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Abstract: In recent years, different types of monitoring systems have been designed for various
applications, in order to turn the urban environments into smart cities. Most of these systems consist
of wireless sensor networks (WSN)s, and the designing of these systems has faced many problems.
The first and most important problem is sensor node deployment. The main function of WSNs
is to gather the required information, process it, and send it to remote places. A large number of
sensor nodes were deployed in the monitored area, so finding the best deployment algorithm that
achieves maximum coverage and connectivity with the minimum number of sensor nodes is the
significant point of the research. This paper provides a systematic mapping study that includes
the latest recent studies, which are focused on solving the deployment problem using optimization
algorithms, especially heuristic and meta-heuristic algorithms in the period (2015–2022). It was
found that 35% of these studies updated the swarm optimization algorithms to solve the deployment
problem. This paper will be helpful for the practitioners and researchers, in order to work out new
algorithms and seek objectives for the sensor deployment. A comparison table is provided, and the
basic concepts of a smart city and WSNs are presented. Finally, an overview of the challenges and
open issues are illustrated.

Keywords: smart city; wireless sensor network (WSN); deployment; coverage; connectivity;
meta-heuristic

1. Introduction

Many large cities around the world are adjusting to become smart cities, in order
to enhance the quality of life for their citizens. With the use of digital, information, and
communication technologies, traditional networks and services have become more effective.
It means smarter transport networks and more efficient water supply, waste disposable
facilities, and upgraded ways to heat and light buildings; as shown in Figure 1, it provides
a city administration that is more interactive and responsive. It also enhances the use of
city infrastructures and resources.

The basic component of smart city monitoring systems is wireless sensor networks,
which consist of a large number of sensor nodes that are used for collecting and processing
data. Due to the small size and low cost of sensor nodes, different WSNs are used for
different applications, and this plays a vital role in the existence of Internet of Things (IoT)
technology, which facilitates the building of a smart city, since it comes up with timely
information that helps in deciding-making regarding comfort or safety. WSNs always comes
up with new applications that enrich the IoT vision. Therefore, there is always a need for
advanced and updated models and strategies for supporting on-demand WSN deployment

Sensors 2022, 22, 5094. https://doi.org/10.3390/s22145094 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145094
https://doi.org/10.3390/s22145094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1275-2050
https://doi.org/10.3390/s22145094
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145094?type=check_update&version=1


Sensors 2022, 22, 5094 2 of 30

to meet countries’ goals in increasing surveillance, intelligence, and reconnaissance in many
safety-critical applications, where the IoT will also have an important role.
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Though designing WSN many challenges can appear in the form of deployment,
localization, communication, data gathering, coverage, and tracking, the most important
issue that we focus on here in this research is the deployment problem, which is the first
major challenge in designing a WSN monitoring system for a smart application.

Motivations: Most of the research in the literature focused on the deployment problem
of WSNs in general. Based on the idea of monitoring large and open spaces, on the other
hand, very few studies have been conducted regarding this problem in smart cities for
reasons that are listed as follows [2]:

• The monitored area: some areas are large and require a network structure, such
as water distribution networks, transportation networks, and streetlight networks.
Some areas required three-dimensional (3D) monitoring, such as the structural health
monitoring of bridges and towers.

• Different types of sensor nodes for the same measurements: static inductive loops or
static cameras, for example, can be used to measure the traffic volume on the roads.

• Densely deployed sensor network in the monitored area: different sensor nodes for
different applications exist in the same monitoring area.

Due to these reasons, some challenges have appeared, which affect the process of
sensing in smart city monitoring systems, the most significant of which is the deployment
of sensor nodes, which is limited by the monitored area’s structure, that is, what kind of
sensor nodes are required and where they should be deployed to satisfy the best coverage,
connectivity, and cost-effective monitoring.

Contributions: This research study presents a systematic mapping study that will
focus on the node deployment problem for smart city monitoring systems over the period
2015–2022 by using meta-heuristic optimization algorithms. Therefore, this research aims
to answer the research questions that are related to this problem and, in that way, could
be helpful for researchers and practitioners/developers to better understand the deploy-
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ment problem in that field. This will facilitate finding new solutions and adding further
contributions to its development.

This paper is organized as follows: Section 2 describes the background of infrastruc-
tures and technologies that support the smart city and WSN, as well as the preliminaries of
WSN deployment. Section 3 includes the literature review on the studies that discussed
the deployment algorithms of WSN for different applications. In Section 4, the research
method is illustrated. In Section 5, the results of the research questions are obtained and
the open-research issues for WSN deployment are illustrated. Finally, Section 6 concludes
the paper.

2. Background
2.1. Smart City

It is expected that 66% of the world’s population will live in urban areas by 2050.
Providing this population with adequate resources, including sufficient energy, safe food,
and clean water, with economic and social guarantees and environmental sustainability
is a real challenge. Many cities today hope to become the smart cities of tomorrow. In
order to achieve this goal, a complex plan should be developed, including participation
from public and private sectors, product vendors, and providers of information technology
services [3,4]. Most of the smart city sub-systems are shown in Figure 2 [5].
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Figure 2. Smart city subsystems.

To implement these applications and operations, many advanced technologies are
used, and they are summarized as follows [6]:

1. Wireless Sensor Network (WSN): An essential component in smart cities that can be
used to provide remote control and real-time monitoring for smart city resources and
infrastructure conditions.

2. Internet of Things (IoT): The technology that facilitates the lifestyle of humans
through connecting physical things with sensory devices and allowing them to interact
between each other and with people.

3. Cyber-Physical System (CPS): Used to provide the connection between computation,
networking, and physical processes; in other words, it is the umbrella that includes
the interaction between the virtual and physical worlds.
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4. Robotics and Unmanned Aerial Vehicles (UAVs): Support smart cities with useful
automated services, such as environmental monitoring, traffic monitoring, telecom-
munication services, security and safety control, and enhanced delivery of services.

5. Fog computing: This technology aims to support low latency, location awareness,
better mobility, synchronization, coordination, data streaming, and real-time services
for smart city applications when there is a large distance between the cloud platform
and smart city sensors and devices, as well as when there is a large number of
heterogeneous sensors and devices distributed in large areas. This makes it difficult
for cloud computing to manage and deal with this situation. So, in this case, fog
computing is preferred.

6. Cloud computing: This technology represents an important element of any smart city
system, since it provides scalable processing power, as well as cost-effective, large,
and scalable data storage and updated software services that support, manage, and
control different smart city applications.

7. Big Data: The collected sensory data will be analyzed using this technology, in order
to support optimized decision-making for smart city applications.

2.2. Wireless Sensor Network Components and Node Architecture

A WSN is composed of a large number of sensor nodes distributed over an area. These
nodes are small in size and have a low cost, with limited storage capacity, processing
capability, and energy. The sensor node architecture can be seen in Figure 3, which consists
of the sensing unit that can be either the sensor or actuator, which senses the environment
and take measurements of things such as temperature, humidity, sound, or vibration,
thereby converting the collected analog signals into digital signals through the analog to
digital converter. Then, it sends these signals or measurements to the processing unit to be
processed and stored until sent through the communication unit to a relay node or a sink
node [7,8].
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All the parts of the sensor node require energy to operate, and the power unit can be
either a battery, such as a CR2032, or some type of renewable energy, such as solar energy.
This power unit should be stable and stay as long as possible, since the sensor nodes may
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be thrown in hazardous, rough, or harsh areas that cannot be reached for a replacement
and where recharging the batteries is not possible. Another part is the communication
unit, which is a radio transceiver unit that transmits and receives signals from one node
to another through wireless channels. In the processing unit, the central processing unit
(CPU) calculates the computational capabilities and energy consumption. The memory
stores the required programs and data. Finally, if the sensor node is a mobile node, then it
should have a location finding system, in order to get the required position, for example,
the global positioning system (GPS).

The WSN consists of all, or parts, of the following components [9]:

1. Sensor node: A small-sized, low-powered node responsible for collecting data, pro-
cessing it, and sharing it with other required nodes in the network.

2. Relay node: This node is used to communicate with the neighboring node as a midway
node. This node is used to improve network reliability. It does not have any sensing
or controlling processes.

3. Actor node: A high-end node used to set up and implement a decision based on
the application’s demands. Usually, these nodes are resource-rich devices that are
supplied with higher transmission power, processing capabilities, and battery life.

4. Cluster head: This node is used for gathering data from sensor nodes in WSN. There
may be one or more inside the cluster, depending on the application’s requirements.
This node should have high bandwidth and be reliable and secure.

5. Gateway node: This node is used to provide the connection between the WSN and
outside networks

6. Sink node or base station: A control center where users can retrieve data gathered
from the sensor network.

When deploying a huge number of sensor nodes that work together to monitor
a specified target or a physical environment, the networking of these nodes is evenly
significant, since the sensor nodes connect with each other, as well as with the base station,
through wireless communications.

The base station sends the required tasks to the sensor nodes, while the latter gath-
ers the requested information and sends it back to the BS for more processing. The BS
sometimes acts as a gateway that sends the necessary data to the end-user through other
networks. There are two types of network architectures, i.e., single- and multi-hop. In a
single hop, each sensor node has a direct connection to the BS or sink node.

Although transmission is possible for long distances, the energy consumption is very
high for communication, compared with the processing or data gathering. So, the multi-hop
architecture is preferred, since the data can be transmitted over one or more intermediate
nodes. Multi-hop architecture or clustering can be implemented in five ways, which are:
hierarchal, partition-based, spectral, grid-based, and density-based clustering.

The hierarchal architecture depends on top-down or bottom-up approaches; it uses the
tree structure, provides flexibility, and is preferred for point-to-point communication. In
the partition-based method, the clusters are split into more sections; each section represents
a cluster and can be used for a small number of nodes. The spectral type, used in the
similarity matrix, needs low processing time, utilizes image processing, and is more suitable
for a small number of nodes. In grid-based clustering, the area is divided into sections,
depending on certain criteria, and the sensor nodes are added to these sections. This needs
low processing time and computational complexity and provides high-performance data
distribution. In the density-based method, the area with a larger number of clusters is called
the high-density area, and it is separated from the low-density area, used with dynamic
clustering, and provides better performance in a harsh environment [10].

2.3. Wireless Sensor Network Application

Different types of WSN are used for different applications, as shown in Figure 4, the
first use of WSNs was for military applications, where a system of an acoustic sensor on
the ocean bottom was developed for monitoring the soviet submarines in the cold war;
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later on, in 1980, the work started on developing distributed sensor network (DSN). Now,
WSNs are used in different areas, such as agriculture, bio-medical, health, traffic, industry,
environment, and so on [7,11]. The work of WSN can be divided into two dimensions. The
first is monitoring, where it supervises, controls the operation, and analyses the system in
real-time. The other is tracking the variations in the behavior of a target, which may be a
person, animal, or event [12].
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WSNs plays a significant role when they are deployed in the environment. In the
forest, they detect the behavior of wildlife, wildfire outbreaks, and landslides, in addition
to monitoring and tracking air pollution, earthquakes, flood detection, and many other
disasters [13,14]. In agriculture, WSNs can be used in smart farming, crop management,
irrigation management, disease detection, and yield prediction, as well as monitoring
temperature, humidity, and soil moisture measurements [15,16]. In the medical field, WSNs
can be used for remote patient status monitoring, diagnosis, and emergency response [17].
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They can also be used in other healthy applications, such as eating habits, fitness issues,
and monitoring sportive activities [18]. In transportation, WSNs can be used in parking lot
management, railway tracks, and management systems, as well as monitoring traffic and
roads [19]. In military and national security applications, WSNs plays a vital role [20]. The
widespread application of WSNs has led to the existence of the Internet of Things (IoT),
which depends on sensory devices that detect the information and send it through the
internet to be processed and make decisions for the ease, safety, and comfort of human life.
In the IoT, WSNs are applied in smart homes, health, agriculture, industry, building, city,
grids, and much more [21].

2.4. Wireless Sensor Network Constraints

Even though WSNs are used in many applications, there are several constraints and
challenges that face WSN deployment, coverage, and connectivity. Some of these factors
are [22]:

• Limited energy resources: Due to the small size of a sensor node, the battery supported
will be small, with a limited lifetime, and this leads to limited processing power and
limited storage capacity, resulting in increasing the energy consumption problem.

• Low data rate: There is a higher latency in WSN communication. WSN works in short
communication ranges, and the transmission data rate depends on the frequency used.

• Communication failures: The failed nodes result in communication failures, so there
should be a fault tolerance to overcome the interruptions when this occurs.

• Security issues: The wireless communication channels of WSN are vulnerable to
passive and active attacks, thus resulting in serious problems.

2.5. Deployment in Wireless Sensor Network

The factor that has an important effect on all the WSN performance metrics is de-
ployment. The optimal deployment of the sensor nodes indicates that the whole required
area is covered, and the network nodes have the best communication with each other
with a minimal number of nodes [23]. Deployment can be either static or dynamic; static
deployment is divided into deterministic and random deployment, depending on the
environment and application required [24].

2.5.1. Static Deployment

When the information regarding the application area is known in advance or the
sensor node position can be determined, then the deterministic deployment will be applied
as shown in Figure 5. Most of the research studies that depend on deterministic deployment
set up the node location based on geometrical structure. This can be in a two-dimensional
plane, such as a square, triangular, hexagon, and tri-hexagon tiling grids; it was proven
that the regular hexagon is the best topology in the two-dimensional plane [25]. The other
deployment can be in three-dimensional space by using the three-dimensional mathematical
model and space geometric theory to find a solution for the coverage problem in many
three-dimensional applications, which can be classified as binary and probabilistic coverage
models. The space geometric methods can be divided into the volumetric quotient-based
approach and spherical overlap approach (k-coverage) [26].

2.5.2. Random Deployment

When the sensing area is difficult to reach (to put sensors) or not known in advance,
due to disasters, fire forests, or battlefields, then the random deployment is preferred, i.e.,
randomly dispersing the nodes in the desired area, which can be thrown from a plane
in a disaster area, for example. This method is simple but, at the same time, has many
drawbacks, such as bad coverage or loss of connectivity due to obstacles or failures. So
many optimization strategies are used to find the best location, taking the requirements
of coverage, connectivity, lifetime, and robustness into account to achieve one of these
objectives or some of them simultaneously. Classical, heuristic, and meta-heuristic opti-
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mization algorithms are used to solve the random deployment problem of WSNs. Random
deployment can be represented in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31 
 

 

• Security issues: The wireless communication channels of WSN are vulnerable to pas-
sive and active attacks, thus resulting in serious problems. 

2.5. Deployment in Wireless Sensor Network 
The factor that has an important effect on all the WSN performance metrics is de-

ployment. The optimal deployment of the sensor nodes indicates that the whole required 
area is covered, and the network nodes have the best communication with each other with 
a minimal number of nodes [23]. Deployment can be either static or dynamic; static de-
ployment is divided into deterministic and random deployment, depending on the envi-
ronment and application required [24]. 

2.5.1. Static Deployment 
When the information regarding the application area is known in advance or the sen-

sor node position can be determined, then the deterministic deployment will be applied 
as shown in Figure 5. Most of the research studies that depend on deterministic deploy-
ment set up the node location based on geometrical structure. This can be in a two-dimen-
sional plane, such as a square, triangular, hexagon, and tri-hexagon tiling grids; it was 
proven that the regular hexagon is the best topology in the two-dimensional plane [25]. 
The other deployment can be in three-dimensional space by using the three-dimensional 
mathematical model and space geometric theory to find a solution for the coverage prob-
lem in many three-dimensional applications, which can be classified as binary and prob-
abilistic coverage models. The space geometric methods can be divided into the volumet-
ric quotient-based approach and spherical overlap approach (k-coverage) [26]. 

 
Figure 5. Deterministic deployment. 

2.5.2. Random Deployment 
When the sensing area is difficult to reach (to put sensors) or not known in advance, 

due to disasters, fire forests, or battlefields, then the random deployment is preferred, i.e., 
randomly dispersing the nodes in the desired area, which can be thrown from a plane in 
a disaster area, for example. This method is simple but, at the same time, has many draw-
backs, such as bad coverage or loss of connectivity due to obstacles or failures. So many 
optimization strategies are used to find the best location, taking the requirements of cov-
erage, connectivity, lifetime, and robustness into account to achieve one of these objectives 
or some of them simultaneously. Classical, heuristic, and meta-heuristic optimization al-
gorithms are used to solve the random deployment problem of WSNs. Random deploy-
ment can be represented in Figure 6. 

Figure 5. Deterministic deployment.
Sensors 2022, 22, x FOR PEER REVIEW 9 of 31 
 

 

 
Figure 6. Random deployment. 

2.5.3. Dynamic Deployment 
Dynamic deployment is used with mobile WSNs, when the objective is to monitor an 

event or increase the network’s coverage, connectivity, and lifetime issues. In dynamic 
deployment or self-deployment, the nodes are randomly deployed first; then, the nodes 
change their locations to increase the coverage, which means each point in the area of 
interest should be covered. This type of deployment can be either centralized or distrib-
uted. In centralized deployment, the sink node should be a powerful node because it is 
responsible for finding the new location of each sensor node through deployment algo-
rithms and sending the required location to each sensor. This type of deployment saves 
energy but may fall to single-point failure problems and cannot be implemented in disas-
ters or battlefields. While the distributed deployment lets each node determines its new 
position in the monitoring area, this may consume more energy [27]. A summary of de-
ployment methods is shown in Figure 7. 

 
Figure 7. Deployment methods. 

2.6. Coverage and Connectivity in WSN 
Two essential issues in WSNs are coverage and connectivity. If the sensor node is 

active and can detect an object in the monitored region, then we can say that this object is 
covered by the WSN. Coverage can be divided into three types, i.e., area, point, and barrier 
coverage [28,29]. Area coverage can be full or partial coverage; full coverage means that 
each point in the monitoring area should be covered by at least one sensor node or K 
(where K ≥ 1) node, according to the application requirements, such as a battlefield, where 

Deployment 
methods

Evolutionary 
algorithm

GA

PSO

NSGA-II

ABC

computational 
Geometry

Delaunay triangulation 

Voroni diagram

Other Classical 
methods

Grid based techniques Hexagonal grid

Square grid

Force-based techniques A Van Der Waals force

Figure 6. Random deployment.

2.5.3. Dynamic Deployment

Dynamic deployment is used with mobile WSNs, when the objective is to monitor
an event or increase the network’s coverage, connectivity, and lifetime issues. In dynamic
deployment or self-deployment, the nodes are randomly deployed first; then, the nodes
change their locations to increase the coverage, which means each point in the area of
interest should be covered. This type of deployment can be either centralized or distributed.
In centralized deployment, the sink node should be a powerful node because it is respon-
sible for finding the new location of each sensor node through deployment algorithms
and sending the required location to each sensor. This type of deployment saves energy
but may fall to single-point failure problems and cannot be implemented in disasters or
battlefields. While the distributed deployment lets each node determines its new position
in the monitoring area, this may consume more energy [27]. A summary of deployment
methods is shown in Figure 7.

2.6. Coverage and Connectivity in WSN

Two essential issues in WSNs are coverage and connectivity. If the sensor node is
active and can detect an object in the monitored region, then we can say that this object
is covered by the WSN. Coverage can be divided into three types, i.e., area, point, and
barrier coverage [28,29]. Area coverage can be full or partial coverage; full coverage means
that each point in the monitoring area should be covered by at least one sensor node or K
(where K ≥ 1) node, according to the application requirements, such as a battlefield, where
it is necessary to have precise information about the observed area. Other applications,
such as environment applications, may require partial coverage. Partial coverage can be
useful when the number of sensor nodes is not enough for full coverage. This can maximize
network lifetime and save energy.
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In point coverage, a specific point or target should be monitored, which may be
static or mobile, such as observing the behavior of an animal in the region of interest
or monitoring some important points on the enemy battlefield. Barrier coverage means
monitoring international borders and trying to detect any illegal behavior. Additionally,
barrier coverage can be full or partial coverage; sensors are deployed based on the Poisson
point access model in full and partial coverage and used with a limited number of sensors.

Concerning connectivity, the network is said to be fully connected if each sensor node
has at least one path to the sink node to transmit and receive data. If there is full coverage
without connectivity, the WSN quality of service will be degraded. So, these two issues, i.e.,
coverage and connectivity, should be always considered simultaneously in the deployment
of WSNs. In some applications that required full coverage, full connectivity is also required
to achieve data gathering and transmitting to the sink node. Two types of connectivity
are available, i.e., one-connectivity when there is a single path between the sensor and
sink nodes and k-connectivity when there are multiple paths from the sensor node to the
sink node.

There is always a relation between coverage and connectivity for each application. It
is almost assumed that the range of connectivity (Rc) is greater than, or twice, the sensing
range (Rs), as shown in Figure 8 [25,30].
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If we assume that there is a point P located at the (x, y) coordinates and sensor node Si
located at (xi, yi) coordinates, then the Euclidean distance between point P and the sensor
node Si can be expressed as follows [31,32]:

d(Si, P) =
√
(xi− x)2 + (yi− y)2 (1)

The general sensibility of a sensor node on point P can be expressed as follows:

(Si, P) = δ/(d(Si, P))k (2)

where δ and k represent the non-negative, sensor-dependent constants.
There is an inverse relationship between the sensor sensitivity and Euclidean distance

between the sensor node and monitored point in the region of interest—as the distance
increased, the sensitivity decreased.

Tow sensing models are found:
Binary Disk sensing model: The simplest sensing model is the binary sensing model,

which is represented in Figure 9a. When point P lies within the sensing radius of the
sensor node Rs, then this point is covered by the sensor node—otherwise not. The coverage
equation can be expressed as follows:

Cxy(Si) =

{
1 if d(Si, P) < Rs
0 other wise

(3)

Sensors 2022, 22, x FOR PEER REVIEW 11 of 31 
 

 

sensor node Rs, then this point is covered by the sensor node—otherwise not. The cover-
age equation can be expressed as follows: C୶୷(Si) = ቄ 1        if d(Si, P) < Rs0                 other wise (3)

Probabilistic sensing model: This model is more practical and comprehensive than 
the binary model; it assumes that the sensed event, sensor design, and environmental con-
ditions are all stochastic in nature. The coverage equation can be expressed as follows: 

C୶୷(Si) = ቐeିஔ஑ಊ 0,                       if Rs + Re ≤ d(Si, P)     if Rs − Re < d(Si, P) < Rs + Re1,                       if Rs − Re ≥ d(Si, P)  (4)

where 
Re is the uncertainty measure in sensor detection, 0 < Re < Rs, 
a = d(Si,P) − (Rs − Re); 
δ and β are parameters that measure the detection probability when the target in a 

distance equal to 
Rs − Re < d(Si,P) < Rs + Re. 
The probabilistic sensing model is represented in Figure 9b. 

 
Figure 9. Sensing models. (a) Binary model. (b) Probabilistic model. 

3. Literature Review 
Numerous strategies are used in the literature to solve the deployment problem of 

WSNs for optimizing coverage and connectivity issues. One of them is optimization algo-
rithms, which can be single- or multiple-objective; the single-objective optimization algo-
rithm is not suitable for real applications, since optimizing one performance metric may 
inversely affect another metric; for example, in sensor node deployment, maximizing cov-
erage needs large spread number of sensor nodes, and this will increase the consumed 
energy, hence reducing the network lifetime. For this reason, the solution goes towards 
using the multi-objective optimization algorithms in WSN deployment, which aims to sat-
isfy multiple goals at the same time, with a set of constraints, which will be a real chal-
lenge. Meta-heuristic search algorithms have been widely used in this area, since they can 
provide multiple elements in the Pareto front in a single evaluation, as they have a popu-
lation-based nature. These algorithms have the advantages of preventing the local opti-
mum traps and reaching the global optimum points [33]. Within this line of research, Saad 
et al. (2020) proposed an improved multi-objective genetic algorithm NSGA-II (non-dom-
inated sorting genetic algorithm II) to implement a new suggested mathematical formula 

Figure 9. Sensing models. (a) Binary model. (b) Probabilistic model.

Probabilistic sensing model: This model is more practical and comprehensive than
the binary model; it assumes that the sensed event, sensor design, and environmental
conditions are all stochastic in nature. The coverage equation can be expressed as follows:

Cxy(Si) =


0, if Rs + Re ≤ d(Si, P)

e−δα
β

if Rs − Re < d(Si, P) < Rs + Re
1, if Rs− Re ≥ d(Si, P)

(4)

where
Re is the uncertainty measure in sensor detecon, 0 < Re < Rs,
a = d(Si,P) − (Rs − Re);
δ and β are parameters that measure the detection probability when the target in a

distance equal to
Rs − Re < d(Si,P) < Rs + Re.
The probabilistic sensing model is represented in Figure 9b.



Sensors 2022, 22, 5094 11 of 30

3. Literature Review

Numerous strategies are used in the literature to solve the deployment problem of
WSNs for optimizing coverage and connectivity issues. One of them is optimization
algorithms, which can be single- or multiple-objective; the single-objective optimization
algorithm is not suitable for real applications, since optimizing one performance metric
may inversely affect another metric; for example, in sensor node deployment, maximizing
coverage needs large spread number of sensor nodes, and this will increase the consumed
energy, hence reducing the network lifetime. For this reason, the solution goes towards
using the multi-objective optimization algorithms in WSN deployment, which aims to
satisfy multiple goals at the same time, with a set of constraints, which will be a real
challenge. Meta-heuristic search algorithms have been widely used in this area, since they
can provide multiple elements in the Pareto front in a single evaluation, as they have a
population-based nature. These algorithms have the advantages of preventing the local
optimum traps and reaching the global optimum points [33]. Within this line of research,
Saad et al. (2020) proposed an improved multi-objective genetic algorithm NSGA-II (non-
dominated sorting genetic algorithm II) to implement a new suggested mathematical
formula for 3D WSNS deployment problem with directional sensing ability, in order to
maximize the coverage and minimize the deployment cost. Through extensive simulation,
they proved the performance of the proposed formula, while using the proposed Bresenham
line-of-sight coverage model and assuming real sensors and 3D environment models [34].

Khaoula, Z. et al. (2020) [35] suggested a conceptual framework to maximize the
sensing coverage, and lifetime and minimize the total deployment cost of WSN in the smart
building by using the building information modeling (BIM) database, which includes all the
required information about the building and uses the sensor parameters as input data to the
proposed system; then, an evolutionary algorithm (genetic algorithm) will be used to solve
the optimization problem. After that, this optimized solution will be visualized using the
BIM plugin tool in an off-line and real-time 3D building model, considering heterogeneous
sensors and different obstacles. The decision variable vector of the optimization problem
will be the sensor node location in the smart building, while the constraint is to find
at least one path between the sink node and each sensor node, in order to construct a
connected graph.

Due to the emergence of 3D data regarding urban terrain, Bin C et al. (2019) [36] used
this data to implement a heterogeneous wireless directional sensor network deployment in
smart cities by optimizing three objectives, i.e., coverage, connectivity quality, and lifetime,
while simultaneously considering connectivity and reliability as a constraint. They used a
graph-based 3D SPM signal propagation model, which evolved by employing a line-of-sight
(LOS) model for simulating wireless signals and calculating the path loss and intensity of
the signal at a given point. To solve the optimization problem, they proposed a distributed
parallel multi-objective evolutionary algorithm (MOEAs), with a message passing interface
(MPI) called a distributed parallel cooperative coevolutionary multi-objective large-scale
evolutionary algorithm with multiple populations (DPCCMOLSEA-MP). Two types of
terrain data were used, i.e., even and rough. This proposed algorithm was compared with
other evolutionary algorithms, in terms of performance and operation time.

Another optimization algorithm called the flower pollination algorithm was modified
by Zhendong, W. et al. (2019) [37] to propose two new versions of the algorithm. The
first is called the improved flower pollination algorithm (IFPL), which is a single-objective
optimization algorithm used to maximize the coverage area of WSN deployment in an
urban area, assuming for solar batteries and heterogeneous sensors with obstacles. This
modification includes the use of tent chaotic mapping to generate the mapping sequence,
as well as the use of a nonlinear convergence factor, so that the convergence ability of the
algorithm can be improved. Additionally, greedy cross-over strategy was used to enhance
the accuracy of the solution.

The second proposed version of the algorithm, called the non-dominated sorting
multi-objective flower pollination algorithm (NSMOFPA), is a multi-objective optimization
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algorithm used to maximize the coverage rate, thus minimizing the energy consumption
and node radiation overflow rates, assuming for heterogeneous sensor nodes that are
deployed in forest environment having non-rechargeable batteries with obstacles. The
global pollination problem is solved by using the external archive and leader strategies,
and the diversity of the population can be maintained by using the proposed crowding
degree method and elite strategy. These two proposed algorithms are applied to the WSN
deployment problem, through extensive simulation experiments using the MATLAB 2014b
program. After comparing with other optimization algorithms, they found that IFPA can
provide enhanced in-network coverage and deployment cost. Additionally, the NSMOFPA
has a better optimization solution for WSN deployment.

Smart parking is one of the smart city applications. Slimane Ch et al. (2021) [38]
developed a new optimization algorithm for WSN system deployment for fire detection
in smart car parks called multi-objective binary integer linear programing (MOBILP). The
nodes in these networks are divided into two groups, i.e., sensor nodes for target monitoring
and relay nodes that receive alert messages from the sensor nodes. This proposed algorithm
aims to simultaneously minimize the number of sensor and relay nodes, as well as decrease
the maximum distance between sensor and sink nodes, while ensuring coverage and
connectivity. They evaluate this method through different tests and compare the results
with existing work, such as the mono-objective function.

Energy consumption and high cost are the disadvantages that present when deploying
homogenous or heterogeneous WSNs to solve coverage problems. So, Belal et al. (2020)
developed a deployment model that depends on the probability sensing model (PSM) and
harmony search algorithm (HAS) to attain the balance between the coverage performance
and cost of heterogeneous WSN. PSM is used to solve the overlapping problem between
nodes. The proposed model is evaluated through multiple simulation scenarios, using
MATLAB, by analyzing the coverage ratio and cost and comparing the obtained results
with those from the scenarios that used a homogenous model and meta-heuristic algorithm,
such as the genetic algorithm [39].

WSN lifetimes depends on energy consumption and the covered area. To have efficient
coverage and energy usage, there must be an optimum network deployment because
it affects all network performance. Aparajita et al. (2021) proposed an optimization
deployment algorithm that used glowworm swarm optimization, K-means algorithm, and
Voronoi cell structure for optimizing coverage and energy consumption with a minimum
number of nodes, multi-hop transmission, and sleep-wake mechanism [40]. To increase
network lifetimes, network clustering is used, which means dividing the network into
virtual groups. For each group there is a cluster head, with powerful capabilities, that
is responsible for gathering data and sending it to the base station, either directly or
through multi-hope routing. Cluster performance is a very important issue, since it affects
network lifetimes. Mohit, K. et al. (2021) proposed a modified genetic algorithm-based
load-balanced clustering algorithm for WSN (MGALBC) that depends on residual energy.
Then, compare it with the (GALBC) algorithm. The new suggested algorithm shows an
enhancement in network lifetime, energy consumption, and the number of active sensor
nodes [41].

Ahmed et al. (2021) [42] tried to enhance WSN coverage and cost by proposing a
multi-objective optimization algorithm (MOO) with variable-length decision space for
sensor deployment in a 2D environment. This algorithm used social class multi-objective
particle swarm optimization with V-length nature (SC-MOPSO). It expands the concept of
social interaction of particle swarm optimization by dividing the solution space into classes
according to their dimensions and combines inter- and intra-class operators, in order to
confirm the required dynamics of the solution changes to satisfy the Pareto front. This
algorithm was evaluated through a different experiment by comparing it with weighted
sum variable length particle swarm optimization (WS-VLPSO) and nondominated sorting
genetic algorithm (NSGA-II).
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One of the WSN applications is border surveillance. Amira, Z. et al. (2021) conducted
a real experiment on the Tunisia–Libya border. The aim was to achieve full coverage
and connectivity through the deterministic deployment of sensor nodes. They took the
parameters of sensor density, consumed energy, and quality of sensor coverage into account
when trying to reach k-coverage and connectivity with a minimum number of sensor nodes.
Different types of WSNs were used in this experiment, i.e., were the wireless multimedia
sensor and marine wireless sensor networks, as border monitoring systems [36].

Kalaipriyan, T. et al. (2021) [43] proposed an optimization deployment algorithm
for the target wireless sensor network (T-WSN) based on an evolutionary-based non-
dominated sorting genetic algorithm (NSGA-II) to solve a multi-objective problem of
increasing coverage and connectivity for the target monitoring. Pseudo-codes were written,
and multiple scenarios were implemented using the MATLAB simulation tool. The non-
dominated sorting keeps the better solutions in multiple objectives simultaneously using
dominant relation. The performance evaluation of this multi-objective algorithm was
performed in terms of performance indicators, i.e., overall non-dominated vector generation
(ONGV) and spacing (SP). This algorithm showed the best performance, after comparison
with other algorithms.

Considering the mobility, environment properties and using heterogeneous nodes in
the WSN increases its deployment problem complexity. Fatima H. et al. (2021) [44] took
these problems into account when designing their optimization deployment algorithm
based on integer linear programming (ILP). The objective of this algorithm is to maxi-
mize coverage, while taking network lifetime, mobility, and heterogeneity as constraints.
They observed and discussed the importance of subarea monitoring in this research. For
large-scale monitoring areas, they proposed using a swarm intelligence meta-heuristic algo-
rithm for network deployment. In a simulation experiment, they evaluated this algorithm
by comparing the coverage ratio and energy consumption with other recent algorithms.
While Mohsen Sh. et al. (2021) [45] solved the problem of target and area coverage and
connectivity in randomly distributed homogeneous and heterogeneous WSNs, consid-
ering both centralized and distributed nodes, using the steepest descent (SD) analytical
deployment algorithm with Armojo and Wolf rules, instead of evolutionary algorithms.
The proposed method was compared with the genetic algorithm, in the case of moving
the sensor nodes towards the target. Through simulations, they found that it outperforms
the genetic algorithm; however, in the case of considering both coverage and connectivity,
besides managing sensor movement in the required area, a hybrid algorithm was used,
which consisted first of the genetic algorithm to define the first positions of the sensor
nodes and then using the steepest descent algorithm to move these sensors to the optimal
locations. They found that this method can support the sensor’s trajectory and better
accuracy for network coverage and connectivity.

To solve the energy-efficient coverage problem for randomly deployed mobile WSN
with obstacles, Pakarat M. et al. (2022) [46] produced an improved competitive swarm
optimizer to increase the covered area and decrease energy consumption at the same time.
They also used the virtual force algorithm (VFA) and Voronoi diagram (VD) to enhance
network performance through the optimization process. To control the position of the
sensors, the VFA was integrated with a boundary mechanism, while the VD was used to
get the network information for the decoding process.

4. Research Method

In this paper, we applied a systematic mapping method to conduct the search. For a
particular area, it supports an overview and result summary of published papers from the
answers to research questions and classification of studies. The most important advantage
is to define gaps in the existing research, which provides new topics to investigate [47].

The mapping study process, shown in Figure 10, consisted of five steps: identify
the research question; gather the search in the sources; chose the papers that answer the
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research question; classify the papers; and find data and map studies to finalize the data
classification and summarization.
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4.1. Research Questions

In this study, the following research questions (RQs) have been identified and dis-
cussed. Each research question is related to a particular aspect of WSN deployment
optimization in smart cities, as listed below:

1. What is the number and distribution of studies published on WSN deployment
optimization in the period between 2015–2022?

2. Which are the most used optimization algorithms in the current studies that are
related to WSN deployment optimization in smart cities?

3. What are the advantages of using optimization algorithms in solving the deployment
problem of WSN?

4. What are the performance metrics that should be considered when deploying WSNs
in smart cities?

5. What are the most used simulation and software platforms to simulate and analyze
the WSN deployment scenarios in the literature?

6. What are the challenges and issues that WSN deployment is facing in smart cities?
7. What are the potential future issues for WSN deployment in smart cities?

4.2. Scientific Databases and Search Strategy

Four online academic search engines were used to conduct the search and find the
relevant papers:

1. IEEE Xplore digital library;
2. Science direct;
3. Springer link;
4. Scopus.

To make an automatic search on the chosen libraries, the search string consisted of the
following sections:

Wireless, sensor, network, (deployment, deployment algorithm, or deployment op-
timization), and smart city.

In the screening phase, the papers that were initially collected were filtered until only
papers that answer the research questions remained. In this work, relevant papers were
selected using the following inclusion and exclusion criterion.

Inclusion criterion:

• Publications related directly to the deployment of WSN sensor nodes using optimiza-
tion algorithms.

• Publications dealing with enhancing or maximizing the coverage and connectivity
of WSNs.

• Publications in the field of WSN deployment in smart city applications.



Sensors 2022, 22, 5094 15 of 30

Exclusion criterion:

• Papers published before 2015.
• Publications not written in the English language.
• Publications related to other types of WSN deployment methods, such as using geo-

metric or classical deployment methods.
• Publications related to other WSN problems, such as localization, routing, data gather-

ing, etc.

Starting with the general search string “WSN deployment”, the number of publications
collected from IEEE Xplore digital library was 253, Science Direct was 354, SpringerLink
was 621, and Scopus was 586 documents. After using inclusion and exclusion criterion
and removing duplications, the total number of relevant studies was 68 documents that
related directly to the deployment problem of WSN using optimization algorithms during
this period.

5. Results

Mapping studies are often carried out based solely on the abstracts. The primary study
selection was increased by applying the search criteria to all of the following sections: title,
abstract, introduction, and conclusion. The included papers, as well as a comparison be-
tween their used algorithms and objectives, are listed in Table 1. The following subsections
show the results and discussions of each research question.

Table 1. Comparison between recent studies that discuss the deployment problem.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Pakarat, M. et al.
(2022) [46] Open area 2D

Competitive swarm
optimizer, virtual force
algorithm, and Voronoi

diagram

Maximize coverage for
mobile WSN and

minimize the energy
consumption

simultaneously

Coverage ratio
Moving distance
Average sensing

radius
Dissipated energy

coverage convergence
curve

Sathian, D. et al.
(2022) [48] Smart farming 2D

Artificial bee
colony-based,

energy-efficient,
multiple-input,

multiple-output routing
protocol, MATLAB

R2018b simulation tool

Minimize the network cost
by minimizing the

number of deployed
sensor nodes; maximizing

network lifetime

Lifetime
Energy utilization

Throughput
Packet loss

Yindi, Y. et al.
(2022) [50]

Remote
environmental

monitoring
2D Improved moth flame

search

Repair coverage holes and
minimize energy

consumption

Coverage rate
Maximum moving

distance
Average moving

distance
Coverage efficiency

Adnan, T. et al.
(2022) [49] Open area 2D Immune plasma

algorithm

Maximize coverage, and
lifetime and minimize

consuming energy
Coverage ratio

Qin, W. et al. (2022)
[51]

Harsh
environment 2D

Vampire bat algorithm
and improved virtual
force, MATLAB 2016b

simulation tool

Repair coverage holes and
minimize energy

consumption

Coverage rate
Moving distance

Complexity
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Yin-Di, Y. et al.
(2022) [52]

Remote
monitoring 2D

Discrete army ant
search optimizer,
MATLAB 2016a
simulation tool

Maximizing target
coverage Coverage ratio

Nour El-Houda, B.
et al. (2022) [53]

Indoor
environment 2D

Improved
multi-objective

Evolutionary algorithm,
case study

Enhancing network
quality of service

Execution time
Cost

Coverage rate
Connectivity

Slimane Ch et al.
(2021) [38]

Fire detection in
a smart car park 2D

Multi-objective binary
integer linear
programing

Simultaneously minimize
the number of sensors and

relay nodes, besides
decreasing the maximum
distance between sensor

and sink node, while
ensuring coverage and

connectivity

Complexity
Running time

Cost

Aparajita et al.
(2021) [40]

Randomly
deployed
dynamic
networks

2D

Glowworm swarm
optimization, K-means
algorithm, and Voronoi
cell structure, MATLAB

2017 a

Optimizing coverage and
energy consumption, with

a minimum number of
nodes, multi-hop
transmission, and

sleep-wake mechanisms

Coverage rate

Ahmed et al. (2021)
[42]

Any
environment 2D

Social class
multi-objective particle

swarm Optimization
with V-length nature

Enhance WSN coverage
and cost

Set coverage
Number of

nondominated
solutions

Hypervolume
Delta metric

Amira, Z. et al.
(2021) [54]

Border
surveillance 2D Deterministic

deployment
Achieve full coverage and

connectivity
K-coverage

Connectivity

Kalaipriyan, T.
et al. (2021) [43]

Target
monitoring 2D

Evolutionary-based
non-dominated sorting

genetic algorithm,
MATLAB 8.4

Increasing coverage and
connectivity for target

monitoring

F-value
Computational time

Fatima, H. et al.
(2021) [44]

Subarea and
large-scale area

monitoring.
2D

Integer linear
programming and
swarm intelligence

meta-heuristic
algorithm, MATLAB

Maximize coverage, while
taking network lifetime,

mobility, and
heterogeneity as

constraints

Lifetime
Coverage ratio

Mohsen, Sh et al.
(2021) [45]

Target and area
monitoring 2D

Steepest descent
analytical deployment
algorithm with Armojo

and Wolf rules.
MATLAB

Maximize coverage and
connectivity

Target coverage
Connectivity

Area coverage rate

Kavita, J. et al.
(2021) [55]

Smart IoT
applications 2D

Grey wolf-based
optimization technique,

MATLAB R2018b
simulation tool

Maximizing coverage and
connectivity and

minimizing overall
network cost

Coverage
Connectivity

Cost
Time complexity and

scalability
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Fan, Y. et al. (2021)
[56]

Mixed-crop
farmlands 2D

The greedy algorithm,
MATLAB R2018b

simulation tool

Maximizing coverage and
connectivity and reducing

deployment costs;

Cost
Overlap rate

Chun-Han, H. et al.
(2021) [57] Open area 2D

Self-economic for
single-objective real

parameter optimization
problem, C++

programming language

maximizing the coverage
rate of all the targets,
while minimizing the

energy consumption of the
static and mobile sensors

Lifetime
Evaluation number

Xiaogang, Q. et al.
(2021) [58] Open area 2D

Embedded virtual force
resampling particle
swarm optimization
algorithm, MATLAB

2018

Coverage improvement Coverage rate

Chandra, N. et al.
(2021) [59] Open area 2D

Biogeography-based
optimization, MATLAB

2018a

Maximize coverage,
minimize the number of

sensor nodes, and
minimize interference

with efficient connectivity

Sensing interference
rate

Target point coverage
rate

Selection of potential
position rate

Fang, F. et al.
(2021) [60] Square area 2D A parallel version of the

sine cosine algorithm
Enhance dynamic sensor

node distribution
Convergence rate

Coverage rate

Onat, G. et al.
(2021) [61]

Indoor
placement 3D

Multi-objective integer
linear programming

model, YALMIP
(MATLAB optimization

toolbox)

Maximize coverage and
system robustness

Robustness rate
Coverage rate

Li-Gang, Z. et al.
(2021) [62] Terrain coverage 3D

Hybrid algorithm
depends on shuffled

frog leaping algorithm
and whale optimization
algorithm, CEC2017 test

set

Improve network
coverage with a minimum

number of nodes
Convergence rate

Li, C. et al. (2021)
[63] Open areas 2D

Social spider
optimization algorithm,

MATLAB R2017

Improve network
coverage and cost

Convergence ability
Coverage effect

Connectivity
Reliability

Energy consumption
Simulation time

Junbin, L. et al.
(2021) [64]

Pipeline
monitoring 2D

Submodular
optimization algorithm,
EPANET, and MATLAB.

Maximize monitoring
capacity of large-scale

pipeline network

Monitoring capacity
Number of mobile

sensors
Computing time

Salah, B. et al.
(2020) [31] Area monitoring 2D

Multi-objective genetic
algorithm and the

weighted sum
optimization method,

Python

Ensure coverage,
connectivity, and cost

Topology
k-coverage ratio

m-connectivity ratio
Sensing

Probability

A. Saad et al.
(2020) [34] Terrain topology 3D

An improved
multi-objective genetic

algorithm

Maximize the coverage
and minimize the
deployment cost

Execution time
Coverage rate

Number of deployed
sensors
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Khaoula, Z. et al.
(2020) [35] smart building 3D

Building information
modeling database and

genetic algorithm

Maximize the sensing
coverage and lifetime and

minimize the total
deployment cost of WSN

Coverage
Network lifetime

Cost
Connectivity

Number of sensor
nodes

Belal et al. (2020)
[39] Urban area 2D

Probability sensing
model and harmony

search algorithm,
MATLAB

Attain the balance
between the coverage

performance and cost of
heterogeneous WSNs;

PSM was used to solve the
overlapping problem

between nodes

Coverage
Cost

Puri, V. et al. (2020)
[65]

Target
monitoring 2D

Hybridizes the artificial
Bee colony and whale

optimization algorithms,
MATLAB

Maximize coverage and
connectivity

Coverage rate
Connectivity rate

Yanzhi, D. (2020)
[66] Area monitoring 3D

combined the
distributed particle

swarm Optimization
algorithm and a

proposed 3D virtual
force algorithm,

MATLAB (R2016a)

Maximize coverage and
maintain connectivity

Connectivity ratio
Lifetime

Coverage ratio

Zhendong, W. et al.
(2020) [67] Area monitoring 3D

Enhanced grey wolf
optimizer, MATLAB

2014b

Improve WSN coverage
and save deployment cost

Convergence
Time complexity

Coverage rate
Network connectivity

Weiqiang, W.
(2020) [68] Smart cities 2D

Adaptive particle swarm
optimization algorithm,

OMNET++5.0,
MATLAB2014a

Improving network QoS
Convergence trajectory

Secure connectivity
rate

Wang Y, (2020) [69] Dairy farming 2D Particle swarm
optimization, MATLAB

Improve network
coverage and connectivity Coverage rate

Na, X. et al. (2020)
[70] Field monitoring 2D Discrete particle swarm

optimization
Improved field

monitoring

Detectability
Convergence speed

Scalability

Ramin, Y. et al.
(2020) [71]

Target
monitoring 2D

Cooperative particle
swarm optimization and

cooperative particle
swarm optimization

using fuzzy logic, C++

Prolonging the network
lifetime

Network lifetime
Number of deployed

sensors

Beyza, G. et al.
(2019) [33]

Dynamic
deployment 2D

Quick ant bee colony,
c-sharp programing

language, net
framework 4.6.1

Improved network
performance

Convergence rate
CPU time

Bin, C. et al. (2019)
[36] smart cities 3D

Multi-objective
evolutionary algorithm
with message passing

interface

Optimizing coverage,
connectivity quality, and

lifetime, while
simultaneously

considering connectivity
and reliability as a

constraints

Operation time
hypervolume (HV)

indicator
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Zhendong, W. et al.
(2019) [37]

Urban areas
Forest areas 2D

Improved flower
pollination algorithm

non-dominated sorting
multi-objective flower
pollination algorithm,

MATLAB 2014b

Maximize the coverage
area of WSN deployment

in an urban area
Maximize the coverage

rate, minimize the energy
consumption rate, and

minimize the node
radiation overflow rate

Time complexity
Population

convergence
Coverage rate
Pareto front

Yamin, H. et al.
(2019) [72] Area coverage 2D Improved differential

evolution Maximize coverage Coverage rate
Convergence speed

Faten, H. et al.
(2019) [73] Area monitoring 2D Multi-objective flower

pollination algorithm

Enhance coverage, reduce
energy consumption,

maximize lifetime, and
maintain connectivity

Energy consumption
lifetime

Hongshan, K.
(2019) [74] Area coverage 2D Enhanced practical

swarm optimization Maximize coverage Coverage rate

Tripatjot, S. et al.
(2019) [75] Area coverage 2D

Hybrid technique
practical swarm
optimization +

Hooke–Jeeves search
method

Maximize coverage Coverage rate

Zhanjun, H. et al.
(2019) [76] Area coverage 3D

Improved practical
swarm optimization,

real experiment (RSSI)
Maximize coverage

Coverage rate
Received signal

strength indicator
(RSSI)

Vishal, P. et al.
(2019) [77] Target coverage 2D

Genetic algorithm and
practical swarm

optimization, MATLAB

Improve coverage and
connectivity Moving distance

Yung, P. et al.
(2019) [78]

Environment
monitoring 3D

Kmeans embedded in
genetic algorithm,

MATLAB2014b

Reduced deployment time
and cost

Generational distance
Number of solutions
in Pareto optimal set
Number of sensors

and relay nodes
Execution time

Wei, L. et al. (2018)
[79] Area coverage 2D

Ant-lion optimization
algorithm, MATLAB

R2016a
Increase coverage rate Coverage rate

Yongquan, Z et al.
(2018) [80] Area coverage 2D Social spider algorithm,

MATLAB 2012a Improve coverage
Coverage rate

Convergence speed
Complexity

Aparna, P et al.
(2018) [81] Area coverage 2D

Modified discrete binary
particle swarm
optimization

Improve coverage

Normalized overhead
Packets dropped

Throughput
Lifetime

Tehreem, Q. et al.
(2018) [82]

Environment
monitoring 3D Ant colony optimization,

MATLAB
Improve network

performance

Computational
cost

Number of deployed
sensor nodes
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Bin, C. et al. (2018)
[83]

Terrain
monitoring 3D Modified directional

evolution algorithm

Considering network
coverage, connectivity,
and lifetime of sensor

node

Fitness value
Operation time

Hossein, M. et al.
(2017) [84] Area coverage 2D

Multi-objective
optimization

evolutionary algorithm
based on decomposition

Improve coverage, power
consumption, delay,

reliability, and lifetime

Connectivity
Coverage
Reliability
Lifetime

Ozan, Z. et al.
(2017) [85] Area coverage 2D Modified genetic

algorithm Coverage improvement Coverage rate

Enes, A. et al.
(2017) [86] Area coverage 2D

K-means for clustering
and simulated annealing

for deployment
optimization, python

Maximize coverage and
reduce deployment cost

Confusion and
Accuracy

Coverage priority

Shu-Yu, K. et al.
(2017) [87]

Surveillance
application 2D

Quantum-inspired tabu
search algorithm with

entanglement, C++

Improve coverage and
connectivity

Computational
complexity

Connectivity
Coverage rate

Qingjian, N. et al.
(2017) [88] Area coverage 2D

Heterogeneous
multi-swarm practical
swarm optimization

Improve coverage and
reduce energy
consumption

Coverage rate
Fitness value

Yasser El K et al.
(2017) [89]

Area coverage
Barrier coverage 2D

Hybridize gradient
method and the

simulated annealing
algorithm, MATLAB

Achieve full coverage
with minimum number of

nodes

Coverage rate
CPU time

Dina, S. et al.
(2017) [90] IoT application 2D

Ant colony
optimization+ local

search
Improve reliability

Success rate of feasible
solutions

Number of deployed
sensors

Xiaojian, Z. et al.
(2017) [91] Target coverage 2D

Compare greedy
heuristic, local search,
and practical swarm
optimization, Java

programming

Satisfy coverage quality
requirement

Success rate
Network deployment

cost
Running time

Osama, M. et al.
(2017) [92] Field monitoring 2D Harmony search,

MATLAB
Maximize coverage and

minimize cost

Minimum distance
between sensors

Coverage rate
Sensing range and cell

size

A. Xenakis et al.
(2016) [93] Area coverage 2D Simulated annealing

Maximize coverage and
minimize energy

consumption

Coverage rate
Consuming energy

Ahmed, B. et al.
(2016) [94]

Air quality
monitoring 2D

Integer programming
model-enhanced

atmospheric dispersion
simulator called

SIRANE

Enhance the quality of
pollution estimation with

minimum cost
Coverage cost
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Table 1. Cont.

Paper Application Space Methodology and
Simulation Tool Objective(s) Performance Metrics

Mina Kh. Et al.
(2016) [95] Area coverage 2D

Constrained
Pareto-based

multi-objective
evolutionary approach,

MATLAB

Maximize coverage,
minimize energy

consumption, prolong the
lifetime, and maintain

connectivity

Number of
non-dominated

solutions
Set coverage

Diversity
Hypervolume

Generational distance
Computation time

Coverage
Lifetime

Mustapha, R. et al.
(2016) [96]

Surveillance
application 2D Genetic algorithm,

ANSI-C++

Maximize detection rate
and minimize false alarm

rate

Running time
Number of deployed

sensors
Deployment cost

Coverage rate

Aparna, P. et al.
(2016) [97] Area coverage 2D

Modified discrete binary
practical swarm

optimization, NS3.21
Improve coverage Number of iterations

Convergence Time

Liu, C. et al. (2015)
[98]

Structural health
monitoring

(SHM)
3D Genetic algorithm (GA)

Improve energy
consumption and modal
identification accuracy

Energy consumption
Accuracy

Number of deployed
sensors

Matthieu Le. et al.
(2015) [99] Target tracking 2D

Non-dominated sorting
genetic algorithm-II,

multi-objective practical
swarm optimization,

specific heuristic (H3P),
C++

Improve coverage,
minimize sensor node

number and non-accuracy

Coverage of two
Pareto fronts (C

metric)
The proportion of
optimal solutions

Danping, H. et al.
(2015) [100]

Indoor and
outdoor

application
3D Multi-objective genetic

algorithm, C++
Optimize network

performance

Maximum number of
generations

Population size
Evolutionary
possibilities

Computation time
Received signal

strength
Coverage

Connectivity
Cost

Lifetime
Energy consumption

Packet latency
Packet drop rate

Junfeng, C. et al.
(2015) [101] Area coverage 2D

Brainstorm optimization,
K-means for clustering,

MATLAB 8.0
Improve coverage Coverage rate

Pooja, N. et al.
(2015) [102] Area coverage 2D Bacteria foraging Improve coverage and

connectivity Coverage rate

5.1. Distribution of Studies (RQ1)

The selected papers were analyzed to find their number and distribution, as belonging
to the period 2015–2022, as shown in Figure 11. It is clear that the number of studies that
deal with this topic increased each year, since there is an incremental usage of smart city
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applications around the world. A total of 35 of the selected papers were published in the
IEEE journals and conferences, while 11 papers were published in Springer, 9 in Elsevier,
and 13 in other Scopus journals. The ratio of these numbers to the total number of the
chosen papers is shown in Figure 12.
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5.2. Optimization Algorithms (RQ2 &RQ3)

Most of the reviewed studies used meta-heuristic optimization algorithms to solve the
deployment problem. The meta-heuristic stands for the Greek words meta and heuriskein,
which means solving problems using an upper-level methodology. Meta-heuristic algo-
rithms represent a part of optimization in computer science and applied mathematics
concerning algorithms and computational complexity theory, which depend on inspiring
their solutions from natural habits, such as particle swarms, annealing processes, and ant
colonies. These types of algorithms are used in many fields, such as artificial intelligence,
mathematical programming, soft computing, and operations research. These algorithms
are general approximate algorithms that can be deployed to different types of optimization
problems and can be updated to solve any hard problem, since they provide fast, flexible,
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and robust solutions; besides, they are easy to design and implement. The disadvantage of
these algorithms is that there is no guarantee that the approximated solution is closed to
the optimal solution. Further, because of the no free lunch (NFL) theorem, there is no meta-
heuristic algorithm that can be used generally for different optimization problems [103].
This means that an optimization algorithm can outperform well for a specific problem
but not so well with another one. Hence, there is always a need for newly proposed
optimization algorithms to find solutions for more complex problems. This can be done
either by proposing new algorithms or updating existing ones or by a combination of two
different types of optimization algorithms, such as a hybrid algorithm between classical
and meta-heuristic algorithms or meta-heuristic and artificial intelligence algorithms [11].

About 35% of the reviewed studies worked on an update to swarm intelligence opti-
mization algorithms [40,44,46] such as particle swarm optimization
(PSO) [42,58,66,68,69,74–77,81,88,97,99], ant colony optimization (ACO) [33], and bee colony
optimization (BCO) [48,65], due to their ability to solve complex problems and provide
a satisfactory solution in a feasible time [90]. These algorithms are applied to enhance
network performance by combining them with other approaches and then comparing the
obtained results with other algorithms, such as the genetic, greedy, and multi-objective
evolutionary algorithms. The ratio of participation for each algorithm is shown in Figure 13.
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5.3. Performance Metrics (RQ4)

Many performance parameters or metrics should be considered when deploying
WSNs, starting with coverage and connectivity, which are the most important parameters
that ensure high quality of service from WSNs, as discussed earlier in Section 2.6, as well as
other parameters, such as the lifetime, energy consumption, latency, signal strength (RSSI),
accuracy, scalability, reliability, and more [32]. A brief discussion of these parameters is
explained below.

• Lifetime
One of the most important metrics in WSNs is the network’s lifetime. Through

research, it is found that network lifetime depends on two dimensions, the first is network
connectivity, which means that network lifetime can be defined as the period from the
network deployment until one or more nodes lost connection to the sink node. While the
second dimension depends on energy consumption, and this means network lifetime is
the period from network deployment until one or multiple live nodes fall below a specific
energy threshold [104]. Most conducted studies in Table 1 tried to maximize lifetime



Sensors 2022, 22, 5094 24 of 30

through optimal node deployment that maximizes network coverage and connectivity,
hence minimizing the power consumption that leads to prolonged network lifetime.

• Energy Consumption
Each node in WSN needs energy in three parts, i.e., collecting, processing, and commu-

nicating data. The amount of consumed energy depends not only on the energy capacity
but also on the heterogenous functionalities of the sensor node. The efficient use of energy
prolongs the network lifetime. This can be achieved through reducing the number of
exchanged messages between nodes and scheduling sleep intervals for redundant nodes,
while leaving the remaining nodes active to save network coverage and connectivity, as well
as using efficient routing protocols; all these steps will minimize energy consumption [28].

• Latency and accuracy
Latency and accuracy are related to each other. Latency means the time required to

send a message from the source node to the destination node across the network, and this
represents the total delay of the sent message. Accuracy represents the efficient arrival of
the sent message to the destination within the limited time required, so reducing delay
ensures network accuracy, and this is an important performance metric in WSN [11].

• Signal strength (RSSI)
This metric represents a measure of link quality and depends on the distance between

two nodes to calculate the reachability of the node through the communication process.
RSSI stands for received signal strength indicator that can be determined from the following
equation [76,105]:

RSSI = −10 × n × log10(d) + p (5)

where,

d: is the distance from the sensor node measured in meters;
n: is the propagation constant or path-loss exponent;
p: is the power in reception mode (Dbm) (decibel-milliwatts).

• Scalability and Reliability
Scalability can be defined as the ability of the network to be extended by including

more nodes in the network, while preserving network performance. The reliability of a
WSN represents its ability to deliver sensed data to the sink node, while maintaining cover-
age and connectivity through the mission period. This period is application-dependent [90].

While using optimization algorithms in solving the WSN deployment problem, the
performance metrics that have been presented in the literature to measure the qualities of
the approximations collected from different optimization algorithms can be described as
follows [95].

• The number of non-dominated solutions (NDS)
If Ps represents the set that contains all the non-dominated solutions generated by the

proposed algorithm A, then the NDS-metric is defined by the size of Ps, as follows:

NDS = |Ps| (6)

A higher value of NDS means that a sufficient number of choices exist [95].
• Set coverage metric (C-metric)
If there are two optimal sets of non-dominated solutions, then the set coverage is

the comparison metric between these two sets, which represents the ratio of the non-
dominated solutions in set2, dominated by non-dominated solutions in set1 and divided by
the number of solutions in the set2. This means, if C(set1,set2) < C(set2,set1), then set2 has
better a solution than set1 [99].

• Diversity metric (∆)
The diversity metric (∆) determines the range of spread accomplished through the

obtained solutions.
• Hypervolume metric (HV-metric or S-metric)
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The hypervolume metric (HV) (also defined as the S-metric) presents the joint in-
formation about closeness and diversity in the acquired non-dominated set of solutions
(Ps) [42].

• Generational distance metric (GD-metric)
The generational distance metric (GD-metric) determines how far the acquired Ps set

of solutions is from the true set PT.
• Computation time or complexity
The computation time of the optimization algorithm is required to measure its effi-

ciency. An efficient algorithm should provide optimal solutions within an acceptable time.
So, this metric is important for comparison between the algorithms [43,46].

The performance metrics of each conducted study in this survey are presented in
Table 1.

5.4. Simulation Programs (RQ5)

The preferable simulation tool for WSN deployment using an optimization algorithm
is the MATLAB/Simulink program [106,107], which was used by many researchers in the
literature, as illustrated in Table 1. This efficient simulation program was designed by
MathWorks. MATLAB stands for matrix laboratory used with Simulink tools to design,
simulate, and analyze embedded systems. It contains some toolboxes to generate new
network scenarios, and the simulation data can be visualized using five tools, which are
the MATLAB graphics, port value display, scopes, dashboard block library, and simulation
data inspector. This simulation program can work in two modes, the deterministic and
probabilistic modes. The first mode is used for code testing and debugging, while the
second one is used for wireless communication. It can be used to simulate MAC layer
operation, radio transmission, and collision detection in ad hoc networks for any number
of sensor nodes via an embedded tool called Powerler.

5.5. Challenges, Limitations, and Future Issues for WSN Deployment in Smart Cities (RQ5&RQ6)

Node deployment of WSN can be either indoor or outdoor, depending on the smart
city application requirements. Indoor deployment can be applied in closed areas, such as
buildings and structures, while outdoor deployment can be applied in open and harsh
areas, such as roads, gardens, forests, and volcanoes. So, the area of the monitored region
plays a significant role in determining the deployment type to be random, deterministic, or
dynamic [108]. The network coverage type also depends on the nature of the monitored
area, which can be area, target, or barrier coverage. In addition, some applications require
one-connectivity, that is, a single path between sensor and sink node; others require more
reliable connectivity, called k-connectivity, with the sink node [109].

Each study has its own advantages, disadvantages, and limitations, according to the
application, environment, sensing model, coverage type, and required objectives, but it has
been observed that most of these have the following issues:

• Most of the research studies deal with homogenous nodes in WSN and use unreal and
simplified models.

• Most of the research studies deal with 2D plane deployment, while modern applica-
tions require 3D space deployment.

• Security, reliability, scalability, and energy consumption are also important issues
that need to be considered with coverage and connectivity when deploying a sensor
node [110,111].

• Most papers do not take the existence of the obstacle into account when determining
coverage and connectivity.

• Localization techniques need to be merged with the deployment techniques, in order
to increase reliability and robustness.

In the future, most of these limitations should be taken into account when designing
an optimization deployment algorithm for WSN node deployment.
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6. Conclusions

This paper provides a systematic mapping study regarding the deployment problems
of WSN sensor nodes in smart city applications using the meta-heuristic optimization
method. First, a detailed background on smart city and WSN is presented; then, the
earlier studies on WSN deployment are reviewed. The research methodology discussed
the research questions and used databases and inclusion and exclusion criterion to obtain
the results. It was found that 68 papers in the period between 2015–2022 related directly
to the WSN deployment using meta-heuristic optimization algorithms, and 35% of these
studies focused on updating the swarm optimization methods. Most of the selected studies
used the MATLAB simulation tool to design and code the WSN optimization algorithm for
its efficiency and simplicity. Finally, this paper discussed the challenges and limitations
that WSN deployment faces in smart cities, as well as suggested future issues.

Author Contributions: Conceptualization, A.M.; Formal analysis, H.M.A.; Investigation, H.M.A. and
A.M.; Methodology, H.M.A. and A.M.; Supervision, A.M.; Validation, H.M.A. and A.M.; Writing—
original draft, H.M.A. and A.M.; Writing—review & editing, H.M.A. and A.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Available online: https://www.istockphoto.com/vector/smart-city-concept-and-internet-of-things-gm615412738-106734161

(accessed on 29 June 2022).
2. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for

Smart City Monitoring. IEEE Commun. Surv. Tutor. 2019, 21, 1533–1560. [CrossRef]
3. Lai, C.L.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.K.; Zobaa, A.F.; Wu, R.; Lai, L.L. A Review of Technical

Standards for Smart Cities. Clean Technol. 2020, 2, 290–310. [CrossRef]
4. Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol.

2015, 22, 3–21. [CrossRef]
5. Ahad, M.A.; Paivab, S.; Tripathia, G.; Feroza, N. Enabling Technologies and Sustainable Smart Cities; Elsevier Ltd.: Amsterdam, The

Netherlands, 2020; Volume 61.
6. Jawhar, I.; Mohamed, N.; Al-Jaroodi, J. Networking architectures and protocols for smart city systems. J. Internet Serv. Appl. 2018,

9, 26. [CrossRef]
7. Heydarishahreza, N.; Ebadollahi, S.; Vahidnia, R.; Dian, F.J. Wireless Sensor Networks Fundamentals: A Review. In Proceedings

of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 4–7 November 2020; IEEE: Piscataway, NJ, USA, 2020.

8. Kishor, K.T.; Shridhar, P.J.; Kumar, A.S. A Fundamental Implementations and Working Principles of Wireless Sensor Networks.
Compusoft 2015, 4, 2030–2035.

9. Aiswariya, S.; Rani, V.J.; Suseela, S. Challenges, Technologies and Components of Wireless Sensor Networks. Int. J. Eng. Res.
Technol. (IJERT) 2018, 6, 1–5.

10. Amutha, J.; Sharma, S.; Sharma, S.k. Strategies Based on Various Aspects of Clustering in Wireless Sensor Networks Using
Classical, Optimization and Machine Learning Techniques: Review, Taxonomy, Research Findings, Challenges and Future
Directions. Comput. Sci. Rev. 2021, 40, 100376. [CrossRef]

11. Srivastava, A.; Mishra, P.K. A Survey on WSN Issues with its Heuristics and Meta-Heuristics Solutions. Wirel. Pers. Commun.
2021, 121, 745–814. [CrossRef]

12. Iannacci, J. Microsystem Based Energy Harvesting (EH-MEMS): Powering Pervasivity of the Internet of Things (IoT)—A Review
With Focus on Mechanical Vibrations. J. King Saud Univ.-Sci. 2019, 31, 66–74. [CrossRef]

13. Arampatzis, T.H.; Lygeros, j.; Manesis, S. A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. In
Proceedings of the 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus, 27–29 June 2005; IEEE:
Piscataway, NJ, USA, 2005.

14. Spachos, P.; Hantzinakos, D. Real-Time Indoor Carbon Dioxide Monitoring through Cognitive Wireless Sensor Networks. IEEE
Sens. J. 2015, 16, 506–514. [CrossRef]
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49. Taşdemir, A.; Demirci, S.; Aslan, S. Performance Investigation of Immune Plasma Algorithm on Solving Wireless Sensor
Deployment Problem. In Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ICEEE),
Alanya, Turkey, 29–31 March 2022.

50. Yao, Y.; Hu, S.; Li, Y.; Wen, Q. A Node Deployment Optimization Algorithm of WSNs Based on Improved Moth Flame Search.
IEEE Sens. J. 2022, 22, 10018–10030. [CrossRef]

51. Wen, Q.; Zhao, X.; Cui, Y.; Zeng, Y.; Chang, H.; Fu, Y. Coverage Enhancement Algorithm for WSNs Based on Vampire Bat and
Improved Virtual Force. IEEE Sens. J. 2022, 22, 8245–8256. [CrossRef]

52. Yao, Y.; Wen, Q.; Cui, Y.; Zhao, B. Discrete Army Ant Search Optimizer-Based Target Coverage Enhancement in Directional Sensor
Networks. IEEE Sens. Lett. 2022, 6, 7500404. [CrossRef]

53. Benalia, N.E.; Mohand, I.S.H.; Ferhattaleb, S.; Sadoun, R.; Bentrah, A. MoEA-DeployWSN-SB: Three variants of multi-objective
evolutionary algorithms for the deployment optimization strategy of a WSN in a smart building. Int. J. Inf. Tecnol. 2022, 14,
333–344. [CrossRef]

54. Zrelli, A.; Ezzedine, T. A New Approach of WSN Deployment, K-Coverage, and Connectivity in Border Area. Wirel. Pers.
Commun. 2021, 121, 3365–3381. [CrossRef]

55. Jaiswal, K.; Anand, V. A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach
for IoT applications. Telecommun. Syst. 2021, 78, 559–576. [CrossRef]

56. Yang, F.; Shu, L.; Yang, Y.; Han, G.; Pearson, S.; Li, K. Optimal Deployment of Solar Insecticidal Lamps Over Constrained
Locations in Mixed-Crop Farmlands. IEEE Internet Things J. 2021, 8, 13095–13114. [CrossRef]

57. Hsu, C.H.; Tsai, C.W.; Chiang, M.C. An Improved Metaheuristic Algorithm for Mobile and Static Wireless Sensor Network with
Adjustable Sensing Range. In Proceedings of the IEEE International Conference on Smart Internet of Things (Smart IoT), Jeju,
Korea, 13–15 August 2021.

58. Qi, X.; Li, Z.; Chen, C.; Liu, L. A wireless sensor node deployment scheme based on embedded virtual force resampling particle
swarm optimization algorithm. Appl. Intell. 2021, 52, 7420–7441. [CrossRef]

59. Naik, C.; Shetty, D.P. Optimal sensors placement scheme for targets coverage with minimized interference using BBO. Evol. Intell.
2021, 1–15. [CrossRef]

60. Fan, F.; Chu, S.C.; Pan, J.S.; Yang, O.; Zhao, H. Parallel Sine Cosine Algorithm for the Dynamic Deployment in Wireless Sensor
Networks. J. Internet Technol. 2021, 22, 499–512.

61. Gungor, O.; Rosing, T.S.; Aksanli, B. RESPIRE++: Robust Indoor Sensor Placement Optimization under Distance Uncertainty.
IEEE Sens. J. 2021, 22, 11355–11363. [CrossRef]

62. Zhang, L.; Fan, F.; Chu, S.; Garg, A.; Jeng-Shyang, P. Hybrid Strategy of Multiple Optimization Algorithms Applied to3-D Terrain
Node Coverage of Wireless Sensor Network. Wirel. Commun. Mob. Comput. 2021, 2021, 6690824.

63. Cao, L.; Yue, Y.; Cai, Y.; Zhang, Y. A Novel Coverage Optimization Strategy for Heterogeneous Wireless Sensor Networks Based
on Connectivity and Reliability. IEEE Access 2022, 9, 18424–18442. [CrossRef]

64. Liang, J.; Tu, J.; Leung, V.C.M. Mobile Sensor Deployment Optimization Algorithm for Maximizing Monitoring Capacity of
Large-Scale Acyclic Directed Pipeline Networks in Smart Cities. IEEE Internet Things J. 2022, 8, 16083–16095. [CrossRef]

65. Vishal, P.; Babu, A.R. An Integrated Optimization Enabled Sensor Deployment Model in Wireless Sensor Network. New Rev. Inf.
Netw. 2020, 25, 47–70. [CrossRef]

66. Du, Y. Method for the Optimal Sensor Deployment of WSNs in 3D Terrain Based on the DPSOVF Algorithm. IEEE Access 2020, 8,
140806–140821. [CrossRef]

67. Wang, Z.; Xie, H. Wireless Sensor Network Deployment of 3D Surface Based on Enhanced Grey Wolf Optimizer. IEEE Access
2020, 8, 57229–57251. [CrossRef]

68. Wang, W. Deployment, and optimization of wireless network node deployment and optimization in smart cities. Comput.
Commun. 2020, 155, 117–124. [CrossRef]

http://doi.org/10.1016/j.asoc.2021.107926
http://doi.org/10.3390/app112210924
http://doi.org/10.1016/j.eswa.2021.116164
http://doi.org/10.1016/j.eswa.2021.116035
http://doi.org/10.1007/s11227-016-1674-2
http://doi.org/10.1007/s12530-021-09412-2
http://doi.org/10.1109/JSEN.2022.3166804
http://doi.org/10.1109/JSEN.2022.3159649
http://doi.org/10.1109/LSENS.2022.3158274
http://doi.org/10.1007/s41870-021-00776-x
http://doi.org/10.1007/s11277-021-08881-7
http://doi.org/10.1007/s11235-021-00831-9
http://doi.org/10.1109/JIOT.2021.3064043
http://doi.org/10.1007/s10489-021-02745-0
http://doi.org/10.1007/s12065-021-00624-8
http://doi.org/10.1109/JSEN.2021.3075930
http://doi.org/10.1109/ACCESS.2021.3053594
http://doi.org/10.1109/JIOT.2020.2983768
http://doi.org/10.1080/13614576.2020.1742768
http://doi.org/10.1109/ACCESS.2020.3013106
http://doi.org/10.1109/ACCESS.2020.2982441
http://doi.org/10.1016/j.comcom.2020.03.022


Sensors 2022, 22, 5094 29 of 30

69. Yanmin, W. Optimization of Wireless Sensor Network for Dairy Cow Breeding Based on Particle Swarm Optimization. In
Proceedings of the IEEE International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos,
11–12 January 2020; pp. 524–527.

70. Xia, N.; Hong, Y.; Khan, M.S.; Wen, X.; Du, H. Sensor Deployment Method Based on Faiw-DPSO in DASNs. IEEE Access 2020, 8,
78403–78416. [CrossRef]

71. Yarinezhad, R.; Hashemi, S.N. A sensor deployment approach for target coverage problem in wireless sensor networks. J. Ambient
Intell. Humaniz. Comput. 2020, 1–16. [CrossRef]

72. Han, Y.; Byun, H.; Yang, B.; Kim, J.H.; Lee, T.H. Optimization of Sensor Nodes Deployment Based on An Improved Differential
Evolution Algorithm for Coverage Area Maximization. In Proceedings of the IEEE 4th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC 2019), Chengdu, China, 20–22 December 2019; pp. 250–254.

73. Hajjej, F.; Hamdi, M.; Ejbali, R.; Zaied, M. A New Optimal Deployment Model of Internet of Things Based on Wireless Sensor
Networks. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC),
Tangier, Morocco, 24–28 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2092–2097.

74. Kong, H.; Yu, B. An Improved Method of WSN Coverage Based on Enhanced PSO Algorithm. In Proceedings of the IEEE 8th
Joint International Information Technology and Artificial Intelligence Conference (ITAIC 2019), Chongqing, China, 24–26 May
2019; pp. 1294–1297.

75. Panag, T.S.; Dhillon, J.S. Maximal coverage hybrid search algorithm for deployment in wireless sensor networks. Wirel. Netw.
2019, 25, 637–652. [CrossRef]

76. Hao, Z.; Qu, N.; Dang, X.; Hou, J. RSS-Based Coverage Deployment Method Under Probability Model in 3D-WSN. IEEE Access
2019, 7, 183091–183104. [CrossRef]

77. Puri, V.; Babu, A.R.; Muthu, T.S.; Potdar, S. An Effective Optimization Algorithm for Sensor Deployment Problem in Wireless Sensor
Network; Springer Nature Singapore Pte Ltd.: Berlin/Heidelberg, Germany, 2019; pp. 248–258.

78. Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S. Multi-Objective Mapping Method for 3D Environmental Sensor Network Deployment.
IEEE Commun. Lett. 2019, 23, 1231–1235. [CrossRef]

79. Liu, W.; Yang, S.; Sun, S.; Wei, S. A Node Deployment Optimization Method of WSN Based on Ant-Lion Optimization Algorithm.
In Proceedings of the 4th IEEE International Symposium on Wireless Systems within the International Conferences on Intelligent
Data Acquisition and Advanced Computing Systems, Lviv, Ukraine, 20–21 September 2018.

80. Zhou, Y.; Zhao, R.; Luo, Q.; Wen, C. Sensor Deployment Scheme Based on Social Spider Optimization Algorithm for Wireless
Sensor Networks. Neural Process Lett. 2018, 48, 71–94. [CrossRef]

81. Laturkar, A.P.; Bhavani, S.; Adhyapak, D. Grid and Force Based Sensor Deployment Methods in Wireless Sensor Network using
Particle Swarm Optimization. Indones. J. Electr. Eng. Comput. Sci. 2018, 10, 1287–1296. [CrossRef]

82. Qasim, T.; Zia, M.; Minhas, Q.; Bhatti, N.; Saleem, K.; Qasim, T.; Mahmood, H. An Ant Colony Optimization Based Approach for
Minimum Cost Coverage on 3-D Grid in Wireless Sensor Networks. IEEE Commun. Lett. 2018, 22, 1140–1143. [CrossRef]

83. Cao, B.; Kang, X.; Zhao, J.; Yang, P.; Lv, Z.; Liu, X. Differential Evolution-Based 3-D Directional Wireless Sensor Network
Deployment Optimization. IEEE Internet Things J. 2018, 5, 3594–3605. [CrossRef]

84. Mohtashami, H.; Movaghar, A.; Teshnehlab, M. Multi-objective Node Placement Considering Non-uniform Event Pattern. Wirel.
Pers Commun. 2017, 97, 6189–6220. [CrossRef]
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