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Abstract: This study assesses the efficacy of detecting colorectal cancer precursors or polyps in an ex
vivo human colon model with a microwave colonoscopy algorithm. Nowadays, 22% of polyps go
undetected with conventional colonoscopy, and the risk of cancer after a negative colonoscopy can be
up to 7.9%. We developed a microwave colonoscopy device that consists of a cylindrical ring-shaped
switchable microwave antenna array that can be attached to the tip of a conventional colonoscope as
an accessory. The accessory is connected to an external unit that allows successive measurements of
the colon and processes the measurements with a microwave imaging algorithm. An acoustic signal
is generated when a polyp is detected. Fifteen ex vivo freshly excised human colons with cancer
(n = 12) or polyps (n = 3) were examined with the microwave-assisted colonoscopy system simulating
a real colonoscopy exploration. After the experiment, the dielectric properties of the specimens were
measured with a coaxial probe and the samples underwent a pathology analysis. The results show
that all the neoplasms were detected with a sensitivity of 100% and specificity of 87.4%.

Keywords: endoscopes; medical diagnostic imaging; microwave antenna arrays; microwave imaging;
colorectal cancer

1. Introduction

Colorectal cancer (CRC) is a major health and economic burden in the context of an
increasingly aging population. Globally, 1.93 million new cases of CRCs are diagnosed
each year, and 935,000 people died of CRCs in 2020 [1], making it the second most common
cause of cancer death in both men and women. CRC is a malignant disease that affects
the colon and rectum. Ninety percent of CRCs start as a polyp, i.e., an abnormal colon
mucosa growth [2]. Although some polyps are harmless, the adenoma type is premalignant
and slowly becomes cancerous. Since polyps are usually asymptomatic or present mild
symptoms, CRC is commonly found in advanced stages [3]. The five-year survival rate
is approximately 65%, but it strongly depends on the development stage at diagnosis,
dropping to 14% if cancer has spread to distant parts of the body. Fortunately, early
diagnosis can dramatically improve prognosis, saving lives and reducing healthcare costs.

To date, colonoscopy is the most effective diagnostic and therapeutic technique for
preventing colorectal cancer since it allows the identification and removal of polyps in the
entire colon. Several prospective studies demonstrate that colonoscopy with polypectomy
reduces the incidence of CRC by 40–90% [4,5]. Nevertheless, colonoscopy is far from
perfect: 22% of polyps go undetected [6], and cancer incidence after a negative colonoscopy
is still 7.9% [7]. This lack of efficacy is mainly caused by visualization limitations, since
the camera has a field of view of less than 180◦ [8], inhomogeneous illumination, colon
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angulations and folds, and poor colon cleaning. For this reason, 13.4% of the colon surface
area might not be visualized during a colonoscopy [9].

Several endoscopic devices and technologies have been developed to improve the ade-
noma detection rate (ADR). ADR is the quality indicator of colonoscopy, as each 1% increase
in ADR decreases patients’ risk of CRC by 3% [10]. High-definition endoscopes, endoscopes
with multiple lenses, and mucosal flattening accessories [11,12] have demonstrated an in-
crease in ADR of 4.5%, 5%, and 16%, respectively, by improving colon visualization [13].
Artificial intelligence for the real-time assessment of endoscopic images [14] has shown an
increase in ADR of 14% [15]. However, if the camera does not visualize the adenoma, the
algorithm cannot detect it. Chromoendoscopy, endoscopic microscopy (endocytoscopy and
endomicroscopy), and hyperspectral techniques [16] are methods that have been developed
to magnify and enhance mucosa tissue characteristics linked to malignancy, but have failed
to demonstrate significant increases in ADR [13]. All these techniques are restricted to
the optical information captured by the camera and require highly trained professionals.
Their outcomes are highly dependent on the operator’s experience and human factors like
fatigue, stress, and resilience. Therefore, a tool capable of automatizing the detection of
polyps is needed.

We recently proposed microwave imaging, a non-ionizing, anatomical, and functional
imaging method [17] to detect polyps in the colon. Compared to advanced colonoscopy
methods, microwave imaging offers a new contrast mechanism that is independent of the
information captured by the optical camera. Microwave imaging retrieves the dielectric
properties of a target—the relative permittivity and the conductivity—from the measured
electromagnetic fields. The dielectric properties are biomarkers of several health conditions,
such as breast cancer [18,19], brain stroke [20], osteoporosis [21], heart infarction [22], or
edema. We demonstrated in an ex vivo study with human colon polyps and healthy
mucosa that the dielectric properties of colon polyps increase when the malignancy grade
increases. At 8 GHz, the contrast between healthy colon mucosa and colorectal cancer is 30%
and 90% for the relative permittivity and conductivity, respectively [22]. We developed a
prototype to integrate microwave imaging into conventional colonoscopy called MiWEndo.
MiWEndo is a ring-shaped switchable antenna array accessory attachable to the distal tip
of a standard colonoscope connected to an external processing unit. MiWEndo provides
a field of view inside the colon of 360◦ and generates an acoustic signal when it detects
a polyp in the microwave image [23]. A frequency-domain reconstruction scheme based
on a modified back-projection method preceded by a calibration was developed to form
cross-sectional images of the colon every 4 mm for each colon model. A fixed threshold was
used to detect if a polyp was present in each image. A preliminary algorithm was tested
in phantoms [24] and ex vivo models [25]. These studies concluded that the calibration
and the detection steps had to be improved. In [26] we performed a comparative study
between five different calibration methods to define the most suitable one.

In this paper we present an improved microwave colonoscopy algorithm for early
colorectal cancer detection. This study aims to assess the overall algorithm performance
with 15 freshly excised human colon specimens with neoplastic lesions. This algorithm
uses the calibration scheme identified in [26] and an improved automatic detection method.
The colon models were placed on a setup designed to emulate a colonoscopy exploration
with the MiWEndo microwave-based colonoscopy system. The results were compared
with the gold standard pathology analysis in terms of sensitivity and specificity. We also
characterized the dielectric properties of the specimens at 7.6 GHz with an open-ended
coaxial probe.

2. Materials and Methods
2.1. Microwave-Based Colonoscopy System

The imaging system is composed of an external processing unit and an acquisition
accessory. The external unit contains a vector network analyzer (E5071C ENA VNA,
Keysight, Santa Rosa, CA, USA), a microcontroller (Arduino Nano, Arduino, New York,
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NY, USA), and a laptop. The acquisition accessory consists of a ring-shaped encapsulated
switchable antenna array that can be attached to a conventional colonoscope’s tip, as shown
in Figure 1. The antenna array comprises two rings of eight antennas, one containing the
transmitting and the other the receiving antennas. The antenna elements are cavity-backed
slot antennas operating over the 7.6–7.66 GHz range in free space. Figure 2 shows the
antenna geometry and S-parameters. The reduced bandwidth is due to the miniaturization
of the electrically small antennas, 0.16λ× 0.12λ, as described in a previous paper [23]. The
frequency was chosen because the range from 5 GHz to 8 GHz is where there is more
contrast in dielectric properties between healthy colon tissue and polyps [27]. In this
application, using a high frequency is not a problem since polyp detection does not require
penetration into the tissue since they are superficial lesions. The output power of the VNA
is −5 dBm, due to the attenuation of the cables and the multiplexer, the power arriving to
the antennas is between−13 dBm and−15 dBm. As the antennas have an efficiency of 22%,
the radiated power is between 0.007 mW to 0.011 mW at 7.5 GHz. The antenna elements are
welded onto a polyamide flexible printed circuit board (PCB) containing microstrip feeding
lines and two single-pole-eight-throw (SP8T) radiofrequency switches. This assembly is
wrapped around a 3D printed piece that adapts the PCB with the colonoscope. Finally, it
is encapsulated with a biocompatible 3D printed resin to protect the PCB from moisture
and avoid injuring the colon mucosa tissue. The final dimensions of the accessory are
30 mm in length by 20 mm in diameter, exceeding the colonoscope’s diameter by less than
3 mm. The dimensions and shape of the accessory device ensure non-obstruction of the
colonoscope’s front tip, maintain the maneuverability of the colonoscope, avoid camera
concealment, and prevent injuries to the patient. Two slim 500 mm in length and 1.13 mm
in diameter coaxial cables transmit the microwave signals, and eight wires transmit the
switches’ control signals. Miniature connectors are used for a non-bulky final assembly.
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WEndo generates an acoustic signal when a polyp is detected to warn the endoscopist during a 
colonoscopy exploration (right). Encapsulation size is in mm. 

Figure 1. MiWEndo’s microwave endoscopy system is composed by an accessory attachable at
the distal tip of a standard colonoscope (bottom left) and an external processing unit (top left).
MiWEndo generates an acoustic signal when a polyp is detected to warn the endoscopist during a
colonoscopy exploration (right). Encapsulation size is in mm.
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2.2. Setup for Ex Vivo Human Colon Measurements

The colon is the last part of the gastrointestinal tract. It has a segmented appearance
due to a series of folds, and it is about 1500 mm long and 40–90 mm in diameter. Polyps
are slow-growing overgrowths of the colonic mucosa protruding into the lumen.

This study was performed at the Pathology Unit of Hospital Clínic de Barcelona
and was conducted according to the guidelines of the Declaration of Helsinki and ap-
proved by the Institutional Review Board of Hospital Clínic de Barcelona (protocol code
HCB/2017/0519 and date of approval 29 June 2017). Informed consent was obtained from
all subjects involved in the study. A total of 15 patients undergoing surgical colectomies
were enrolled in the study. The protocol, shown in Figure 3, was defined in close collabora-
tion with the medical staff to reduce the manipulation of the samples and time between
excision and measurement. The colon samples were obtained from surgical colectomies
performed in an operating room with the shortest possible cold ischemia time and without
any conservation treatment (i.e., without formaldehyde) to preserve their physical and
dielectric properties. Samples from patients that underwent previous radiation therapy
or chemotherapy were excluded. Next, a pathologist opened the colon sample containing
a neoplasm longitudinally, placed it in a hermetically sealed plastic container, and trans-
ported it to the measurement room. Immediately after sample arrival, we performed the
exploration with MiWEndo’s accessory. To reproduce a realistic colonoscopy exploration
with ex vivo colon fragments, we created a colon fixation setup and a positioning setup
to move MiWEndo’s accessory along the ex vivo colon lumen shown in Figure 4a. The
positioning setup was composed of a T-shaped metallic structure fixed on a plastic base.
The metallic structure holds a plastic bar that simulates a colonoscope tube. MiWEndo’s
accessory was attached at the tip of the plastic bar. The colon sample was fixed around
a tube of expanded polystyrene and externally wrapped with a soaker pad. Expanded
polystyrene behaves like air for microwaves and therefore has a minimal impact on the ra-
diated electromagnetic fields. It represents a realistic situation since, during a colonoscopy,
the colon is expanded using carbon dioxide insufflation to increase colon visualization.
The wrapped sample was placed on a platform with L-shaped plastic pieces to fix the
sample during the procedure, and the platform was placed on a lifting platform to control
the vertical position. Finally, the lifting platform was placed next to the positioning setup.
The plastic bar with the MiWEndo’s accessory attached at its tip was manually pushed
inside the tube of expanded polystyrene that models the colon lumen in steps of 4 mm.
A measurement was made before each step until reaching the end of the sample. Table 1
shows the characteristics of the human colon samples measured. Samples 11, 12, and 13
were wrapped around a curved polystyrene foam to model a colon angulation, simulating
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a more challenging situation. Moreover, Sample 12 presented a suboptimal cleaning of the
colon with some debris along the mucosa.
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Table 1. Characteristics of the trajectories measured in human colon models and performance
evaluation of the implemented algorithm in terms of sensitivity and specificity.

Patient Age Type of Neoplasm Neoplasm
Size (mm)

Sample
Length (mm)

Sensitivity
(%)

Specificity
(%)

1 86 Adenoma with HGD 1 10 200 100 80
2 64 Adenocarcinoma 2 50 220 100 94.12
3 46 Adenocarcinoma 36 80 100 100
4 37 Adenoma with HGD 32 155 100 87.50
5 83 Adenocarcinoma 48 190 100 90.91
6 60 Adenocarcinoma 37 190 100 77.78
7 57 Adenocarcinoma 65 330 100 88.37
8 68 Adenocarcinoma 15 320 100 85.71
9 86 Adenoma with HGD 23 270 100 86.54

10 85 Adenocarcinoma 34 285 100 87.23
11 45 Adenocarcinoma 3 32 260 100 83.33
12 75 Adenocarcinoma 4 35 180 100 86.36
13 91 Adenocarcinoma 3 40 160 100 84.21
14 62 Adenocarcinoma 3 37 228 100 92.86
15 81 Adenocarcinoma 63 97 100 100

1 HGD means high grade dysplasia and refers to precancerous changes in the cells. 2 Adenocarcinoma is a
cancer that begins in glandular cells. 3 Curved trajectories emulating a colon fold. 4 Trajectory with a suboptimal
colon cleaning.

After exploring the colon sample with MiWEndo’s accessory, the sample was removed
from the measurement setup. With the help of the pathologist the position position of
the lesion with respect to the beginning of the trajectory was registered. These data
constitute the ground truth necessary to evaluate the algorithm’s performance. Next,
the dielectric properties of the colon mucosa and the neoplasm were measured using
the open-ended coaxial probe method using the N1501A Dielectric Slim Form Probe Kit,



Sensors 2022, 22, 4902 6 of 13

Keysight, Santa Rosa, California, US with the N1500A Materials Measurement Software
Suite version 16.0.16092801, Keysight, Santa Rosa, CA, USA connected to a vector network
analyzer Keysight E5071C. We performed three measurements on the neoplasm and three
measurements on three equidistant locations on the healthy mucosa (start, center, and
end). The different tissues were identified by a pathologist prior to the measurement with
the coaxial probe. We followed the recommended procedure for obtaining high quality
measurements with the open ended coaxial probe [27,28]. The setup is depicted in Figure 4b.
The entire protocol was performed between 30 min and one hour after colon resection.
Finally, the specimens were sent to the Pathology Department for the histological analysis
of the neoplasms.

2.3. Polyp Detection Algorithm for Microwave-Assisted Colonoscopy

The MiWEndo’s accessory was moved inside the colon model in a straight trajectory
throughout the center of the lumen to simulate a colonoscopy exploration for polyp detec-
tion. A microwave image of a cross-section of the colon (XY plane) was obtained for each
step in the trajectory, which was performed in 4 mm increments along the z-axis. Figure 5
presents the geometry of the imaging setup. Each step in the trajectory and its microwave
image is referred to as a frame, being n the index of the current frame.
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Figure 5. Geometry of the imaging problem: (a) schematic of the ex vivo colon model with a lesion of
complex permittivity εp

∗ and the acquisition array moving along the z-direction in the colon lumen.
(b) Transmitting and receiving array configuration, e.g., for the transmitter i = 0, a measurement is
taken with the 3 closest receiving antennas, j = 7, 0, 1 depicted in blue, for the transmitter i = 1
a measurement is taken with antennas j = 0, 1, 2 depicted in green, for the transmitter i = 7 a
measurement is taken with the antennas, j = 6, 7, 0 in orange.

The data for creating the microwave image at each frame is obtained by subsequently
illuminating the colon tissue with a microwave signal radiating from a transmitting an-
tenna and measuring the total field at the three receiving antennas that are closest to the
transmitting one (the adjacent antenna and the two diagonal antennas). The measured
total field results from the interaction of the incident microwaves and the colon tissues and
therefore contains information about the spatial distribution of the dielectric properties
of the colon. The process is repeated for each of the 8 transmitting antennas to scan the
entire perimeter of the colon. In total, 24 combinations of transmission S-parameters are
measured and used to produce the microwave image the frame’s cross-sectional slice of
the colon.

The microwave image reconstructions were obtained at a single frequency of 7.6 GHz
corresponding to the center frequency of the antennas. Since the antennas are narrowband,
using more frequencies within their bandwidth does not provide additional independent
information for reconstruction.
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A three-step algorithm is used to obtain the output, i.e., the acoustic signal when a
polyp is detected, for each measured frame n.

2.3.1. Calibration

The aim of the calibration step is to clean the total field of unwanted effects including:
the unknown distance to the colon walls, the colon folds, the angulations, etc., and to
keep the response due to the presence of the polyp. To fulfill this purpose, a calibration
strategy, which was given the name of automatic temporal (AT) subtraction calibration,
was implemented [26]. The AT subtraction calibration relies on the hypothesis that the
impact on the scattered field that is caused by a polyp is much more important than the
one produced by any other of the previously mentioned effects. Hence, for each frame,
this strategy identifies, from the pool of previous frames, the frame with the most similar
scattered field and subtracts it. By doing so, the only effect that would remain after the
calibration is the polyp response, while the rest of undesirable effects would be minimized
since they have a similar effect on the subtracted frames. The similarity between frames
is computed using the modified Hausdorff distance, whose potential as S-parameters
similarity measurer has already been proven [29]. Therefore, the frame with the most
similar S-parameters to the current one is computed as follows:

S′ : max
(
‖ S(n)− S′ ‖

)
) = min

(
max

(
‖ S(n)− S′ i ‖

))
f or i = 1, . . . , n− 1 (1)

where S(n) corresponds to the frame that is being calibrated, S’ to the most similar frame to
S(n), and S’i to the previously acquired frames.

2.3.2. Focuser

Once the data is calibrated, a modified monofocusing algorithm [30] is applied to
obtain an image of the dielectric contrast profile Izn

(→
r
)

:

Izn

(→
r
)
=

∣∣∣∣∣∣
(i+1)Na

∑
j=(i−1)Na

Na−1

∑
i=0

E2
s

(→
r Ti ,

→
r Rj , zn

)
J2
1

(
k
∣∣∣→r Rj −

→
r
∣∣∣)e

j2(k|→r Rj
−→r |+ϕ)

∣∣∣∣∣∣ (2)

where k = 2πc f is the wavenumber, ϕ is the angle between the transmitting and the
receiving antennas, and Es is the scattered electric field. This focuser method provides the
image of the dielectric contrast profile. The constant c is the speed of light since the colon is
insufflated with carbon dioxide during the procedure.

2.3.3. Detector

The detection method implemented is based on a forecasting exponential smoothing
method for the detection of outliers [31,32]. We have observed that high amplitudes in the
microwave images usually correspond to the presence of a polyp, but the high amplitude
values are not comparable between different trajectories (different colon specimens). There-
fore, we can detect the presence of a polyp by finding outlying values of the maximum
amplitude of the reconstructed microwave image compared to previous frames in the
same trajectory.

The first step in the detection algorithm is to compute an estimate of the maximum
amplitude of the image for the next frame, s(n + 1), based on the previous estimation of
the current frame and its actual maximum amplitude, y(n), as follows:

s(n + 1) = α× y(n) + (1− α)× s(n) (3)

where α is a constant between [0, 1]. The next step is to compute the confidence band b, in
which the next maximum amplitude of the image will likely lie.

b(n + 1) = s(n + 1) ± [α× [y(n)− s(n)] + (1− α)× b(n)]× δ (4)
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Here δ is a constant higher than 1. When the maximum reconstructed amplitude of
the analyzed frame lies above its confidence band, the algorithm concludes that a polyp is
detected and activates the acoustic signal.

3. Results
3.1. Sample Characterization Results

Using the data provided in the pathology report, we identified and labeled all the
measured frames: healthy mucosa, adenomas with high grade dysplasia (HGD), and
adenocarcinomas. Note that high grade dysplasia refers to precancerous changes in the
cells. Table 1 summarizes the main characteristics of the 15 colon examinations, and
Figure 6 shows the relative permittivity and conductivity of the healthy colon mucosa and
neoplasm of each patient. If we look at the dielectric properties of each patient individually,
we see that the dielectric properties of the neoplasm are always higher than those of the
healthy mucosa. However, there is considerable variability between patients. This makes
it impossible to establish a threshold that allows the differentiation between the healthy
mucosa and the neoplasm for all patients. It is worth mentioning that accurately measuring
the dielectric properties of healthy mucosa is very difficult since it is a very fine tissue,
between 0.5 and 2 mm. Moreover, the part opposite the lumen was covered with very
variable amounts of fat. Since we could not manipulate the samples so as not to alter the
subsequent pathological analysis, the uniformity of the samples cannot be guaranteed. So,
part of the variability between patients could be attributed to this issue.
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3.2. Polyp Detection Results

Following data acquisition and processing, the results of the microwave-based colonoscopy
were obtained. The performance of the method to detect polyps in a trajectory is evaluated
using the sensitivity and specificity. The sensitivity, also called the true positive (TP) rate,
measures the percentage of cases having a polyp that are correctly diagnosed as having the
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lesion. A false negative (FN) occurs when a negative result is reported to a trajectory that
does have a polyp. The specificity, also called the true negative (TN) rate, measures the
percentage of healthy cases that are correctly identified as not having any polyp. A false
positive (FP) is reported when the test wrongly indicates that a polyp is present. The values
of sensitivity and specificity are related to TP, FP, TN, and FN values as follows:

Sensitivity (%) =
TP

TP + FN
, Specificity (%) =

TN
TN + FP

(5)

Table 1 shows that in all the 15 cases the neoplasm has been detected with microwave-
based colonoscopy. The overall sensitivity is 100% and the specificity is 87.43%.

As an example, Figure 7a shows the evolution of the normalized maximum amplitude
of the reconstructed image registered in each step of the trajectory, where it is possible to
appreciate the increase of amplitude due to the presence of the lesion. The reconstructed
image has been obtained using Equation (2). Figure 7c presents the normalized maximum
amplitude of the microwave image in front of each pair of antennas, and, here, it is moreover
possible to observe that the impact of the lesion is much more significant on the antennas
0–7, 0, 1 (Transmitter 0 and Receivers 7, 0, and 1), which are the ones that face the neoplasm.
Overall, both figures demonstrate that the presence of the lesion produce an increase in the
amplitude of the reconstructed images, which is not registered in the healthy tissue.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 14 
 

 

produce an increase in the amplitude of the reconstructed images, which is not registered 
in the healthy tissue. 

(a) 

 

(b) 

(c) 

Figure 7. Results of Patient 4. (a) The evolution of the normalized maximum amplitude of the re-
constructed image for each frame of the trajectory, (b) photograph of the colon sample with an ad-
enoma with HGD, (c) normalized maximum amplitude in front of all the antenna combinations. 

4. Discussion 
Missed lesions at colonoscopy are as high as 22% and have important clinical conse-

quences. In the last years, many efforts have been made to improve the performance of 
endoscopy, but the common limitation of these methods is that they cannot detect what 
is not displayed by the camera.  

In this study we have shown that the improved version of the algorithm is able to 
detect neoplastic lesions in human colon models. To do so, the MiWEndo microwave co-
lonoscopy accessory device attached to a colonoscopy simulating setup was used. The 
system can detect neoplastic lesions on the full perimeter of the colon based on the 
changes in their dielectric properties and may be used to complement the endoscopic im-
age. The system has been designed to be compatible with colonoscopy, ensure a full cov-
erage and produce minimal changes to the current clinical practice. The final dimensions 

Figure 7. Results of Patient 4. (a) The evolution of the normalized maximum amplitude of the
reconstructed image for each frame of the trajectory, (b) photograph of the colon sample with an
adenoma with HGD, (c) normalized maximum amplitude in front of all the antenna combinations.
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4. Discussion

Missed lesions at colonoscopy are as high as 22% and have important clinical conse-
quences. In the last years, many efforts have been made to improve the performance of
endoscopy, but the common limitation of these methods is that they cannot detect what is
not displayed by the camera.

In this study we have shown that the improved version of the algorithm is able to
detect neoplastic lesions in human colon models. To do so, the MiWEndo microwave
colonoscopy accessory device attached to a colonoscopy simulating setup was used. The
system can detect neoplastic lesions on the full perimeter of the colon based on the changes
in their dielectric properties and may be used to complement the endoscopic image. The
system has been designed to be compatible with colonoscopy, ensure a full coverage and
produce minimal changes to the current clinical practice. The final dimensions of the
acquisition accessory device are 30 mm in length by 20 mm in diameter, with a total
thickness of 3 mm. The dimensions and shape of the device ensure non-obstruction of the
front tip of the colonoscope, avoiding injuring the patient or hindering the maneuverability
of the colonoscope. The antennas work at 7.6 GHz over a narrow bandwidth and with an
acceptable coupling.

A frequency domain imaging reconstruction algorithm based on Fourier backprojec-
tion preceded with an automatic temporal subtraction calibration that has been developed
to obtain cross sectional images of the colon. An automatic detection step based on expo-
nential smoothing was applied to obtain an output easy to interpret by the physicians, i.e.,
and acoustic alarm, when a polyp is detected. This kind of output was inspired by the
acoustic parking system for automobiles. The system provides an audible warning with a
series of beeps as the car, or the endoscope, moves nearer a stationary object, or a polyp.
The algorithm is fast and able to work in real time, delivering around 10 frames/s. In terms
of performance, the algorithm has reached a sensitivity of 100% and a specificity of 87.43%.
No significant degradation of performance has been observed when the trajectory is not
straight (trajectories 11, 13, and 14). This may indicate that the algorithm, and especially
the calibration, can deal with the angulations of the colon. Debris in the colon (trajectory 12)
did not degraded performance either. In the absence of further validation and to confirm
this in future tests, it could be examined as to whether microwave-assisted colonoscopy
could reduce the need for colon preparation. The impact of poor preparation is important
since it forces to repeat the colonoscopy. In addition, the preparation required for the
patient to clean the colon is the most uncomfortable part of the colonoscopy, according to
patients. It is worth mentioning that by changing the value of the constants α and δ used
in the exponential smoothing method it is possible to tune the sensitivity and specificity
values. We decided to force an optimal sensitivity because our device is aimed to prevent
polyps from being missed once combined with colonoscopy. A suboptimal sensitivity can
be accepted because our device is used in conjunction with the colonoscope. In cases where
the acoustic signal is heard, the finding will always be confirmed with the video from
the colonoscope.

Regarding the dielectric and pathologic characterization of the lesions, at 7.6 GHz
healthy colon mucosa and neoplastic lesions exhibit inter-patient contrast in dielectric
properties that allow its differentiation. However, the variation between patients do not
allow to fix a permittivity threshold to differentiate all the healthy and neoplastic tissues.
This is not a problem for the MiWEndo’s system since the detection criteria is defined for
each patient.

The main limitation of this study is the low number of adenomas studied. The device
was validated in ex vivo human colons that usually are surgically resected because they
have already developed cancer. These lesions are commonly big and are not representative
of what is commonly found in a regular colonoscopy. The second limitation is that the real-
time acquisition system has not been tested. In this study, a measurement was taken after
each trajectory step manually. To make the acquisition in real time, a second generation
of external unit is being developed. The last limitation is that the device was not attached
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at the end of a real endoscope and the maneuverability and safety could not be assessed.
Safety must be guaranteed on two fronts: energy safety and mechanical safety. In terms of
energy, we refer to limit the radiation to avoid any biological effect to the patient’s mucosa,
i.e., heating, but also ensure the electrical safety and electromagnetic compatibility. In terms
of mechanical safety, the accessory device must be designed with smooth surface, using
biocompatible materials in the parts that are in contact with the patient and the materials
must be clean, i.e., with low bioburden.

For all these reasons, we are developing increasingly realistic anatomic models with
folds and polyps of different sizes and shapes made of materials that mimic the dielectric
properties of colon tissues. In the phantoms we also can study different trajectories, varying
the distance between the antennas and the colon wall while controlling the ground truth,
i.e., the position of the polyp. The results with the simplest phantom can be found in [24].
We are also planning new studies in animal models to check the maneuverability and the
inter-compatibility with other endoscopic devices used in real explorations such as forceps
or electrocautery tools.

5. Conclusions

This paper presents the algorithm validation of a microwave colonoscopy system with
15 ex vivo human colons with neoplastic lesions. The system consists of an acquisition
accessory attachable to the distal tip of a standard colonoscope connected to an external
processing unit. The algorithm is composed of three steps: calibration, focusing, and
automatic detection. A sensitivity of 100% and a specificity of 87.43% was achieved,
indicating that the detection algorithm is able to deal with real human colon tissues. The
algorithm was able to deal with colon angulations. This confirmed what we observed
with phantoms, where a more realistic movement within the colon was reproduced. This
demonstrates that the calibration method can deal with the changing distances between the
antennas and the colon wall. In one trajectory, the algorithm was able to detect the lesion
even in suboptimal cleaning conditions.

We are currently carrying out a measurement campaign with a new phantom extracted
from a 3D model of a real patient with angulations and folds. With this model, several
trajectories will be measured with the accessory attached to a real colonoscope and the
algorithm will be used in real time. This setup will allow the conclusion of the algorithm
validation with more challenging conditions before starting the clinical phase.
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