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Abstract: The motion capture method using sparse inertial sensors is an approach for solving the
occlusion and economic problems in vision-based methods, which is suitable for virtual reality
applications and works in complex environments. However, VR applications need to track the
location of the user in real-world space, which is hard to obtain using only inertial sensors. In this
paper, we present Fusion Poser, which combines the deep learning-based pose estimation and location
tracking method with six inertial measurement units and a head tracking sensor that provides head-
mounted displays. To estimate human poses, we propose a bidirectional recurrent neural network
with a convolutional long short-term memory layer that achieves higher accuracy and stability by
preserving spatio-temporal properties. To locate a user with real-world coordinates, our method
integrates the results of an estimated joint pose with the pose of the tracker. To train the model, we
gathered public motion capture datasets of synthesized IMU measurement data, as well as creating
a real-world dataset. In the evaluation, our method showed higher accuracy and a more robust
estimation performance, especially when the user adopted lower poses, such as a squat or a bow.

Keywords: IMU; human pose estimation; real time; motion reconstruction; sensor fusion; inertial sensors

1. Introduction

Reconstructing human poses with a 3D skeleton-based body model and recording the
associated motions, commonly called motion capture (mocap), has significant influences
on computer vision, animation, robotics, and biomechanics. For example, many fields use
captured motion to create better visual effects, such as in games and movies. It is also used
to analyze a subject’s movement for medical or military purposes. Nowadays, there are
demands for motion capture in virtual reality (VR) applications to interact with virtual
objects in real time.

Typically, commercial full-body motion capture systems are optical, such as Vicon [1]
and OptiTrack [2]. When a user moves while wearing a suit that is covered with markers,
the motion is estimated by analyzing the 3D positions of the markers, which are projected
on multiple calibrated cameras. This marker-based system can restrict space and mobility,
depending on the installation of the cameras. Frequently, dedicated studios are carefully
designed using pre-installed cameras to prevent occlusions and lighting disturbances. Fur-
thermore, vision-based methods are affected by reflections and illuminations, which make
it difficult to record motion outdoors. Despite these constraints, marker-based methods
achieve high-quality results. However, depending on the financial and computational costs
and installation difficulties, vision researchers have focused on obtaining pose estimation
using a few RGB [3–5] or RGB-D [6–8] images. These methods are much simpler but allow
for limited space due to the camera. Another approach uses finely controlled moving
cameras [9–11], but its usability is still limited.

Another motion capture system uses multiple inertial measurement units (IMUs)
that estimate the orientation by combining a gyroscope, magnetometer, and accelerometer.
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In contrast to optical systems, motion capture using wearable inertial sensors is less affected
by environmental constraints and occlusion. In addition, it does not require a complex
facility setup or expensive costs, making it suitable for individual users in VR.

Xsens [12] and Perception Neuron [13], which are representative commercial inertial
motion capture systems, estimate joint parameters using 17 IMUs. The equipment require-
ments of these systems decrease accessibility and make them unsuitable for personal use.
Recently, von Marcard et al. [14] presented a method for full-body pose estimation using
six IMUs. However, this study requires offline optimization, which is computationally
expensive. In addition, Deep Inertial Poser [15] was the first study to apply a deep learning
method to 3D pose estimation using six IMUs in real time. It proposed a bidirectional recur-
rent neural network (BiRNN) model, which was trained using captured and synthesized
datasets. However, this method cannot estimate the position of the full body, only the local
orientation of the joints.

Head-mounted displays (HMDs), which are widely used in VR fields, can track the
position and rotation of the user’s head with respect to the environment. By combining the
head position with data from IMU sensors, our method can improve the pose estimation
quality because the head’s height provides more information than just data from IMUs.
In addition, the hip position can be estimated from the position of the HMD. Because of
these points, our method can robustly estimate full-body poses and its position within the
virtual space.

This paper proposes a human pose estimation method that uses inertial sensors
and a VR HMD that provides the positional information. We had three challenges to
overcome for our method to be suitable for VR: (1) it had to be operated in real time; (2) the
errors in the joint angles or distances had to be minimized; and (3) it had to track the
global position of the user at the same time. To this end, we introduced a network that
combines biRNN and convolutional long short-term memory (convLSTM) [16] layers to
deal with these challenges using six IMUs and a head tracker. This network addresses
the following constraints: (1) unlike optimization approaches, the learning-based method
needs a relatively shorter time to produce the prediction, which could meet the real-time
constraints; (2) because of the continuity of human motion, future movements depend
on the current and past movements, so the suggested network improves accuracy and
continuity by learning spatio-temporal properties from the datasets (despite an insufficient
number of sensors); (3) because of the accuracy, the human poses in the training dataset
are presented with body-centric coordinates, which are described Section 3.2.1, but they
only show the pose of the user, not the location or the direction in which the user is looking.
Out method merges the head pose from the HMD with the predicted pose, which is local
information, to recover global information. Furthermore, the hip velocity, which is one of
the network outputs, makes the hip trajectory more continuous.

Our proposed network is divided into 2 phases: joint position estimation and joint
rotation estimation, as referred to as P1 and P2 in Section 3.2.2, respectively. The joint rota-
tion is predicted after the joint position because the rotation estimation network takes the
predicted position as its input recursively. The IMU sensors measure the angular velocity,
acceleration, and magnetic field and calculate the user’s orientation using the sensor fusion
algorithm. Our method takes the orientation and acceleration data from the IMUs as the
inputs for the position estimation network. In contrast to other inertial-based estimation
methods, our approach also uses head height data from the head tracker, which is measured
as the distance from the ground to the height of the HMD. This measurement makes the
prediction more robust since it removes ambiguity by providing global information; for
example, when the placement of the sensor is on the lower leg, the orientation of the sensor
is the same in standing and sitting postures.

We acquired human motion data using OptiTrack [2] and Xsens DOT [12] to create a
dataset to train the model. To obtain more datasets, we synthesized full-body joint data
and the orientation and acceleration of inertial measurements from open datasets, such as
the CMU 3D motion dataset [17] and TotalCapture [18].
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We evaluated our model using effectiveness comparisons for network model variances
and input types and using comparisons to other works, such as DIP [15]. We used two
evaluation data metrics that are widely used in pose estimation studies: the mean per joint
position error (MPJPE) and the joint angle error. The evaluation results showed that the
proposed model could obtain the global position with a higher pose estimation accuracy.
We also implemented real-time applications to show that our model could be applied to VR.

2. Related Work

Our proposed pose estimation model uses sparse inertial sensors and a head tracking
sensor to determine human movement and full-body posture. Motion capture methods
can be classified according to their input parameters, including method that use multiple
sensors. Here, we introduce a related work analysis of vision-based methods that use
cameras or markers, methods that only use inertial sensors, and methods for integrating
signals from the sensors.

2.1. Vision-Based Motion Capture Methods

Vision-based motion capture, which is the classic method for obtaining human motion,
has been the focus of various studies throughout its long history. In particular, commercial
motion capture uses a large number of markers and multiple calibrated cameras. Several
studies [19–24] have made efforts to overcome the shortcomings of the popular approaches
that use single or multiple cameras. Many methods that require high estimation accu-
racy are conducted offline [25–33]. Recently, real-time studies have also been proposed.
VNect [4] is a representative study on 3D kinematic human pose estimation in real time
(30 Hz), which combines fully convolutional neural networks. As in previous studies, deep
learning techniques have significantly improved the pose estimation method. Since Deep-
Pose [3] was proposed, which was the first major 2D human pose estimation study to apply
deep neural networks (DNNs), convolutional networks (ConvNets) that are based marker-
less motion capture analysis [34–39] have been generalized. In addition, other studies have
used multi-view images [40,41] or single depth images to obtain high accuracy [6–8]. In
contrast to vision-based methods, our approach uses a system that can be installed without
significant restrictions. In order to overcome the problems with vision-based methods, such
as occlusion (depending on where the cameras are installed), we combined sensor systems
that are not highly affected by direction.

2.2. Full-Body Sensor-Based Motion Capture Methods

Methods that use inertial sensors are another broadly used approach to commercial
motion capture. Typically, Xsens MVN [42] conducts six degrees of freedom (DOF) full-
body motion tracking using 17 IMU sensors that take measurements from a combination
of accelerometers, gyroscopes, and magnetometers. Compared to vision-based methods,
IMU motion capture is easier to use in out-of-lab situations as it reduces spatial constraints.
However, the large number of inertial sensors that is required has the problem of high
costs and being time-consuming to set up. Therefore, existing studies have tried using
a small number of sensors, despite the performance degradation. Some studies [43,44]
have constructed human poses using only five accelerometers by retrieving pre-recorded
poses with similar accelerations from a motion capture database. In these studies, the mea-
surement instability of the sensors and the size of the database excessively affected the
performance of the method. Recently, research has been conducted on reducing the number
of sensors by using inertial sensors that can measure acceleration and orientation simulta-
neously. A pioneering work in this field, Sparse Inertial Poser (SIP) [14], presented a joint
optimization model that reconstructs the pose of SMPL body model [45] using six IMUs but
without relying on databases. To advance SIP, Deep Inertial Poser (DIP) [15] adopted a deep
learning method for running in real time. DIP uses a BiRNN [46] with LSTM cells [47]. This
approach has the potential for real-time 3D pose estimation in VR environments, which
provided us with great motivation. However, DIP cannot estimate the global movement
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of the user, which is an imperative component of tracking motion. Yi et al. [48] proposed
TransPose to estimate global translations by using a supporting foot-based method and an
RNN-based method. TransPose achieves a state-of-the-art performance in terms of pose
estimation accuracy using only six IMUs. Our proposed model estimates the position of
each joint and uses the 3D position of the head (which is obtained from the head tracking
sensor) to increase the accuracy of the motion tracking. In addition, by using the head
position, our study achieved real-time and full-body human motion estimation within
real-world space by obtaining human movements that play important roles within VR.

2.3. Performance Optimization Based on IMUs

Reconstructing human poses from sparse IMUs to a high degree of accuracy is a
challenging problem because the data from the sensors are insufficient for configuring
human poses. Many researchers have studied the sensor fusion method using inertial
sensors along with other sensors or cameras to increase the estimation quality. Some
studies [49,50] have applied six inertial and ultrasonic sensors to obtain 3D positions and
orientations. Liu et al. [49] proposed a method for online pose estimation that retrieves
data with similar signal configurations from pre-defined motion databases. Another
approach is to combine inertial sensors with videos [51–53], especially multi-viewpoint
videos (MVVs) [18,54–56], depth cameras [57,58] or optimal markers [59]. Total Capture [18]
fuses MVVs with inertial measurement units and applies a convolutional neural network
(CNN) output layer to an LSTM model. The use of the sensor fusion model with cameras
significantly increases estimation accuracy but still includes several challenges, such as
occlusion, lighting problems, installation complexity, and limitations in mobility. Our
proposed model is another sensor fusion model, which combines the signals from inertial
sensors with signals from a head tracker. The head tracker records the 3D position of
the head, is consciously used in VR to track the location of the HMD, and has a positive
effect on estimating the global position and full-body pose of a human in real-world space.
Therefore, our method increases the accuracy of human pose estimation while using fewer
sensors compared to existing studies and facilitates its application in virtual environments.

3. Method

The proposed method estimates the full-body pose and pelvis position of the user via
an HMD and IMU bands. A biRNN network with a ConvLSTM [16] layer is then used to
predict joint position and rotation, which takes the orientation and acceleration sequences
from the IMUs as its input. In addition, we integrate the estimated joint pose with the
head pose from the HMD to calculate the pelvis position. In this paper, we first introduce
our approach in Section 3.1. We explain the structure of the network in Section 3.2. We
then describe the method for reconstructing global positions from local information in
Section 3.3.

3.1. An Overview

Our approach requires two types of sensors: IMUs and global head trackers. Six IMU
sensors that are placed on pre-specified body parts are used to predict the joint position and
orientation of the user. Moreover, it is an underdetermined method because the number of
input data is relatively sparse compared to the number of joints that need to be estimated.
Thus, we developed a pose estimation network (Section 3.2) that predicts full-body poses
based on training data from the measurements of sparse IMUs. We defined body-centric
coordinates (Section 3.2.1) that describe every joint in the frame that is located on the root
joint for learning efficiency and consistency. Using the body-centric coordinates, we can
remove all global information, such as the global position and orientation, except for the
height of the head, which changes with every movement. When predicting the pose as an
output, the removed global information needs to be recovered to place the user within the
virtual space. To this end, our approach uses an additional sensor: a global head tracker
that can be an HMD or a motion capture device. In addition, the pose estimation network
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takes head height as one of its inputs. The head height removes any ambiguity that comes
from the sparse IMUs. At the end of the procedure, the tracked head pose from the HMD
is combined with the predicted human pose from the network by locating the head pose
of the HMD. When two head poses are identified without other processes, there could
be a foot sliding problem: the foot could move in the air because of the incompetence
of the prediction. To solve this problem, we introduced the velocity term at the network
output to constrain the movement of the root joint. As another solution, we could use the
velocity of the IMU that was located on the root joint, but a drift occurred as time passed.
Thus, the predicted root joint velocity is used by averaging it with the velocity from the
HMD. Figure 1 illustrates the entire process of our method and the more detailed parts are
explained in the next section with formal definitions.

world coordinate

 Position

 Rotation

 Acceleration

 Rotation

Pose 

Estimation
Network


bi-RNN model
Mesh template

Predicted poseIMU sensors

Head Tracker

sensor
coordinate

Update root 

Constraint on velocity

Coordination

transform

Joint position

Joint rotation

Body-centric → World

Root velocity

body-centric coordinate

Figure 1. An overview of the proposed method. Our method uses two types of sensors to estimate
human poses. IMU sensors are attached to each limb to measure their inertial data (orientation and
acceleration), which are then input into the pose estimation network along with the head height to
predict the user’s joint position and rotation. By combining global head poses from the head tracker
with the joint positions, our method can predict the global full-body pose of the user.

3.2. The Pose Estimation Network

We defined the input and output of the network at time t as Xt and Yt, respectively.
The input Xt is the sequence of the sensor measurement data x f , where f is a neighbor
frame of the time t. Xt and xt are as follows:

Xt = [ x f+t | f = {−15, −10, −7, −4, −2, −1, 0, 2, 4, 6} ], (1)

xt = [yhead, âlimbs, q̂limbs] ∈ R43, (2)

where yhead ∈ R is the height of the head (as measured by the tracker), âlimbs and q̂limbs

represent the acceleration and quaternion of the IMU on each limbs. For more clarity, each
of the mathematical forms of âlimbs and q̂limbs was defined as:

âlimbs = [al
x, al

y, al
z] ∈ R18 and q̂limbs = [ql

x, ql
y, ql

z, ql
w] ∈ R24, (3)

where l is the list of limbs on which the IMU sensors are placed. In our experiment, the
sensors were placed on the right hand, left hand, pelvis, head, right foot, and left foot, (cf.
Figure 5). Next, we defined Yt, which is the output of the network, as follows:

Yt = [pjoints, qjoints, vroot
xz ], (4)

where pjoints is the concatenated positions of full-body joints in the motion data and, sim-
ilarly, qjoints is the concatenated quaternions. Lastly, vroot

xz ∈ R2 is the velocity of the root
joint with respect to the x,z plane.

3.2.1. The Body-Centric Coordinates

As mentioned above, Yt is described in the body-centric coordinates as the frame that
is placed on the root joint. Because the root joint describes every joint and only has a global
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position and orientation, every joint loses its global information when the user moves and
aligns the root joint with the origin. When the global data are not removed, Yt can have
different values, even when the user adopts the same poses in slightly different locations.
We defined the local frame as follows:

T(t) = [Rroot
t (θy); proot

t ]. (5)

As the origin of the local frame is placed at the root joint position, proot, the global
translation can be removed. In addition, to remove the global orientation, the z-axis of
the local frame Rroot(θy) has the same direction as the z-axis of the root joint, which is the
forward direction. Because the local frame is rotated about the y-axis, the rotation of the x-
and z-axis can be preserved, which is essential for dealing with a more realistic pose; for
example, a bowing or running pose requires the x-axis rotation of the root joint with respect
to the real-world space. T depends on time t, so computing T(t) is described in Section 3.3.

3.2.2. Network Architecture

Using these definitions, we introduced a pose estimation network that predicts a
single pose that corresponds to the input X at the current frame. Deriving high-accuracy
poses from sparse acceleration and orientation data is a challenging task. Our proposed
model focuses on two challenging solutions: (1) the naturalness of the motion and (2) the
constraints of the human body structure. In a previous study on DIP [15], a biRNN [46]
with LSTM [47] cells was proposed, which is suitable for use with time series learning to
predict the SMPL pose parameters from IMU inputs. The biRNN model can access frames
in two directions (past and future) and maintain the temporal and structural properties
of motion in natural movements. Inspired by this work, we adopted the biRNN model
pose reconstruction. However, the output of our method is directly composed of the joint
position and rotation, which makes the usage of the output simpler, and the structural
constraints are maintained well without SMPL. To reconstruct a pose, the rotational data
qjoints must be assigned to every joint. Before estimating the rotation, the positional data
pjoints are predicted using the measurement data from the âlimbs and q̂limbs IMUs and the
head height yhead, which then become the input for prediction of the rotation qjoints. Thus,
the network architecture has a two-stage structure: the first stage infers the positional
aspect of the pose; the second stage infers the rotational aspect by using the output of the
first stage to predict the rotational pose of the IMU sensors.

We describe the architecture of the pose estimation network in Figure 2.
First of all, the input Xt is divided and rearranged according to its meaning, instead

of the time sequence. As the result, the measurement data are reshaped into a four-
dimensional matrix, of which each dimension is (#frames× #IMUs× (â, q̂) ∈ R7 × 1).
After reshaping, the output is fed into the convolutional LSTM layer to perform spatio-
temporal learning, which enables the network to learn the relationship between the sensor
data and time more effectively. In addition, this method shows a good ability to preserve
pose stability rather than using the measurement data directly. The output of the convolu-
tional LSTM is concatenated with the current frame xt and the sequence of the head height
data yhead, which is then used as the input for the bidirectional LSTM layer. The biRNN [46]
and long short-term memory (LSTM) [47] cells are used to compute the optimal weights
through continuous sequence learning. Since our method uses a sparse number of IMU
sensors in relation to the size of the human body, the sensors have to provide sufficient
information to generate full-body poses. Although frame-to-frame changes are applied
using the acceleration values, as mentioned in the DIP study [15], the acceleration has less
of an influence on the predicted results than the orientation. Therefore, we use bidirec-
tional LSTM layers because of the continuity of the motion. We also needed to consider
future consequences and distinguish between actions that have the same orientation and
acceleration values as IMUs. The output of the joint position estimation phase was defined
YP1

t as:
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YP1 = [pjoints, vroot
xz ]. (6)

In the second phase, the subnetwork P2 in Figure 2 predicts the joint rotation q̂joints of
the output Yt based on two inputs: the rotation data from the qlimbs measurements and the
results of the subnetwork YP1. The subnetwork P2 consists of unidirectional RNNs with
LSTM cells. We determined that the joint position data that are estimated in P1 provide
enough information to reconstruct the rotational information qjoints. Note that, unlike the
subnetwork, P1 requires a sequence of the frames, whereas P2 depends on the current
frame t.
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Figure 2. The Fusion Poser network architecture. The model inputs are the sequence of IMU sensor
data and the height of the head. The length of the sequence is 10 time intervals, each of which has
43 features. The network consists of two stages: Phase 1 (P1) predicts the joint position using the
IMU data and the head height sequences with the biLSTM layers, followed by the 4D convLSTM
layers; Phase 2 predicts the joint orientation at the current time t using the output of P1 and the head
height sequences with the LSTM layers.

3.3. Reconstructing Global Poses

Because the network output Yt is with respect to the body-centric coordinates, the
HMD position is combined with the output to reconstruct the root trajectory. To this
end, the local frame T(t) (Equation (5)) needs to be computed, but we could not obtain
exact values for [Rroot

t and proot
t because the positions of the sensors differ every time the

user wears them. We introduced the calibration step to complete the parameters of T(t),
during which the user aligns the directions of the head and root; for example, the A-pose or
T-pose. Firstly, we assumed that the z-axis direction of the tracker would coincide with the
facing direction, the qw

head of the IMU sensor would be represented as real-world coordinates,
and that it can be easily satisfied by stacking the head tracker with an IMU sensor. Using this
setup, the rotation aspect at calibration time c can be calculated as follows:

φ∗y ← arg min
φy
||Rtracker

c z− R(φy)R̂head
c z||2 (7)

where Rtracker and R̂head are the rotation matrices of the tracker and IMU sensor, respectively,
and z is a unit vector [0, 0, 1]. After R(φ∗y) is multiplied by R̂head, the projection of the
transformed z has the same direction as one of the trackers. The rotation matrix of the root
at time t can then be calculated by applying the results of Equation (7) to the measurement
data from the IMU sensors:
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Rroot
t = R̂root

t · (R̂root
c )−1 · R(φ∗y) · R̂root

c (8)

In this equation, R̂root
c is the rotation matrix of the measurement data from the root

joint at the calibration time c and thus, R̂root
c and θ∗y are stored to obtain Rroot

t . To predict
the rotational aspect of the transformation T, only the angle that rotates about the y-axis is
needed, which can be solved in a similar way to Equation (7):

θ∗y ← arg min
θy
||Rroot

t z− R(θy)z||2 (9)

After computing the rotational aspect of parameter of T, proot can be obtained by
applying the position of the head from Yt (see Figure 3):

proot
t = ptracker

t − R(θ∗y)phead
t (10)

Because the root position follows the position of the head, the quality of the root
trajectory depends on the quality of the estimation. However, the noise in the estimation
cannot be removed. As a result, the root trajectory shows an unwanted jerk that lowers the
motion quality. To solve this problem, we introduced the velocity term vroot

xz to the output
Yt, which constrains the velocity of the root joint using a simple weighted average:

pxz′
t = pxz

t−1 + α(pxz
t − pxz

t−1) + (1− α)vroot
xz (11)

For simplicity, the superscript of p is omitted in the above equation, which is related
to the root joint. In our experiments, the value of 0.1 for α worked well, which meant that
the results depended more on the prediction.

World
coordinate

Body-centric
coordinate

Figure 3. The coordination transformation: (Left) for training, we removed global information by
transforming the real-world coordinates into the body-centric coordinates that identified the position
of the frame at the root joint and the rotation about the y-axis was the direction of the root joint
aligning to the z-axis; (Right) after the prediction, the global information had to be recovered, so
the rotation φ∗y was computed by matching the tracker’s direction with the IMU that was attached
to the head. With rotation R(θ∗y ), the position of the root joint could be computed from the head
position using our network.

4. Datasets

This section describes the configuration of the datasets that were used for the model
implementation in more detail. We introduce the skeleton structure that constructs the
human pose data in Section 4.1, the detailed instructions for the motion capture and IMU
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data in Section 4.2, the method for IMU calibration in Section 4.3, and the synthetic data in
Section 4.4.

4.1. Skeleton Structure

The joint position pjoints provides the position of the human body joints using the
body-centric coordinates. Figure 4 depicts a skeleton that consists of 21 joints (p1 to p21).
The height of the avatar configuration that is set during motion capture is the size of the
skeleton structure, within which the joint positions are determined in centimeters (cm).
The joint placement of our skeleton structure was based on the full-body motion capture
data that we collected.




Figure 4. Skeleton structure: the skeleton for our study had 21 joints (p1 to p21). The 15 joints that were
used to evaluate the errors in the experiments are highlighted in bold and thickly lined boxes. The joint
list for evaluating the errors was as follows: Hip, Spine, Spine1, Neck, Head, LeftArm, LeftForeArm,
LeftHand, RightArm, RightForeArm, RightHand, LeftLeg, LeftFoot, RightLeg, and RightFoot.

4.2. Motion Capture and IMUs

We utilize two types of sensor data for our data-driven model: motion capture data
and IMU data. In the experiments, we recorded raw data from a subject who was wearing
an OptiTrack [2] motion suit with 50 markers and 6 Xsens IMU sensors. As shown in
Figure 5, six IMUs were mounted on the pelvis, the left and right hands, the left and right
legs, and the head. The subject executed the calibration steps for the optical markers on the
suit. After calibration, the participant performed actions following pre-defined scripts, such
as locomotion, sitting, crawling, and other motions. The ground-truth motion capture data
were recorded in 120 Hz and IMU data were recorded in 30 Hz, so data synchronization
problems could occur due to the frequency differences. Therefore, we applied linear
interpolation according to the timestamps of the two sets of data.
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Figure 5. The IMU placement and calibration: (Left) the placement of the six IMUs that were attached
to the body: right hand, left hand, pelvis (root), head, right leg, and left leg; (Right) the results of the
IMU sensor calibration to the body-centric coordinates.

4.3. Sensor Calibration

We used Xsens DOT IMU sensors, which contain 3-axis accelerometers, gyroscopes,
and magnetometers. The measurement of the IMUs was represented using the local
coordinate system, which was defined as right-handed Cartesian coordinates, and thus,
each IMU had different coordinates. To obtain the identified coordinate system between
the sensors, we used the heading reset function on the IMU sensors that aligns magnetic
north with the forward direction of the physical body. After the calibration step, we could
obtain the measurement data from the six IMUs in terms of the inertial coordinate system.
For training, we converted the measurement data into the body-centric coordinate system,
which is described in Section 3.2.1. On the other hand, we used the inertial coordinate
system for the predictions.

4.4. Generating Synthetic Data

To perform the predictions, the network requires a large amount of data, but when
only the data from the motion capture are used, the cost of the data is unaffordable. To this
end, many works [15,48] have generated synthetic data from existing motion capture
datasets by simulating the measurement data from the IMUs, which is the method that
we adopted to carry out the predictions. We generated synthetic data using the CMU 3D
motion dataset [17] and TotalCapture [18] and uncommon behavior motions were excluded,
such as sport, dance, and martial arts. To simulate the measurement data from the IMUs,
we used the following steps: (1) we retargeted the motions from datasets onto our skeleton
(Section 4.1) for consistency; (2) we placed virtual IMUs on the skeleton where the physical
IMU sensors were placed; (3) lastly, we calculated the orientation q̂ and acceleration â by
synthesizing the motions of the virtual IMUs followed by smoothing with the B-spline
curve to obtain the motion trajectory.

5. Experiments

Before this proposal, we conducted experiments to carry out a quantitative and quali-
tative evaluation of our pose estimation model. This section summarizes our experiments.
First, we introduce the data and metrics that we used for the experiments in Section 5.1.
We evaluate and compare the performance of our pose prediction model using real-time
settings in Section 5.2. In Section 5.3, we introduce the implementation of a real-time appli-
cation using our pose estimation network and global location tracking method. Finally, we
describe the hardware settings for our work in Section 5.4.
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5.1. Data and Metrics

The experiments were conducted using the real TotalCapture [18] dataset. The vali-
dation dataset consisted of 10 consecutive input frame sequences that were not used for
training. We used the mean per joint position error (MPJPE), joint angle error, and location
tracking error as the metrics for the quantitative evaluation. First, we calculated the mean
value of the Euclidean distance between the expected position and the obtained position for
15 major joints that were representing a real-time pose. Then, we calculated the mean error
per joint from the difference in degrees between the predicted and the actual movement and
the difference in root distance between the reconstructed global position and the recorded
position in real-world space.

5.2. Evaluation
5.2.1. Quantitative Evaluation

We evaluated the following variants to identify the model configuration that pro-
duced the best performance: (1) estimations with different components at the input
and (2) estimations from reconstructing the network architecture.

Measuring the errors for comparison. To measure the positional errors of DIP and
TransPose, we reconstructed an SMPL mesh model and the joint positions from the outputs
of these works, which provided the SMPL parameters. To compare those results to ours,
we used the same joints to measure the errors, as defined in Figure 4.

Influence of input components. To compare the effectiveness of the different input types,
we experimented with three different types of networks: one network only used the current
time t (only current), one network did not use the head height (non-head), and the other
network did not use the acceleration of the IMUs (non-acc). Table 1 shows the results of
these experiments. As the table shows, the positional error of the “only current” network
was higher than that of “Ours”, which used ten sequences. Moreover, when measuring
the lower body error, the mean error of “Ours” was 49.18 mm (±29.50 mm) and that of
the “only current” was 52.65 mm (±29.16 mm). This indicated that using past-to-future
information led to an improved pose estimation performance. Furthermore, as shown
in Figure 6, the model without head height data showed a significantly higher position
error 55.45 mm (±27.19 mm). This result was because this model could not track extreme
changes in full-body poses, such as bending over or sitting on the floor (cf. Figure 7). It
can also be seen that the acceleration data from the inertial sensors improved the joint
position estimation accuracy by including the relative position differences in the input layer.
Therefore, we identified a solution for estimating a wider range of poses than previous
studies by adding head height data to the input using a head tracker.

Table 1. The evaluation of our pose estimation network using different input variables and network
architecture variants with the TotalCapture [18] dataset. The errors of each model are described as
the mean (µpos) and standard deviation (σpos) of the joint position error in millimeters and the mean
(µang) and standard deviation (σang) of the joint angle error in degrees (°).

µpos (mm) σpos (mm) µang (°) σang (°)

Ours 50.51 20.07 11.31 4.58
DIP 79.42 32.15 13.67 9.59
TransPose 68.51 41.43 12.93 6.15

FC (512) 53.54 21.58 10.43 4.36
Conv+RNN 53.38 22.08 11.13 4.72
biRNN 52.60 21.19 10.99 4.44

only current 52.55 21.44 11.51 4.56
non-head 55.45 27.19 11.31 4.87
non-acc 56.74 20.47 11.61 5.06
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Influence of network architecture. The proposed network consists of a convolutional
LSTM layer and bidirectional LSTM layers. These RNN layers were added to extend the
capability of predicting more accurate full-body poses. In this evaluation, we compared
three network variants: (1) a network consisting of a fully connected layer (FC); (2) a net-
work using a unidirectional RNN layer, not bidirectional (Conv+RNN); and (3) a network
with no convolution layers (biRNN). Figure 6 shows the influence of the network structure
on positional errors using the validation dataset. The distributions of positional errors
using the three tested cases indicated a higher error frequency than that using our network
structure. Further, Table 1 shows that the joint angle errors in these cases had slightly lower
values. However, the experimental results showed that our configuration would be more
suitable for real-time application as it showed a higher performance for continuous frames.

Figure 6. An evaluation of the mean per joint position error. The graph shown here is based on Table 1.
We recorded the errors in each frame and showed that our network achieved a better performance
than the other variants and DIP [15].

Figure 7. A comparison of the 3D model results. The figure shows the ground-truth and the real-time
results of three types of models: the model that was trained excluding synthetic data (Non-Synth);
the model that was trained excluding head height data (Non-head); and our model.

Location tracking error. Figure 8 shows the root trajectory that was estimated using our
method and that of the ground-truth. The mean location error was 9.4148 cm (±7.9058).
For the evaluation, we used the walking motions of Subject 4 in the TotalCapture dataset
because it was suitable for demonstrating the root trajectory. Figure 9 shows the discrepancy
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between the full-body poses by overlaying the ground-truth and reconstructed results. It
shows that the reconstructed path achieved the intended result with high accuracy.

MAX

MAX

Figure 8. The trajectory of S4 (Subject 4) from the TotalCapture dataset. The overlapping frames in the
middle of figure show the maximum value of the location tracking error in each motion sequence.

Ground-Truth Fusion Poser

Figure 9. A comparison between the predicted and ground-truth poses using TotalCapture data (S4).
By overlaying the predicted and ground-truth results, we could visualize the differences.

5.2.2. Qualitative Evaluation

As described in Section 5.2.1, we experimentally determined the best performance
configuration. This section presents the poses that were estimated using our network as 3D
body models and compares these poses to the ground-truth. We provided this comparison
using our mocap dataset and the TotalCapture dataset [18]. In this section, we also describe
the differences between the poses in terms of the evaluation variants that were difficult to
express numerically.

Figure 7 shows the differences between two models that were trained in different
ways. The first model was trained without synthetic data and the second model was the
network variant that did not use the head height data. This figure shows that the proposed
approach was more promising than the other variants. Moreover, in full-body exercises
such as stretching or jumping, the height of the head provides reliable information for
distinguishing poses and can be easily acquired from HMDs.

Comparison to ground-truth poses. Figure 10 shows some example prediction results us-
ing different poses from our mocap dataset and the TotalCapture dataset [18]. The ground-
truth (GT) pose on the left was captured using a large number of optical markers from both
datasets and the pose on the right was estimated with our method using six IMUs and one
head tracker. Although there were challenging issues, such as hand pose (as detailed in
Section 6.1), we could use our method for human pose estimation in real time.

Comparison to previous works. Figure 11 shows a visual comparison between the online
pose estimation results of our method and those of other state-of-the-art works. The figure
shows a qualitative comparison between our predicted poses and the SMPL poses that
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were estimated using DIP and TransPose for example frames from the TotalCapture dataset.
Our approach estimated more accurate results for relative joint positions in the upper and
lower body.

GT Ours

TotalCapture

GT Ours

Test Data

GT Ours GT Ours

Figure 10. Example results using our mocap data and TotalCapture data.

5.3. Real-Time Application

In this study, we implemented a real-time application using a VR HMD, as described
in Figure 12. Our application received the measurement data from six IMU sensors and
continuously estimated the user’s pose. At the same time, the pose of the head served
as the input and global information for reconstructing the root trajectory. Our real-time
application ran in the Unity 3D environment. Since the biLSTM layer required future
data from the predicted time t, we stacked 10 sequences before the prediction, causing
the application to have a delay of around 0.3 s. Because of the delay, there could be a
discrepancy between the head position and the predicted pose when the user moved
relatively fast.

5.4. Hardware Configurations

We trained our model using an Intel(R) Core(TM) i9-10900K CPU and an NVIDIA
RTX 3090 graphics card. The real-time application ran on another PC with an Intel i5-10600
CPU and an NVIDIA RTX 2060 graphics card. We used Xsens [12] DOT IMU sensors to
record the IMU data, both for training and real-time data. The ground-truth motion data
were captured using an OptiTrack [2] Prime Camera and a motion suit with 50 markers.
In addition, we used the Antilatency [60] tracking system to track the head position in
real-world space.
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GT OursDIP TransPose

Figure 11. A qualitative comparison between the online pose estimation results of our method and
those of previous works: the first column shows the ground-truth of the selected frame from the
TotalCapture dataset, then the reconstructed SMPL poses from the estimation results of DIP are in the
second column and those of TransPose are in the third column.
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Figure 12. The real-time application using sample frames in Unity 3D. Our implemented application
took the HMD sensor as input and reconstructed the 3D modeling body after a slight delay.

6. Discussion

This paper introduced a pose estimation method that uses six inertial sensors and a
head tracker to reconstruct human poses and global body positions in real time. Our model
has the following novelties: (1) an improvement in human pose estimation by adding
head position data; (2) the provision of a reliable global position, which is essential for VR
applications; and (3) the acquisition of a higher accuracy for pose estimation by combining
spatio-temporal layers and body-centric coordinates. We showed better quantitative results
using the head position data and model configuration (cf. Section 5.2). Moreover, although
we adopted an economically efficient type of sensor, the method had fewer restrictions on
action and mobility. Nevertheless, the noise accumulation problem over time when using
IMUs and some other limitations remain a challenge (Figure 13).

6.1. Limitations

The motion capture dataset that was collected to train our model included various ac-
tions, but it could not respond to extreme changes in the position of the pelvis, for example,
when crawling or lying down. When the waist and the floor were parallel, as shown in
Figure 14, the predicted pose and the body rotation were not similar to the ground-truth.
We posit that the pelvis rotation caused the pose errors as the IMU data that were used for
training were transformed into body-centric coordinates.

It is also challenging to determine hand poses when using a small amount of IMU data.
In this paper, the only data that could determine the hand poses were from a pair of sensors
that were worn on the wrists, but these were insufficient data to track the wrist rotation.
The right-hand side of Figure 15 shows an example of different hand poses for which the
wrist rotation was not predicted correctly during the motion of putting the hands together.
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Figure 13. The time-dependent changes in the angular errors of the inertial sensors and the angles of
the joints to which the sensors are attached. The errors represent the angle differences between the
IMU measurement/synthesized data and the motion capture data within same frame. The errors
increased with the continual movement of the sensors and returned to the initial error value when
the movement stopped.

GT

Ours

Figure 14. Examples of failure cases for the crawling motion in the TotalCapture dataset:
(top) the ground-truth motion; (bottom) our predicted motion. It was a continuous motion with
15 frame intervals.

We extended the dataset by adding synthetic data to our mocap data to improve the
performance of our network (cf. Figure 7). We built a 3D body model to simulate the
measurement data from the IMUs and generate the output Y. We manually retargeted
all of the datasets for prediction accuracy, but the retarget process was carried out per
subject, which required a small amount of labor compared to what would be required
for a whole dataset. However, we observed that the distortion of the retargeted body
was due to the limitations of the retargeting method. For example, on the left-hand of
Figure 15, the problem of the shape twisting according to the movement of the body can be
seen. Although this distortion was seen in a low proportion in the overall data, it could be
analyzed as the cause of low accuracy for specific poses.
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Figure 15. Examples of failure cases for retargeting the body and estimating the hand pose: (Left) re-
targeting error; (Right) incorrectly estimated hand pose. This is an example of an incorrect prediction
during the motion of putting the hands together.

7. Conclusions

In this paper, we introduced Fusion Poser, which estimates the pose of a user who is
wearing six IMUs and translates the world coordinates of a head tracker in real time. The
orientation and acceleration of the inertial sensors and the head height data are used as
network inputs to estimate joint position, joint rotation, and root velocity. Our network
architecture mainly adopts biLSTM layers to maintain the spatio-temporal relationship
between the joints. The convLSTM layer is applied to the IMU sequence before the biLSTM
layer to improve the prediction quality. In addition, the LSTM layer shows higher accuracy
for estimating the orientation of a joint than the fully connected layer, as shown in Table 1.
This method requires a large dataset to train the proposed network, which is cost-intensive
to gather using motion capture. For cost-effectiveness, synthesized data can also be used
by simulating the measurement data of virtual IMUs and models from open datasets,
such as CMU and TotalCapture. For pre-processing, the coordinates of the output Y are
converted into body-centric coordinates, which enables effective learning by removing
global information. For the estimations, the translation and orientation of the root joint
are recovered using the head tracker. In our experiments using the TotalCapture dataset,
our method achieved a mean per joint position error of about 50 mm and a mean per joint
angle error of about 11.31°, which was a better performance than those of the compared
works [15]. Our approach requires a head sensor to track the pose, but this is commonly
implemented using HMDs.
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