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Abstract: An integrated navigation algorithm based on a multiple fading factors Kalman filter
(MFKF) is proposed to solve the problems that the Kalman filtering (KF) algorithm easily brings
about diffusion when the model becomes a mismatched or noisy, and the MFKF accuracy is reduced
when the fading factor is overused. Based on the innovation covariance theory, the algorithm designs
an improved basis for judging filtering anomalies and makes the timing of the introduction of the
fading factor more reasonable by switching the filtering state. Different from the traditional basis of
filter abnormality judgment, the improved judgment basis adopts a recursive way to continuously
update the estimated value of the innovation covariance to improve the estimation accuracy of the
innovation covariance, and an empirical reserve factor for the judgment basis is introduced to adapt
to practical engineering applications. By establishing an inertial navigation system (INS)/global
navigation satellite system (GNSS) integrated navigation model, the results show that the average
positioning accuracy of the proposed algorithm is improved by 26.52% and 7.48%, respectively,
compared with the KF and MFKF, and shows better robustness and self-adaptability.

Keywords: integrated navigation system; Kalman filter; fading factor; state switching

1. Introduction

KF is a state estimation method with superior performance due to its small data storage
and high estimation accuracy, which is commonly used in integrated navigation systems [1].
The KF algorithm is usually applied to the INS/GNSS integrated navigation by developing
a mathematical model of the integrated navigation error, the whitening of colored noise is
introduced into the KF, which solves the effect of colored noise to improve the accuracy
of the navigation results [2]. In the literature [3], a loosely coupled GNSS/SINS/GC/VL
integrated navigation system based on KF was proposed to establish the filtering equations
using the introduced heading and speed information, which can realize the error correction
of SINS after filtering. KF is not only widely used in INS/GNSS integrated navigation, but
also has many uses in other positioning models [4,5]. However, the utilization of standard
KF requires an accurate dynamic model of the system and noticeable noise characteristics,
the filter will not be optimal if there are errors in the model or if there is a severe noise
mismatch and the final filtering produces divergence [6,7].

To prevent filtering divergence, a large number of scholars have studied this issue [8–10].
Deep learning prediction networks can effectively improve the prediction accuracy by
scaling and translating the input learnable parameters [11,12]. However, it is then difficult to
apply to practical applications in integrated navigation at present. Variational Bayesian is a
commonly used method in industrial control and state estimation [13]. In [14], a variational
Bayesian adaptive Kalman filter was proposed to approximate the statistics of the process
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noise variance of a time-varying system by the joint distribution of the recursive state and
noise parameters of the system, but there is the problem of frequent process noise covariance
transformations leading to the reduction of filtering accuracy. An improved Sage–Husa
adaptive filtering was proposed to suppress the filtering divergence caused by observation
noise by continuously updating the observation noise variance, but the algorithm sacrifices
a certain filtering accuracy to ensure a stable filtering effect and is not suitable for dealing
with the case of inaccurate model establishment [15]. Su et al. put forward a method to use
the fading factor matrix and fault detection in one way [16], which is innovative, but the
algorithm derivation process is tedious and the matrix elements are not always accurately
obtained. An adaptive Kalman filtering algorithm based on innovation was proposed
in [17], which continuously updates the observation noise variance, suppresses white noise
by collecting estimated and measured variables to process the system noise variance, and
suppresses the noise variance caused by environmental perturbations by introducing a
fading factor to increase the weight of the current observation variables.

Fading Kalman filtering algorithm is a kind of adaptive Kalman filtering
algorithm [18–20]. An adaptive filtering algorithm based on the innovation covariance was
proposed [21], which construct a function to find the fading factor by constructing the
covariance estimate of the innovation sequence with the theoretical value, which is simple
to compute and improve the reliability of the filtering algorithm to some extent. However,
the single factor fading Kalman filter reduces the estimation accuracy of the filter because it
has the same adjustment ability for each channel of the error covariance matrix. The idea of
fading filtering is usually to increase the weight of the current observation by increasing the
error variance matrix of one-step predicting [22]. However, the computation process of the
scalar fading factor is tedious and has the same adjustment capability for each filter channel,
which makes the stability and accuracy of the improved filter limited. To overcome the
limitation of the low performance of a single fading factor filtering, a method was proposed
to adjust each channel with different weights by introducing multiple fading factors [23],
which can effectively suppress the filtering divergence when there are sudden changes
in system noise disturbances, but multiple fading factors will increase the computational
load as the number of calculations increases. Pan et al. constructed a scalar fading factor
using an improved observation noise covariance matrix and innovation covariance matrix
estimated by exponential weighting, and then calculated multiple fading factors to calibrate
the error variance matrix of one-step predicting [24], which is better in terms of filtering
convergence speed and filtering accuracy compared to conventional filters.

The selection of the fading factor is the key to fading filtering. The open-window
method is a traditional method for obtaining the fading factor, which obtains the fading
factor matrix by computing the estimates of the innovation covariance, and the fading
factor matrix assigns different weight coefficients to different filter channels. The filtering
effect is better than the single fading factor when the system noise increases [25]; however,
the estimates of the innovation covariance obtained by the open-window method are less
reasonable and prone to misclassification. An innovative method was proposed to improve
the role of the newly observation data in the filter by weighting the innovation covariance
sequence with exponential decay to provide accurate fading factor for the filter [26], which
can obtain great results when the system is modeled inaccurately or when the noise is time-
varying. In [27], an adaptive threshold γ for the H-infinite Kalman filter based on multiple
fading factors was introduced, which not only enables the filter to converge quickly in the
initial stage, but also to adapt to extreme environmental changes.

Although current studies have improved and perfected the solution method for mul-
tiple fading factors, the overuse of fading factors in conventional MFKF algorithms in
integrated navigation systems not only increases the computational load, but also tends to
degrade the filtering accuracy [28]. To overcome this difficulty, adaptive control is widely
used [29–32].

Thus, an adaptive integrated navigation algorithm (AMFKF) based on MFKF is pro-
posed in this paper by combining the KF algorithm, the MFKF algorithm and the improved
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basis for judging the system state abnormality. An improved filter state anomaly judgment
basis is designed by the algorithm in this paper to perform filter state switching, which is
significantly better than the information fusion methods of KF and MFKF. The filter state
anomaly judgment basis is often affected by the accuracy of the estimated value of the
innovation covariance. Therefore, a recursive approach is used to continuously update the
estimated value of the innovation covariance to improve the estimation accuracy of the
innovation covariance in the improved filtering state anomaly judgment basis proposed
in this paper. Moreover, in order to have stronger adaptability in practical engineering
applications, the improved filter state abnormality judgment basis retains the adjustable
reserve factor. The algorithm in this paper makes the timing of the introduction of the fad-
ing factor more reasonable by switching the filtering state to improve the filtering accuracy
and enhance the adaptivity of the filter.

The rest of this paper is arranged as follows. In Section 2, INS/GNSS error model and
KF algorithm are discussed in detail and the mathematical model is established. Section 3
analyzes the basic theories of MFKF. Then, an improved model anomaly judgment basis is
designed. In Section 4, the experimental results of the algorithm in this paper are compared
with the KF and MFKF in simulation and experiments. Finally, the conclusion based on the
simulation and experiments is given in Section 5.

2. Integrated INS/GNSS Navigation System
2.1. Mathematical Error Model of INS/GNSS Integrated Navigation System

In this section, we shall establish a mathematical model of INS/GNSS loose integrated
approach [33], in the east-north-up navigation reference frame,

X(t) = [φe φn φu δVe δVn δVu δL δλ δh εbx εby εbz ∇ax ∇ay ∇az ]T (1)

where X(t) is the 15-dimensional state vector of the system. φe, φn, and φu represent the
angle errors of the attitude in the direction of east, north, and up, respectively. δVe, δVn, and
δVu are the three velocity errors in the direction of east, north, and up, respectively δL, δλ,
and δh are the latitude, longitude, and altitude error respectively εbx, εby, and εbz are gyro
constant drifts, and ∇ax, ∇ay, and ∇az are the random constant offset of the accelerometer.

Firstly, we analyze and model the inertial navigation system error. There are many
kinds of errors in the inertial navigation system and their causes and correction methods are
different. This paper only focuses on the errors caused by inertial devices, including plat-
form angle error, velocity error, position error, gyroscope random drift, and accelerometer
zero bias.

The differential expression for the platform angle error is:

·
φn = δωn

ie + δωn
en − (ωn

ie + ωn
en)× φn + εn (2)

where φn =
[
φe φn φu

]T , ωn
ie is the vector projection of the angular velocity of the Earth’s

rotation in the navigation coordinate system. ωn
en is the projection of the implicated angular

velocity vector from the rotation of the Earth in the navigation coordinate system. δωn
ie is

the earth rotation error’s projection and δωn
en is geographic coordinate error’s projection,

which is caused by the error of latitude and speed. εn is the gyro constant error’s projection
of INS in the navigation coordinate system.

From the above equation, the angle error of the attitude equation can be further
derived as:

·
φe= (ωie sin L + Ve

Rn+h tan L)φn − (ωie cos L + Ve
Rn+h )φu − δVn

Rm+h
+ Vn

(Rm+h)2 δh + εe
(3)

·
φn = −(ωie sin L + Ve

Rn+h tan L)φe − Vn
Rm+h φu −ωie sin LδL + δVe

Rn+h
− Ve

(Rn+h)2 δh + εn
(4)
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·
φu= (ωie cos L + Ve

Rn+h )φe +
Vn

Rm+h φn + (ωie cos L + Ve
Rn+h sec2 L)δh

+ δVe
Rn+h tan L + εu

(5)

where, Ve and Vn are the velocity from directions of east and north obtained by inertial
navigation system, respectively. Rn and Rm are the major axis and short axis of earth. h the
local height of the carrier. εe, εn, and εu represent the error of the gyro in the direction of
east, north, and up, respectively.

According to the specific force equation:

f n =
·

Vn + (2ωie + wen)×Vn − gn (6)

where f n is the projection of the specific force value measured by the accelerometer in the
navigation coordinate system; Vn is the velocity from direction of east, north, and up; gn is
the projection of local gravity in the navigation coordinate system.

The velocity error equation is obtained as:

δ
·

Vn = f n × φn +∇n − (2δωie + δωen)×Vn − (2δωie + ωen)× δVn (7)

where ∇n is the accelerometer error’s projection of INS in navigation coordinate system.
Then states of velocity error can be established as:

δ
·

Ve= ( Vn
Rn+h tan L− Vu

Rn+h )δVe + (2ωie sin L + Ve
Rn+h tan L)δVn

+(2ωieVn cos L + VeVn
Rn+h sec2 L + 2ωieVu sin L)δL

−(2ωie cos L + Ve
Rn+h )δVu + φu fn − φu fu +∇e

(8)

δ
·

Vn = −(2ωie sin L + 2Ve
Rn+h tan L)δVe − Vu

Rm+h δVn − Vn
Rm+h δVu

−(2ωieVe cos L + V2
e

Rn+h sec2 L)δL− φu fe + φe fu +∇n
(9)

δ
·

Vu= 2(ωie cos L + Ve
Rn+h )δVe +

2Vn
Rm+h δVn − 2ωieVe sin LδL + φn fe

−φe fn +∇u
(10)

where fe, fn, and fu represent the specific force in the direction of east, north, and up,
respectively. ∇e, ∇n, and ∇u represent the error of the accelerometer in the direction of
east, north, and up, respectively.

After obtaining the error of velocity, the position error can be figured out. Then states
of position error can be established as:

δ
·
L =

δVn

Rm + h
− Vn

(Rm + h)2 δh (11)

δ
·
λ =

δVe

Rn + h
sec L +

Ve

Rn + h
δL sec L tan L− Ve sec L

(Rn + h)2 δh (12)

δ
·
h = δVu (13)

The constant error and noise in the navigation coordinate system are:

εn = Cn
b εb,∇n = Cn

b∇
b (14)

ωn
g = Cn

b ωg, ωn
a = Cn

b ωa (15)

where Cn
b is the coordinate transformation matrix from the body frame to the navigation

frame. εb is gyro constant drift, ∇b is the offset of the accelerometer, ωg is the gyro noise,
and ωa is the accelerometer noise.

Based on the established inertial navigation error model, the equations of state can be
given by Equation (16):

·
X(t) = F(t) · X(t) + G(t) ·W(t) (16)
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where F(t) is the state transition matrix; G(t) is the matrix of noise driving, determined by
Equation (15); and W(t) is the system state noise vector.

F(t) =


Maa Mav Map Cn

b 03×3
Mva Mvv Mvp 03×3 Cn

b
03×3 Mpv Mpp 03×3 03×3

06×15

 (17)

where Maa, Mav, Map, Mva, Mvv, Mvp, Mpv, Mpp can be represented individually as:

Maa =

 0 ωie sin L + Ve tan L
Rn+h −(ωie cos L + Ve

Rn+h )

−(ωie sin L + Ve tan L
Rn+h ) 0 − Vn

Rm+h
ωie cos L + Ve

Rn+h
Vn

Rm+h 0

 (18)

Mav =

 0 1
Rm+h 0

1
Rn+h 0 − Vn

Rm+h
tan L
Rn+h 0 0

 (19)

Map =

 0 0 0
−ωie sin L 0 0

ωie cos L + Ve
Rn+h sec2 L 0 0

 (20)

Mva =

 0 − fu fn
fu 0 fe
− fn fe 0

 (21)

Mvv =


Vn tan L
Rn+h −

Vu
Rn+h 2ωie sin L + Ve tan L

Rn+h 2ωie cos L + Ve
Rn+h

−2ωie sin L + Ve tan L
Rn+h − Vu

Rm+h − Vn
Rm+h

2(ωie cos L + Ve
Rn+h )

2Vn
Rm+h 0

 (22)

Mvp =

2ωie cos LVn +
VeVn
Rn+h sec2 L + 2ωie sin LVu 0 0

−2ωie cos LVe − V2
e

Rn+h sec2 L 0 0
−2ωie sin LVe 0 0

 (23)

Mpv =

 0 − 1
Rm+h 0

sec L
Rn+h 0 0

0 0 1

 (24)

Mpp =

 0 0 0
Ve sec L tan L

Rn+h 0 0
0 0 0

 (25)

G(t) =

 Cn
b 03×3

03×3 Cn
b

09×3 09×3

 (26)

W(t) =
[
wgx wgy wgz wax way waz

]
(27)

ωgx, ωgy, and ωgz are the Gaussian white noise of the three axis systems of the gyro and
ωax, ωay, and ωaz are the Gaussian white noise of the three axis systems of the accelerometer.

The current position information of the system is obtained by the GNSS receiver, and
then the difference between the position output by INS solution and the position output by
GNSS is used to obtain the system observation equation:

Z(t) = [PINS − PGNSS] =

LINS − LGNSS
λINS − λGNSS
hINS − hGNSS

 = H(t)X(t) + V(t) (28)
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where the position information output from INS consists of the actual position and the
solution error, which can be written as the following equation:

LINS = L + δLINS
λINS = λ + δλINS
hINS = h + δhINS

(29)

The GNSS position information consists of the actual position and the position error
from the GNSS receiver, which can be written as the following equation:

LGNSS = L + δLGNSS
λGNSS = λ + δλGNSS
hGNSS = h + δhGNSS

(30)

H(t) can be represented as:

H(t) =
[
03×6 I3×3 03×6

]
(31)

V(t) can be represented as:

V(t) =
[
ηL ηλ ηh

]T (32)

where ηL, ηλ, and ηh represent the errors with noise when the GNSS receiver acquires
the current latitude, longitude, and altitude, respectively, and all are Gaussian white noise.

2.2. KF Algorithm

The equation of state and the observation equation of the discrete system are:

Xk = Φk/k−1Xk−1 + Γk−1Wk−1 (33)

Zk = HkXk + Vk (34)

where Xk is the state vector; Zk is the system observation; Φk/k−1 is the state transition
matrix; Γk−1 is the matrix of noise; Hk is the observation matrix; Wk−1 is the system noise
vector; and Vk is the observation noise vector of the systematic. Meanwhile, Wk and Vk are
independent of each other and both belong to zero-mean white noise.

The KF equation is as follows.
State one-step predicting equation:

∧
Xk/k−1 = Φk/k−1

∧
Xk−1 (35)

Error variance matrix of one-step predicting:

Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Qk (36)

Kalman gain matrix:

Kk = Pk/k−1HT [HkPk/k−1HT
k + Rk]

−1
(37)

Innovation:
ek = Zk − Hk

∧
Xk/k−1 (38)

State estimation equation:
∧
Xk =

∧
Xk/k−1 + Kkek (39)

Estimation error variance matrix:

Pk = (I − Kk Hk)Pk/k−1 (40)

3. The Proposed Method with Both Adaptivity and Robustness
3.1. Basic Theories of Fading Filtering

The basic idea of the fading filter is to increase the error variance matrix of the one-step
predicting of the state estimate by an appropriate fading factor, then adjusts the filter gain
matrix, thus increasing the weight of the innovation and suppressing the filter divergence.
A typical fading filter differs from the KF by introducing a fading factor λ into the filter
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Equation (36). According to the theory, the error variance matrix of one-step predicting of
the fading filter can be given by (41).

Pk/k−1 = λΦk/k−1Pk−1ΦT
k/k−1 + Qk (41)

Of these, the selection of the fading factor λ is the key of fading filtering.
In the traditional single fading factor Kalman filter, the fading factor is selected as

follows:

λk = max
(

1,
trace(Nk)

trace(Mk)

)
(42)

where

Nk =
∧
Ck − HkQk HT

k − Rk (43)

Mk = HkΦk/k−1Pk−1ΦT
k/k−1HT

k (44)

∧
Ck is the estimate of the innovation sequence ek, usually obtained as follows [34]:

∧
Ck =

1
k

k

∑
i=1

eieT
i (45)

The innovation sequence covariance matrix can be obtained from Equation (38) as

Ck = HkPk/k−1HT
k + Rk (46)

An important feature of linear optimal Kalman filtering is that the innovation sequence
ek is a white noise sequence when the gain matrix Kk is optimal. Thus:

E[ek+jeT
k ] = Hk+jΦk+j−1,k+j−2·

[I − Kk+j−1Hk+j−1]Φk+1,k[I − Kk+1Hk+1]·
Φk,k−1[Pk/k−1HT

k − KkCk], ∀j = 1, 2, 3, · · ·
(47)

Substituting Equations (37) and (46) into Equation (47), then

E[ek+jeT
k ] = Pk/k−1HT

k − KkCk = 0 (48)

That is, the innovation sequence satisfies Equation (48) under the Kalman filtering
optimality condition. However, in the actual case, the actual innovation covariance matrix
is not the same as the calculated theoretical value due to the inaccuracy of the system model
or noise statistical properties, resulting in Equation (48) not being valid. The basic principle
of the fading filter is that by selecting an appropriate fading factor λ, the gain matrix Kk is
adjusted in real time to force the innovation sequences to be orthogonal to each other so
that Equation (48) holds, thus achieving a suppression of filter divergence.

3.2. Multiple Fading Factors Kalman Filter

The diagonal elements in the error covariance matrix Pk/k−1 represent the estimation
accuracy of the corresponding state variables, while the single fading factor cannot fully
utilize the adjustment performance due to the same adjustment weights for each state
channel of Pk/k−1. The multiple fading factors assign different fading weights to each state
channel, which can better adjust the gain matrix adaptively and thus enhance the stability
of filtering when the system model is mismatched or the noise is not matched.

Error variance matrix of one-step predicting:

Pk/k−1 =

p(1, 1)
. . .

p(n, n)

 (49)

where p(i, i) denotes the estimation accuracy of the ith state variable in the state vector.
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The multiple fading factors matrix is described as follows.

Λ =

λ(1, 1)
. . .

λ(n, n)

 (50)

where λ(i, i) denotes the fading factor corresponding to the ith state variable assignment
and satisfies:

λ(i, i) = c(i) · λ(k) (51)

where λ(i, i) ≥ 1, λ(k) is the scalar fading factor derived from Equation (42) and c(i) is the
weight factor assigned by λ(i, i) and satisfies:{

c(i) = p(i, i)/(trace(Pk/k−1)/n)
c(i) = max(1, c(i))

(52)

3.3. An Improved Model Anomaly Judgment Basis

In engineering applications, according to the theory of KF orthogonality, when the
system model is inaccurate or mismatched, it will cause the KF to gradually diverge and
the innovation sequence will increase significantly; therefore, it is usually based on the
innovation covariance to determine whether the filter is normal.

The traditional basis for judging system model state anomalies [35] is:

eT
k ek > γtr(E

[
ekeT

k

]
) (53)

where γ is an adjustable empirical reserve factor more than 1. Ideally, the calculated
value of the actual innovation covariance on the left side of the equation is equal to the
expected value of the innovation covariance on the right side, reflecting the degree of the
deviation of the actual error from the theoretical error. However, replacing the estimate of
the new interest covariance with eT

k ek in the traditional way is less reasonable and prone to
misclassification.

In this paper, the actual innovation covariance can be estimate by Equation (54)

∧
Ck =

 e1eT
1 , k = 0

ρ
∧
Ck−1+ekeT

k
1+ρ , k > 0

(54)

where ρ is the forgetting factor, 0 < ρ ≤ 1, which is usually taken as = 0.95. This method in-
creases the weights of the innovation sequence and improves the accuracy of the estimated
value of the innovation sequence covariance and, as a recursive approach, is simpler to
implement, uses less data storage, and is more suitable for use in combinatorial navigation
systems with high dimensionality.

From Equation (34), the observation noise Vk satisfies the following properties:{
E[Vk] = 0

Cov[VkVk] = Rk
(55)

The Equation (37) can be written in the following form:

Kk = Pk/k−1HTC−1
k (56)

where Ck is the theoretical value of the innovation sequence covariance.

Ck = HkPk/k−1HT
k + Rk (57)

Thus, theoretically, in the filter-optimal case, the innovation sequence covariance is

E
[
ekeT

k

]
= HkPk/k−1HT

k + Rk (58)
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Substituting Equations (54) and (58) into Equation (53) and taking traces on both sides
of the equation, the new system state abnormality judgment basis can then be given by:

tr
(∧

Ck

)
= γtr

(
HkPk/k−1HT

k + Rk

)
(59)

From the above Equation (2), it can be seen that the new system anomaly judgment
basis designed in this paper is significantly better than the traditional judgment basis
and is innovative. Firstly, it is considered that the accuracy of the innovative covariance
estimation value often affects the judgment basis of filter state anomaly. Therefore, in
the improved filter state anomaly judgment basis proposed in this paper, the recursive
method is used to continuously update the innovation covariance estimation value, which
improves the estimation accuracy of the innovation covariance, and such a method makes
the judgment more rigorous and precise. In addition, the improved filter state anomaly
judgment basis retains the adjustable reserve factor, which has stronger adaptability in
practical engineering applications.

Thus, an adaptive integrated navigation algorithm based on MFKF (AMFKF) is pro-
posed in this paper by combining the KF algorithm, the MFKF algorithm, and the improved
basis for judging the system state abnormality. If the system model is judged to be abnor-
mal, it is switched to the MFKF algorithm; otherwise, the optimal estimation is performed
according to the KF. In summary, the algorithm in this paper designs an improved basis for
judging system state abnormality based on MFKF, which makes the timing of fading factor
introduction more reasonable and the information fusion effect better than the KF and the
MFKF algorithms through the switching of filtering states.

The basic flow chart of the algorithm in this paper is shown in Figure 1.
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4. Experiments and Discussion
4.1. Simulation Experiments

In order to verify the performance of the algorithm proposed in the article for the
integrated INS/GNSS navigation system, a simulation study was be conducted, and the
results will be analyzed in this paper.

The initial position of the vehicle was assumed to be 120.710◦ E, 36.099◦ N, and 38 m
in height. The simulation parameters were set as follows: IMU technical parameters are
shown in Table 1, GNSS sampling frequency is 1 Hz, and the initial error angle of the
platform is 0.1◦. The initial velocity error is 0.1 m/s and the initial position error is 1 m.

Table 1. IMU technical parameters.

IMU Parameter Value

INS out frequency 100 Hz
Gyro bias 1◦/h

Gyro angle random walk 5◦/sqrt (h)
Accelerometer bias 50 µg

To simulate the running status of acceleration and deceleration, straight ahead, turning, and
so on, the trajectory and velocity of the vehicle set are shown in Figures 2 and 3, respectively.
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In order to verify the performance of the improved algorithm, KF, MFKF, and the algo-
rithm of this paper are selected for comparison and simulation. By setting the simulation
process with an accurate system model as well as the noise statistical characteristics, in
the period of 400~700 s, the system noise Qk abruptly changed to 200 times the original,
simulating the situation of system noise mismatch during the vehicle driving.

Under the same conditions, the above three filtering algorithms are simulated and
compared, respectively, and the simulation results output the northward, eastward, and
horizontal position errors, as shown in Figures 4–6.
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Figure 5. Error of multiple fading factors Kalman filtering.

Figure 4 shows that the KF has good filtering accuracy and stability when the system
model matches and the noise statistics are known. However, when there is a sudden change
in the system noise, the system noise statistic characteristics no longer match, the filtering
accuracy becomes poor, and the filtering gradually diverges and loses its filtering effect.

Figure 5 shows that MFKF is effective in controlling the filtering dispersion by in-
creasing the weight of the newly observed data with the fading factor when the statistical
characteristics of the noise do not match and the filtering dispersion occurs. However, in
the whole simulation process, when the filter divergence control is not needed, the overuse
of fading factor leads to the reduction of the accuracy and even to adverse effects, such as
sudden changes in the filtering accuracy.



Sensors 2022, 22, 5081 12 of 18

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 4. Error of Kalman filtering. 

 

Figure 5. Error of multiple fading factors Kalman filtering. 

 

Figure 6. Error of the filtering algorithm in this paper. 

N
o

rt
h

 p
o

s
iti

o
n

e
rr

o
r(

m
) 

  
  

 

E
a

s
t 
p

o
s
iti

o
n

e
rr

o
r(

m
) 

  
  

H
o

ri
z
o

n
ta

l p
o

s
iti

o
n

e
rr

o
r(

m
) 

  
  
  

  
  

N
o
rt

h
 p

o
si

tio
n

e
rr

o
r(

m
) 

  
  
 

E
a
st

 p
o
si

tio
n

e
rr

o
r(

m
) 

  
  

H
o
ri
zo

n
ta

l p
o
si

tio
n

e
rr

o
r(

m
) 

  
  

  
  
  

Figure 6. Error of the filtering algorithm in this paper.

Figure 6 shows that the filtering algorithm in this paper uses the KF when the filter is
normal, and when the filter is judged to be divergent, the system switches to MFKF, which
can effectively control the trend of filter divergence by adaptive adjustment based on the
improved filter anomaly judgment.

In order to better illustrate the effectiveness of the algorithms in this paper, the statisti-
cal results of the error mean and standard deviation of the three filtering algorithms are
shown in Table 2.

Table 2. INS/GNSS integrated navigation simulation positioning error.

Algorithm Error Mean (m) Error Standard Deviation (m)

North East Horizontal North East Horizontal

KF 1.02 0.89 1.50 1.14 0.86 1.28
MFKF 0.66 0.64 1.02 0.55 0.50 0.59

AMFKF 0.59 0.54 0.89 0.46 0.45 0.51

As shown in Table 2, since the KF cannot suppress the filtering divergence, the mean error
and the standard deviation of the error for each state are the largest. Meanwhile, the mean error
and standard deviation of the error in each state of the algorithm of this paper are minimum,
in which the mean error of the horizontal position is reduced by 40.9% and 13.4% compared
with the KF and the MFKF, respectively; the standard deviation of the horizontal position error
is reduced by 59.8% and 13.4% compared with the KF and the MFKF, respectively. Therefore, it
indicates that the algorithm of this paper has improved the localization accuracy and stability
compared with MFKF and has a strong filtering performance.

4.2. Actual Data Verification

In order to further verify the practicality and feasibility of the algorithm in this paper,
experimental validation is carried out using real vehicle data [36]. The MEMS device is
XSENS MTi-300, which has superior performance, and the technical parameters are shown
in Table 3; the GNSS receiver is a U-Blox EVK-7P with a sampling frequency of 5 Hz. The
trajectory and velocity of vehicle are shown in Figures 7 and 8.

Table 3. IMU parameters.

MEMS Parameter Value

INS out frequency 100 Hz
Gyro bias 10◦/h

Gyro angle random walk 5◦/sqrt (h)
Accelerometer range ±5 g
Accelerometer bias 1 mg
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From Figures 7 and 8, it can be seen that the vehicle has obvious acceleration and
deceleration and significant turning movements during the whole driving process.

The error curves of GNSS positioning are shown in Figure 9, and the positioning error
statistics are shown in Table 4.

Table 4. GNSS positioning error statistics.

Statistics
Position Error (m)

North East Horizontal

Mean 2.19 1.78 3.10
Max 10.68 5.39 10.82

It is shown in Figure 9 and Table 4 that GNSS navigation positioning has unstable
errors, which is due to the fact that GNSS navigation positioning results are influenced by
satellite signals, and when the vehicle is located between buildings or in areas with tree
shading, multipath effects will occur, resulting in significant errors during that time period,
so GNSS navigation alone is less reliable.
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Figure 9. GNSS positioning error.

Since the performance of inertial navigation sensors is affected by external environ-
mental conditions, in this paper, the system noise data is artificially modified in the filter to
simulate the effect of system noise mismatch or interference from the external environment
in order to verify the feasibility and effectiveness of the algorithm proposed in this paper.
That is, assuming that in the period from 200 s to 300 s, the system noise is affected by
the outside world and the real value of the system noise becomes 10 times the statistical
characteristics of the system noise, while the system noise is still considered constant in
the filter.

Experimental results: The comparison curves of the eastward and northward error of
the integrated INS/GNSS navigation position are shown in Figure 10, and the comparison
curves of the horizontal position error are shown in Figure 11.
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Figure 10. Eastward and northward error.
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Figure 11. Horizontal position error.

Experimental results: Figures 10 and 11 show the error curves of KF, MFKF, and the
proposed algorithm (AMFKF). The positioning accuracy of MFKF is relatively low due to
the overuse of the fading factor when the system noise is not seriously disturbed. Combined
with the principal analysis of the MFKF in Section 3.2 of the article, it is clear that the basic
idea of the MFKF is to increase the error variance matrix of the one-step prediction of the
state estimation by appropriate fading factor, and then adjust the filter gain matrix so as to
increase the weight of the innovation and suppress the filter divergence. However, when
the filter state is normal, the fading factor is used to excessively increase the weight of the
innovation at any time, resulting in a mismatch between the noise information of the filter
and the true, which leads to a decrease in filtering accuracy.

In the time period of 200~300 s, KF has an obvious tendency to diverge and gradually
lose its filtering performance due to the serious mismatch of system noise. However, the
AMFKF can continuously switch the filtering state through the improved filtering state
judgment basis in this paper. When the system determines that the filter tends to diverge,
it switches to the MFKF to suppress the filter divergence, and when the filter state returns
to normal, it switches to the KF. Therefore, AMFKF performs better than KF and MFKF in
terms of filtering stability and filtering accuracy.

Combined with Table 5, it can be seen that the average positioning accuracy of AMFKF
is improved by 26.52% and 7.48% in the mean value of the horizontal position error, and
the standard deviation of the errors is reduced by 51.20%, 12.16%, respectively, compared
with the KF and MFKF, due to the more reasonable timing of the introduction of the
fading factor.

Table 5. INS/GNSS integrated navigation positioning error.

Algorithm Position Error (m) Error Standard Deviation (m)

North East Horizontal North East Horizontal

KF 2.83 2.26 3.99 2.64 2.26 3.05
MFKF 2.22 1.84 3.17 1.75 1.25 1.69

AMFKF 2.15 1.58 2.93 1.50 1.19 1.49

Furthermore, the integrated INS/GNSS navigation track is output in order to verify
the positioning performance of the algorithm in this paper, as shown in Figure 12.
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Figure 12. Integrated INS/GNSS navigation track with different algorithms.

Figure 12 shows the localization performance of KF algorithm, MFKF algorithm,
and the algorithm in this paper (AMFKF). In general, there is no significant difference
between the localization track of KF and AMFKF; however, MFKF suffers from a decrease
in localization accuracy due to the overuse of the fading factor. It can also be seen from
the Figure 12 that the MKFK localization trajectory performs worse than the KF and the
AMFKF during the time period when there are no anomalies in the system.

In the section where the system noise mismatch occurs, the localization track of the
KF algorithm has a significant tendency to drift relative to the true reference track, while
the algorithm in this paper and the MFKF is estimated to be closer to the true track due to
the suppression of the filtering divergence. Hence, the experimental results show that the
algorithm in this paper can suppress the filtering divergence and improve the localization
accuracy, which has certain feasibility and effectiveness.

4.3. Discussion

Based on the MFKF, a state-switching adaptive filter is proposed to solve the problem
that the filtering accuracy is reduced due to the overuse of fading factor in the MFKF. It
can be seen from the simulation results that the algorithm in this paper can suppress the
divergence of filtering and improve the filtering accuracy when the system noise changes.

In practical applications, the system noise is not stable and constant, especially when
it is affected by a harsh environment. Therefore, in the real vehicle data experiments, we
simulated the condition when the system noise was set to be 10 times greater during the
specified interval than the others. It can be seen from Figures 10 and 11 that our proposed
algorithm has the smallest estimation error, and Figure 12 also visually illustrates that our
proposed algorithm has more accurate estimation results. The MFKF does not perform as
well as our proposed algorithm because it cannot introduce the fading factor adaptively,
and the overuse of the fading factor will reduce the filtering accuracy when the filtering
state is normal.

In the future, we intend to add the adaptive adjustment of the measurement noise
covariance. In practical applications, the complexity of the environment in which the
moving target is located can lead to time-varying measurement noise covariance, which
in turn leads to increased filtering errors. We will adaptively update the measurement
noise covariance to adapt to environmental changes and improve the filtering accuracy.
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Therefore, a filtering algorithm with measurement noise covariance adaptive update will
further improve the estimation accuracy.

5. Conclusions

An integrated navigation algorithm based on a multiple fading factors Kalman filter is
proposed in this paper, taking an INS/GNSS integrated navigation system as an example,
which overcomes the divergence problem of KF in the case of noise–statistical characteristic
mismatch and avoids the problem of filtering accuracy degradation caused by the overuse
of MFKF. The algorithm performs filter state switching based on the improved system
anomaly judgment basis, which makes the timing of the introduction of the fading factor
more reasonable and the algorithm more adaptive.

Different from the traditional basis of filter abnormality judgment, in the improved
basis of filter state abnormality judgment proposed in this paper, the recursive method
is used to continuously update the innovation covariance estimates, which improves the
estimation accuracy of the innovation covariance and makes the judgment more rigorous
and precise. Thus, the method of retaining the adjustable reserve factor on the basis of filter
state abnormality judgment has stronger adaptability in practical engineering applications.

Experiments show that the algorithm in this paper can effectively suppress the diver-
gence of filtering when the system noise is disturbed and, at the same time, has stronger
robustness and self-adaptability compared with MFKF, which has certain reference signifi-
cance for practical engineering applications.
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