.6465 0.8034 0.6369 0.4534 0.7669 0.3607 0.5651 0.6999 0.5259
SMOTE 0.7828 0.8481 0.7847 0.7390 0.8181 0.7336 0.8048 0.8297 0.8022

LR-SMOTE 0.8118 0.8546 0.8116 0.6766 0.8001 0.6654 0.7641 0.8044 0.7583
MR-SMOTE 0.8771 0.8826 0.8759 0.8163 0.8366 0.8151 0.8351 0.8431 0.8327

Stage-4

None 0.6823 0.8124 0.6767 0.5186 0.7697 0.4671 0.6491 0.7391 0.6334
SMOTE 0.8221 0.8606 0.8223 0.767 0.8119 0.7634 0.8098 0.8315 0.8082

LR-SMOTE 0.8440 0.8700 0.8434 0.7186 0.7957 0.7131 0.7871 0.8205 0.7848
MR-SMOTE 0.8766 0.8829 0.8762 0.8135 0.8278 0.8119 0.8436 0.8513 0.8425

By analyzing Acc, Mac-P, and Mac-F1, all oversampling algorithms can effectively
improve the overall prediction performance of the classifier on both forms of unbalanced
data sets, and the MeanRadius-SMOTE algorithm proposed in this paper has the most
obvious effect. We still need to focus on the prediction performance of the algorithm on the
minority class; the experimental results of Presmall are shown in Table 8, where the values
with bold mean the largest value in four compared models.

From Table 8, Presmall does not even exceed five in the None experiments. SMOTE
and LR-SMOTE only improved Presmall by around five in most experiments. However,
MeanRadius-SMOTE can help the classifier to more accurately predict the minority class,
improving Presmall by around six or seven. In addition, MeanRadius-SMOTE is more stable
in experiments with different imbalance rates, and does not fluctuate greatly like SMOTE
and LR-SMOTE.
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Table 8. Presmall on the data sets.

Data Set Methods SVM
Presmall

RF
Presmall

GBDT
Presmall

Data Set Methods SVM
Presmall

RF
Presmall

GBDT
Presmall

line-1

None 0.277 0.048 0.184

stage-1

None 0.329 0.039 0.154
SMOTE 0.563 0.472 0.588 SMOTE 0.555 0.484 0.545

LR-SMOTE 0.553 0.338 0.508 LR-SMOTE 0.584 0.322 0.506
MR-SMOTE 0.703 0.625 0.603 MR-SMOTE 0.781 0.615 0.619

line-2

None 0.358 0.052 0.261

stage-2

None 0.403 0.062 0.259
SMOTE 0.427 0.554 0.519 SMOTE 0.616 0.506 0.637

LR-SMOTE 0.501 0.449 0.433 LR-SMOTE 0.606 0.36 0.555
MR-SMOTE 0.768 0.681 0.612 MR-SMOTE 0.791 0.695 0.690

line-3

None 0.403 0.110 0.308

stage-3

None 0.445 0.042 0.368
SMOTE 0.583 0.607 0.618 SMOTE 0.657 0.738 0.697

LR-SMOTE 0.579 0.525 0.565 LR-SMOTE 0.662 0.605 0.616
MR-SMOTE 0.791 0.701 0.681 MR-SMOTE 0.768 0.738 0.708

stage-4

None 0.476 0.164 0.42
SMOTE 0.732 0.745 0.697

LR-SMOTE 0.754 0.648 0.705
MR-SMOTE 0.783 0.760 0.778

To better compare the effects of SMOTE, LR-SMOTE, and MeanRadius-SMOTE, we
draw the line charts of Mac-P, Mac-F1, and Presmall, as shown in Figure 6. Since the data of
Acc and Mac-F1 are close and their trend is basically the same, we only choose Mac-F1 to
draw the line chart.
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According to Figure 6, the following conclusions can be drawn:

(1) Since these seven unbalanced data sets are homologous, the better the oversampling
algorithm, the closer the indicators should be. Comparing the nine charts, all indica-
tors are relatively stable in the MeanRadius-SMOTE experiment, which is less affected
by the imbalance rate and data set form, and this stabilization is more obvious in the
SVM classifier. This shows that MeanRadius-SMOTE has good robustness.

(2) Analyzing the three charts—Figure 6a,d,g, in the seven data sets, MeanRadius-SMOTE
on the SVM classifier can not only ensure that the overall prediction indicators reach
about 0.9 but also ensure that Presmall is relatively high, about 0.75.

(3) Comparing the three charts—Figure 6g–i, the SVM experiment can achieve a higher
Presmall, and in most experiments, Presmall is greatly affected by the data sets, especially
in the RF experiments. However, only in the model composed of MeanRadius-
SMOTE and SVM do we obtain a very flat line, which shows that this model has good
robustness and accuracy in predicting the minority class.

(4) Comparing the three charts—Figure 6a–c, for SMOTE and LR-SMOTE, LR-SMOTE
performs better than SMOTE on SVM, while it is the opposite on RF and GBDT.
In addition, SMOTE even outperforms MeanRadius-SMOTE in some GBDT experi-
ments. LR-SMOTE is also an oversampling algorithm for binary classification prob-
lems, which is more suitable for a classifier that is essentially a binary classification
algorithm-SVM. Therefore, it can be inferred that MeanRadius-SMOTE is also more
suitable for SVM classifiers.

In summary, MeanRadius-SMOTE shows excellent performance in all experiments,
which can take into account the prediction performance of the overall and minority class. In
individual experiments, SMOTE is slightly higher than MeanRadius-SMOTE in Acc, Mac-P,
and Mac-F1, but lower than MeanRadius-SMOTE in Presmall. We can think that this is the
result of sacrificing the prediction performance of the minority class. Therefore, it can still be
considered that MeanRadius-SMOTE is better than SMOTE and LR-SMOTE. Furthermore,
the model composed of MeanRadius-SMOTE and SVM can improve prediction accuracy
and stability.

6. Conclusions and Outlook

Mechanical fault diagnosis has always been a key issue in the PHM. Since the develop-
ment of machine learning, although mechanical fault diagnosis has been solved by many
effective methods, fault diagnosis under unbalanced data sets has always been a stubborn
problem. The oversampling algorithm is currently recognized as an effective means to
solve the problem of unbalanced data sets. The traditional oversampling algorithm is not
only affected by the sample distribution, but also easily generates noise samples, which
makes the decision boundary blurred. These drawbacks are not conducive to the classifier
making predictions.

Based on the SMOTE, this paper proposes the new algorithm, MeanRadius-SMOTE,
combining the sample center and radius. MeanRadius-SMOTE effectively avoids useless
samples and noise samples in the process of generating new samples. In this paper, we
conduct comparative experiments for SMOTE, LR-SMOTE, and MeanRadius-SMOTE
algorithms and use SVM, RF, and GBDT classifiers on three linear unbalanced data sets and
four step unbalanced data sets. Experimental results show that the MeanRadius-SMOTE
algorithm can effectively balance data classes and improve the prediction performance of
machine learning classifiers. From the perspective of various indicators, the MeanRadius-
SMOTE algorithm is better than SMOTE and LR-SMOTE, and has better robustness. In the
problem of unbalanced data sets, MeanRadius-SMOTE can more accurately predict the
minority class without sacrificing the prediction performance of other classes, which is of
great significance for mechanical fault diagnosis, and the combined model of MeanRadius-
SMOTE and SVM is proved to be much better than other models.
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Although this paper proves on PHM09 challenge data that MeanRadius-SMOTE has
a good ability to deal with unbalanced data sets, considering the actual situation, future
research can be carried out from the following aspects:

(1) In this paper, in order to ensure that the experiment is carried out under a variety
of unbalanced data sets, we use artificial unbalanced data sets in experiments. In
future research, we will collect the failure unbalanced data sets of actual mechanical
equipment to continue the verification experiment.

(2) When constructing the data set in this paper, we only extracted the time–frequency
domain features from the vibration signal. Currently, there are more methods to
extract features from vibration signals, such as convolutional neural networks, wavelet
packet decomposition, etc. Training sets composed of different types of features may
have an impact on the performance of MeanRadius-SMOTE.
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