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Abstract: Pavement texture characteristics can reflect early performance decay, skid resistance,
and other information. However, most statistical texture indicators cannot express this difference.
This study adopts 3D image camera equipment to collect texture data from laboratory asphalt
mixture specimens and actual pavement. A pre-processing method was carried out, including data
standardisation, slope correction, missing value and outlier processing, and envelope processing.
Then the texture data were calculated based on texture separation, texture power spectrum, grey level
co-occurrence matrix, and fractal theory to acquire six leading texture indicators and eight extended
indicators. The Pearson correlation coefficient was used to analyse the correlation of different texture
indicators. The distinction vector based on the information entropy is calculated to analyse the
distinction of the indicators. High correlations between ENE (energy) and ENT (entropy), ENT and
D (Minkowski dimension) were found. The CON (contrast) has low correlations with HT (macro-
texture power spectrum area), ENT and D. However, the differentiation of ENE and HT is more
prominent, and the differentiation of the CON is smaller. ENE, ENT, CON and D indicators based on
macro-texture and the corresponding original texture have strong linear correlations. However, the
microtexture indicators are not linearly correlated with the corresponding original texture indicators.
D, WT (micro-texture power spectrum area) and ENT exhibit high degrees of numerical concentration
for the same road sections and may be more statistically helpful in distinguishing the characteristics
of the pavement performance decay of the road sections.

Keywords: pavement texture; feature extraction; texture spectrum; gray level co-occurrence matrix;
fractal theory; information entropy

1. Introduction

Many scholars have tried to establish the relationships between pavement texture and
pavement performance, such as surface ageing [1,2], skid resistance [1,3,4] and pavement
noise generation [5,6]. These pieces of research show that the influence of pavement texture
on pavement performance is very prominent. In addition, researchers believe texture
features can be used in the design of pavement performance rather than just evaluation.
Chu and Fwa [4] pointed out that different surface designs may be required for pavement
skid resistance for different vehicle speeds and geometric alignments. Ktari et al. [7]
found that the interface texture parameters significantly affect shear strength. Pratico and
Astolfi [8] verified that macrotexture (MTD) and pendulum test values (PTV) could be
explained and predicted based on simple physical and geometric models. Zou et al. [9]
proved that pavement microtexture has a more significant effect on SFC than macrotexture.
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Fwa [10] demonstrated the conventional single-point representation of the skid resistance
threshold and the two-parameter skid resistance models of Penn State and PIARC could
not provide the needed information for wet weather driving risk assessment. Though
evaluating asphalt concrete (AC) and gypsum asphalt (SMA) polished with real car tires,
Xiao et al. [11] found the texture roughness (material area ratio and two-dimensional power
spectral density) varied asynchronously at all observed scales (0.1 to 80 mm).

Above all, texture feathers may have more possibilities to reflect pavement perfor-
mance decay. We need to find a way to evaluate texture indicators, not just correlated
with anti-slip or noise. Spatial pattern analysis of the digital images (fractal dimension)
distinguished between light, moderate and heavy degradation but failed to make a fine
distinction between moderate levels of wear [12]. Chen et al. [13] developed a cost-effective
and relatively accurate image-based texture analysis method (ITAM) based on digital image
processing and spectral analysis techniques. Mean Texture Depth (MTD) calculated with
an image-based procedure can be used instead of the MTD measured with the sand patch
method, as the coefficient of determination is 0.99, and the standard error is 0.061 mm [14].
It was found that the parameter ω (the ratio between the volume of the pavement model
and the current cutting depth) can be used in combination with traditional characterisa-
tion parameters to evaluate the macro-texture quality of pavements [15]. 3D-ITAM was
validated as an effective method to characterise asphalt mixture surface macro- and mi-
crotexture properties by comparing the results from 3D-ITAM with those from SPM and
HFT methods [16]. Medeiros Jr. et al. [17] further confirmed the accuracy of pavement
macro-texture parameters from the digital image processing technique. Three-dimensional
models constructed by stereo infrared scanning distinguished between all but the smoothest
texture classes [12].

The development of 3D scanning and image technology has provided a more con-
venient way to obtain 3D texture data. Texture changes are more pronounced than SFC,
MTD, and other test indicators. Extracting richer and more comprehensive texture feature
information can help carry out road performance-related studies such as interface relation-
ship, performance decay, and mix design of asphalt pavements based on the depth and
multidimensional profiling of the apparent texture.

After data acquisition and indicators construction, we need to find a suitable method
to evaluate the rationality of the indicators. Pearson correlation analysis has been used
to find the relation between texture and other performance indicators [18] and exclude
indicators with strong correlations among texture indicators to eliminate potential mul-
ticollinearity in model development [19]. We processed texture data by four methods:
texture separation, texture power spectrum, grey level co-occurrence matrix, and fractal
theory. The relevant feature indicators are compared and analysed to obtain less correlated,
more distinguishable, and more suitable indicators for texture separation and wear study.

2. Data Acquisition

This study used the Gocator high-speed 3D laser contour sensor with a maximum
field of view (FOV) of 365 mm and 1280 laser line contour points to collect texture data. In
this test, the resolution in the x-direction was 0.171 mm, the resolution in the y-direction
was 0.116 mm, the resolution in the z-direction was 0.013 mm, and the set motion speed in
the y-direction was 50 mm/s.

We selected three road sections with different wear levels for 50 m each and tested
every 1 m. Furthermore, rutting plate specimens of AC-13 and SMA-13, the commonly
used mix types for road surface layers, were prepared for texture indicator analysis. The
pre-processing of texture data was completed by data standardisation (DS), slope correction
(SC), missing value (MP) and outlier processing (OP), and envelope processing (EP), which
is shown in Figure 1.
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Figure 1. Pre-processing of texture data.

2.1. Data Standardisation (DS)

The samples need to be the same size to eliminate the influence of the data size on the
conclusion. For the measured pavement planes, their sizes need to be unified as a picture
with width multiplied by a size equal to 1123 × 1024 pixels and a texture information
matrix with rows multiplied by columns equal to 1024 × 1123. The measured rutting plate
and Marshall specimens were cut around to obtain an inner joint rectangle with width
multiplied by 451 pixels× 359 pixels and a texture information matrix with rows multiplied
by columns equal to 359 × 451.

2.2. Slope Correction (SC)

The texture data need to be corrected if the measured pavement has a certain slope
concerning the horizontal surface. The road surface may have a horizontal and vertical
slope, and the horizontal slope is generally between 1.0% and 2.0%. The maximum vertical
slope does not exceed 8%, and this limit decreases as the design speed increases, so the
vertical slope correction is generally performed. It is necessary to fit a plane to the texture
data first, which can be achieved using the least-squares method or the more accurate
Random Sample Consensus (RANSAC) algorithm.

The RANSAC algorithm randomly selects points for plane fitting, and the plane with
the highest frequency of occurrence is the final fitted plane, so its accuracy is higher [20]. The
RANSAC algorithm is used for the immediacy plane fitting for the texture data obtained
from the above measurements. Then its plane equation can be obtained as follows.

z = Ax + By + C (1)

where z: information about the elevation of a point of the measured pavement, x, y:
information about the plane position of a point of the measured pavement, A, B, C: constants,
coefficients of the plane equation.

Since the maximum longitudinal slope does not exceed 8%, an approximate calibration
can be made by processing only the elevation data to achieve the slope correction. That is,
the calibrated elevation is:

z′i = zi − (Ax + By + C) (2)

where zi is the elevation of a point before the calibration, and z′i is its elevation after the
calibration.

The pavement before and after slope correction can be obtained using MATLAB for
programming calculation, as shown in Figure 2a,b.
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2.3. Missing Value Processing (MP)

Some missing values may be generated for various reasons when measuring texture
data. Suppose it is caused by the objective existence of gaps on the road surface and other
reasons. The fixed value filling can be replaced with a value much lower than the lowest
point of the texture data. If it is caused by the failure of the instrument or human operation
error, the interpolation filling method can be used. In the case of more missing values at
the edges, the adjacent rows and columns of data can be deleted to reduce the impact of
large area interpolation on the overall texture analysis processing. MATLAB R2020a is used
to detect the location of the missing values first, and then the third spline interpolation
method is used to process them, and their local before-and-after comparisons are shown in
Figure 3a,b.
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The MP fills a small number of data gaps caused by the inability of the instrument to
measure part of the seam due to the reflection of the laser, making the texture data more
complete and the subsequent analysis more reasonable and accurate.

2.4. Outlier Processing (OP)

Outliers are one of the possible situations that can also occur in the measured texture
data and can be divided into two types, pseudo-anomalies and true anomalies. The former
can be judged in the field based on their measurement coordinates and reflect the actual
condition of the pavement and usually do not need to be dealt with, while the latter is
caused by instrument failure or human operation and need to be changed. Otherwise,
the final results may be affected. Suppose the number of true anomalies is too high. In
that case, it is necessary to consider whether the experiment has made an error to decide
whether to discard the data and re-measure it.

Outliers can be judged by the median absolute deviation (MAD) algorithm, distance,
clustering and density. Among them, the absolute median deviation algorithm is a com-
monly used method. For a data set {x1, x2, · · · , xn}, first, calculate its median xm, then cal-
culate the total deviation of the data points from the median di = |xi − xm|, i = 1, 2, · · · , n,
then calculate the median of the absolute deviation, dm and finally obtain the distance of
all data points from the centre li =

di
dm

. Usually, dm can be used as a consistent estimate
of the standard deviation σ. The relationship between the two is σ = k·dm, where k is a
constant factor with different values depending on the data distribution, k is usually equal
to 1.4286 for normal distribution. The mean value µ is calculated, and then the values
of the µ + 3σ·k·dm and µ− 3σ·k·dm are calculated to determine the range of statistically
significant standard data points. Data points outside the interval [µ− 3σ·k·dm, µ + 3σ·k·dm]
are considered outliers [21].

The absolute median difference algorithm is a distance value method that is robust
against outlier data and amplifies the effect of outliers. A method similar to that used to
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fill in missing values can be used when correcting outliers. The MAD algorithm is used to
determine its position for the data here, and the interpolation method is used to process its
local outliers. Its local OP results before and after comparison are shown in Figure 4a,b.
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2.5. Envelope Processing (EP)

The tire is more likely to contact the protruding part of the pavement, while the
depressed part does not. Therefore, the envelope of texture data is needed to better calculate
the real contact surface between the tire and the road surface to establish a connection with
the road performance indicators. There are three commonly used methods for envelope
calculation. The first one is to filter the texture data with a certain length of Hilbert FIR filter
after Discrete Fourier Transform (DFT) to obtain the envelope. The second one is to return
the root-mean-square envelope by a sliding window of a certain length. The third one is to
find the wave peaks, then take out some peaks separated by a certain number of waves
and obtain the envelope by applying a spline interpolation method. A suitable envelope
is obtained by changing some parameters in these algorithms and then cross-validating
them with the pavement evaluation parameters [22]. For the data here, each wave crest
was collected and then interpolated with the spline interpolation method and combined
with the pavement evaluation parameters to obtain the envelope. The result of the profile’s
envelope based on partial data is shown in Figure 5.
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The envelope-processed pavement texture section better characterises the tire-pavement
contact, making the subsequent analysis more accurate and meaningful for wear analysis.
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3. Methodology
3.1. Texture Indicators Calculation Methods
3.1.1. Texture Separation

By considering the distance between the texture profile and the reference surface as
a smooth random function, it is possible to define the distance between two recurring
constructions as the wavelength of the texture. Different texture scales can affect pavement
performance indicators differently, so it is necessary to classify the textures. Pavement
textures are usually divided into three categories by wavelength, including micro-texture
(0~0.5 mm), macro-texture (0.5~50 mm), and mega-texture (50~500 mm) [6]. The Fourier
analysis method can decompose the texture into sinusoidal components of different wave-
lengths and amplitudes, which occupy different proportions of the total texture data.
Therefore, the texture data indicators of different wavelengths can be calculated to reflect
the effects of different wavelength textures and their distribution characteristics in the total
texture data.

For a set of pavement texture data, each column (i.e., its y-direction data) is subjected
to a Fast Fourier Transform (FFT), which transforms it from the spatial domain to the
frequency domain with frequency units of mm−1. Then a bandpass filter is designed to
filter the texture data. The wavelength of micro-texture is 0~0.5 mm, and the wavelength of
0.5 mm corresponds to a frequency of 2 mm−1. While the resolution in the z-direction at the
measurement time is 0.013 mm, the maximum frequency after FFT corresponding to this
size is 38.46 mm−1. Therefore, a bandpass filter of 2~38.46 mm−1 can be designed to filter
out the micro-texture. The wavelength of macro-texture is 0.5~50 mm, and the frequency
corresponding to the 50 mm wavelength is 0.02 mm−1, so a bandpass filter of 0.02~2 mm−1

could be used for the macro-texture. However, since the components with frequencies
below 0.02 mm−1 are small and negligible, the lower cutoff frequency of 0.02 mm−1 is
difficult to achieve in bandpass filters from 0.02 to 2 mm−1. A low-pass filter with a
frequency of 2 mm−1 is used to approximate the bandpass filter of 0.02~2 mm−1, which is
more effective and avoids large distortion. In addition, according to Nyquist’s sampling
theorem, the selected sampling rate should be greater than twice the highest frequency of
the original signal, which can avoid the occurrence of spectral aliasing and thus restore the
original signal without distortion. Finally, the Fourier inversion can reduce the frequency
domain’s texture data to the spatial domain’s texture data. The computational flow chart is
shown in Figure 6.
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3.1.2. Texture Power Spectrum Density

The power spectral density can be used to assess the level of macro-texture and
micro-texture of pavement. First, the macro-texture and micro-texture power spectra are
calculated separately using the PWelch function in Matlab. Then, the PWelch function uses
the input signal power spectral density (PSD) estimates found by Welch’s overlapping
segment averaging estimator. For the pavement, the window function is specified as the
Hamming window, and the length of the Hamming window is 1024. The number of
overlapping samples, defined as a positive integer less than the length of the window, is
taken here as 512. The number of points of DFT is 256, and the length of the segments is 2048.
The sampling rate is defined as the number of samples per unit, taken here as 100 mm−1.
For the specimens, the Hamming window length is 256, the number of overlapping samples
is 128, the number of DFT points is 512, and the sampling rate is 100 mm−1. The area under
the power spectral density curve for the frequencies in its range is used as the characteristic
indicators of macro-texture and micro-texture for this pavement section (i.e., this column
of data in the Y-direction). Finally, the data of all road sections are averaged to obtain this
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pavement’s power spectral density indicators. This method avoids the influence of the
difference in the number of texture data columns on the conclusion.

3.1.3. Grey Level Co-Occurrence Matrix

Grey level co-occurrence matrix (GLCM) is a processing method for texture data used
in texture feature representation in high-precision manufacturing. It represents the joint
probability density distribution of the simultaneous occurrence of two pixels separated by a
certain distance in the whole image according to a certain translation direction. The texture
features can be extracted by analysing the spatial relationship of the grey values of pixels
separated by a certain distance in space and rewriting them with texture descriptors [23,24].

For the texture image M×M, take any point A(x, y), transform its horizontal and
vertical coordinates to obtain A′(x + p, y + q), and set the grey value of the point pair
A, A′ as (g1, g2). Different grayscale values (g1, g2) can be obtained for different points. If
the number of grayscale levels is G, then there are several possible grayscale values G2.
The occurrences are counted, normalised to frequency, and arranged as a square matrix
to obtain the grayscale co-occurrence matrix P for each grayscale value. The coordinate
transformation value (p, q) needs to be chosen according to the texture characteristics. A
smaller value (1, 0) representing a horizontal pixel pair, i.e., a 0◦ scan, is chosen for finer
textures. It is also reasonable to choose other values such as (1, 1), (0, 1), (−1,−1), whose
scanning angle will also change to 45◦, 90◦, 135◦, etc. Haralick [25] proposed 14 statistics
such as energy, entropy, contrast, uniformity, correlation, etc. Contrast, entropy, and energy
can be chosen to describe the texture features. These indicators can be computed based on
the original or separated texture.

Energy represents the thickness and uniformity of texture distribution, and its calcula-
tion method is shown in (3).

ENE = ∑
i,j

P(i, j)2 (3)

Entropy reflects the complexity of the distribution, and its calculation method is shown
in (4).

ENT = −∑
i,j

P(i, j)· ln P(i, j) (4)

The contrast reflects the sharpness of the image and the groove depth of the texture.
Its calculation method is shown in (5).

CON = ∑
i,j

(i− j)2·P(i, j) (5)

where P(i, j) is the element of the ith row and jth column of the grayscale co-generation matrix.

3.1.4. Fractal Theory

Mandelbrot has defined fractals twice [26,27]. In 1986, Mandelbrot defined a fractal
as a shape composed of parts similar to the whole. This definition emphasises the self-
similarity of fractal sets [28]. Fractal theory studies its properties and applications. It
has two principles, the principle of self-similarity and iterative generation, characterising
fractals under the usual geometric transformations independent of scale. Self-similar shapes
can be identical or similar statistically, which implies recursion. The value of a graph with
no fractal structure is exactly the spatial dimension of this structure, but it may not be an
integer for a fractal pattern with infinite details [29,30].

The texture of a certain section of a road surface also has self-similarity, and the fractal
dimension can be used to evaluate the texture condition of the road surface. There are
usually two types of fractal dimensions, the Hausdorff dimension and the Minkowski
dimension, the latter also known as the box-counting dimension. The Hausdorff dimension
is the most commonly used dimension, and its expression is shown in (6).
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K = LD f (6)

The equation is equivalent to (7).

K =

(
1
L

)−D f

(7)

Taking the natural logarithm and sorting gives (8).

D f =
ln K
ln L

(8)

where L is the number of times a certain shape expands along each independent direction,
and K is the number of times the resulting fractal occupies a range of space relative to the
original shape.

The idea of the Minkowski dimension is to cover the set using disjoint boxes. Firstly,
each point’s height is represented by a grey value with a grey level G. Secondly, the set is
divided into several rectangles with the size of R× R× R′, where R′ = R· G

M , ensuring the
number of rectangles in each direction is equal in the 3D coordinates. In the position (i, j)
of the grid R× R, find the maximum grey value u, the minimum grey value, and then the
minimum number of squares covering the minimum to the maximum grey value is (9).

nR(i, j) = u− b + 1 (9)

Then summing over the entire grid of R× R is (10).

NR = ∑
i,j

nR(i, j) (10)

The fractal dimension of the whole texture image is shown in (11) [31]. Similar
to the previous indicators, this indicator can be calculated based on the original and
separated textures.

D = lim
R→∞

log(NR)

log
(

1
R

) (11)

3.2. Indicators Evaluation Method

Reasonable indicators should have weak linear correlations to eliminate the effect of
subsequent model building of multicollinearity, which the Pearson correlation coefficient
matrix can measure. Furthermore, they need to have a significant degree of distinction to
amplify the differences between indicators of different textures, which can be calculated by
distinction vectors based on information entropy.

The data sets are first dimensionless to obtain the dimensionless matrix of the texture
indicator set X =

(
xij

)
n× m (n is the set number, and m is the indicator number). The

Pearson correlation coefficients of each two indicators are calculated by (12).

spq =
cov(p, q)

σpσq
(12)

where spq is the element of the correlation matrix S. The meanings of p and q are the pth and
the qth columns of the dimensionless matrix X. The cov(p, q) is the covariance between p
and q, and σp, σq are the standard deviations of p and q.

Next, the entropy of the ith texture indicator is calculated by (13).

Hi = −k
n

∑
j=1

rij lnrij, i = 1, 2, · · · , m (13)
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where rij =
xij

n
∑

j=1
xij

, k = 1
ln n .

Then the differentiation of the ith texture indicator is

gi = 1− Hi
m
∑

j=1
Hj

, i = 1, 2, · · · , m (14)

where gi is the element of the distinction vector G.

4. Results and Discussion
4.1. Texture Indicators Calculation Results
4.1.1. Texture Separation

The macro-texture and micro-texture filtering results of one of the pavement sections
are shown in Figures 7 and 8.
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Figure 8. Micro-texture filtering results. (a) Band-pass filtering of texture (Fpass = [2 38.46] mm−1).
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As seen in Figure 7a, the macro-texture is obtained by filtering the texture using a
low-pass filter with a pass frequency of 2 mm−1, which shows the overall undulating
trend of the texture and ignores its subtle local variations. The overlapping parts of the
power spectrum curves before and after filtering are shown in Figure 7b. Similarly, as
seen in Figure 8a, the micro-texture is obtained by filtering the texture using a bandpass
filter passing through the frequency interval from 2 to 38.46 mm−1, exhibiting subtle local
variations and ignoring the overall undulating trend of its texture. The overlapping parts
of the power spectrum curves before and after filtering are shown in Figure 8b.

Figures 7 and 8 show that the filter and sample rate settings do well in separating the
macro-texture and micro-texture portions of the pavement texture. The 3D comparison
figures before and after texture separation are shown in Figure 9, which demonstrate the
effect of texture separation.

As can be seen in Figure 9b, the macro-texture after texture separation characterises the
overall undulating trend of the original texture. In Figure 9c, the micro-texture shows only
the fine features of the texture. Therefore, the original texture in Figure 9a is well separated.
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4.1.2. Texture Power Spectrum Density

The area distributions under the power spectral density curve of macro-texture and
micro-texture for different roads and specimens are shown in Figure 10.
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Figure 10. Areas under the PSD curve for macro-texture and micro-texture of different roads and
specimens. (a) HTs of different roads and specimens. (b) WTs of different roads and specimens.

As shown in Figure 10, the indicators’ distribution of roads 1 to 3 is more concentrated,
while the same indicators’ distribution of specimens is more discrete. For road sections, the
HTs are more discrete than the WTs. In contrast, the specimens’ WTs demonstrate higher
discreteness than the HTs.
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It seems that the micro-texture of the same road section tends to be consistent, which
is more representative of the pavement wear state of the road section. The specimens’
HTs may have certain representativeness, but the representativeness of specimens’ WTs
is insufficient.

4.1.3. Grey Level Co-Occurrence Matrix (GLCM)

The distributions of the grey level co-occurrence matrix indicators for texture images
of different pavement and specimen images are shown in Figure 11.
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Figure 11. GLCM indicators of different roads and specimens. (a) ENEs of different roads and
specimens. (b) ENTs of different roads and specimens. (c) CONs of different roads and specimens.

Similar to the texture spectrum indicator, the GLCM indicators of roads 1 to 3 show
similar concentration trends, while the specimens show dispersion. Among the three
indicators, ENT seems to perform best.

4.1.4. Fractal Theory

The Minkowski dimension D for texture images of roads 1 to 3 and specimens were
distributed in the range of 2.1 to 2.7, as shown in Figure 12.

Figure 12 implies that D exhibits a high degree of numerical concentration for the same
road section, which may be more statistically helpful in distinguishing the characteristics of
the pavement performance decay. D can reflect the wear on different scales simultaneously,
which is more representative. In addition, Ds have similar distribution characteristics to
the previous indicators, indicating that texture indicators’ general trends are consistent.
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Figure 12. Ds of different roads and specimens.

4.2. Comparative Analysis and Evaluation of Texture Indicators
4.2.1. Pearson Correlation Coefficients Matrix

Pearson correlation coefficients of the six indicators (HT, WT, ENE, ENT, CON, and D)
were calculated, and the results are plotted in Figure 13.
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As seen in Figure 13, ENE and ENT have a strong negative correlation, while D and
ENT have a strong positive correlation. The texture information reflected by the two GLCM
indicators (ENE and ENT) and the fractal indicator (D) has certain consistency, which means
that these indicators have certain substitutability for each other. There are no obvious linear
correlations between CON and other indicators, implicating that CON may be suitably
used together with other indicators for multidimensional texture analysis.

4.2.2. Distinction Vector

According to the information entropy theory, the differentiation degrees of HT, WT,
ENE, CON, ENT, and D are calculated to obtain the distinction vector G1. The result is
shown in (15).

G1 = (0.420 0.100 0.369 0.084 0.007 0.020) (15)

The distinction vector G1 indicates that the two indicators with the largest differentia-
tion are HT and ENE, whose differentiation is more than twice as large as the differentiation
of the other indicators. HT and ENE better reflect the gap between different textures
and may be more suitable as texture indicators for wear analysis. The indicator with the
smallest differentiation is CON, which may be not suitable for evaluating pavement wear,
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as the values of the specific indicators evaluated will be closer. CON represents some
unique texture statistical information of pavement texture (Section 4.2.1), which may be
used together with other texture indicators to study other performances (such as noise,
anti-sliding, etc.) related to pavement texture features.

4.2.3. The Effect of the Texture Separation on These Indicators

The grey level co-occurrence matrix and fractal theory can also be used to calculate
indicators based on the filtered macro-texture and micro-texture data. The indicators before
and after separation are linearly fitted, as shown in Figure 14.
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G2~G5 denote the differentiation vectors of ENE, ENT, CON and D indicators based 

on original, macro-texture and micro-texture, respectively. The differentiation degrees of 

the micro-texture indicators are much smaller than those of the original and macro-tex-

ture. For micro-texture indicators, the ENT and D differentiation degrees are more signif-

icant than those of ENE and CON. 

The differentiation degrees of the macro-texture are similar to those of the original 

textures in G2~G4 but significantly higher in G5. As D has a greater differentiation than 

other indicators on the micro-scale, and its macro-texture has a higher differentiation than 

the overall one, its performance in wear characteristics seems to be more prominent. 
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Figure 14. Linear fitting between the texture indicators before and after texture separation. (a) ENE
and HENE. (b) ENT and HENT. (c) CON and HCON. (d) ENE and HENE. (e) ENT and HENT. (f) CON
and HCON. (g) D and HD. (h) D and WD.

As seen in Figure 14, the macro-texture indicators HENE, HENT, HCON, and HD have
solid linear correlations with the original texture indicators ENE, ENT, CON, and D, and
the R2 values of the linear fits are above 0.9. Except for WD, the micro-texture indicators are
not linearly correlated with the original texture indicators. The macro-texture indicators
seem to overlap more with the meanings expressed by the original texture indicators. The
distinction vectors are calculated to analyse the effect of the texture separation on these
indicators, as shown in (16).
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G2 = (0.465 0.463 0.072)
G3 = (0.419 0.427 0.154)
G4 = (0.507 0.491 0.002)
G5 = (0.312 0.507 0.181)

(16)

G2~G5 denote the differentiation vectors of ENE, ENT, CON and D indicators based
on original, macro-texture and micro-texture, respectively. The differentiation degrees of
the micro-texture indicators are much smaller than those of the original and macro-texture.
For micro-texture indicators, the ENT and D differentiation degrees are more significant
than those of ENE and CON.

The differentiation degrees of the macro-texture are similar to those of the original
textures in G2~G4 but significantly higher in G5. As D has a greater differentiation than
other indicators on the micro-scale, and its macro-texture has a higher differentiation
than the overall one, its performance in wear characteristics seems to be more prominent.
Although not significant enough, ENT also shows the same trend characteristics as D. It is
more reasonable and effective to perform texture separation for ENT and D applied to the
wear analysis.

5. Conclusions

We scanned texture data from 3 road sections and 14 rutting plate specimens of the
AC-13 mix. Based on the texture data achieved, six statistical indicators were calculated.
The Pearson correlation coefficient was used to analyse the correlation of different texture
indicators. The distinction vectors based on the information entropy were calculated to
analyse the distinction of the indicators. The effect of texture separation on calculating
the grey level co-occurrence matrix and fractal indicators was investigated. The following
conclusions were obtained:

1. D, WT and ENT exhibit high degrees of numerical concentration for the same road
sections. The three indicators may be more statistically helpful in distinguishing
the characteristics of pavement performance decay. D reflects different information
from all the other statistical variables. The specimens do not possess all the actual
pavements’ statistical characteristics.

2. ENE, ENT and D have a certain consistency, which means that these indicators have
certain substitutability for each other. CON represents some unique texture statistical
information.

3. ENT and D have greater differentiation than other indicators on the micro-scale, and
its macro-texture has a higher differentiation than the overall one. Their performance
in wear characteristics seems to be more prominent.

4. With high degrees of numerical concentration for the same road sections and differen-
tiation degrees, D, PSD indicators, and ENT should be further studied based on more
road sections or abraded specimens.

The fractal and texture-based energy indicators at different scales can provide better
technical means for evaluating pavement wear and further be used to assess noise and
skid resistance by multi-scale texture analysis. However, the practical engineering level
comparison can hardly be carried out due to the coarse means of existing noise and skid
resistance testing.

Further study can be carried out in conjunction with microscopic simulation modelling
of noise or tire skid resistance performance to construct metrics suitable for early wear
performance decay analysis of pavements.
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