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Abstract: Air pollution has become a serious problem in all megacities. It is necessary to continuously
monitor the state of the atmosphere, but pollution data received using fixed stations are not sufficient
for an accurate assessment of the aerosol pollution level of the air. Mobility in measuring devices can
significantly increase the spatiotemporal resolution of the received data. Unfortunately, the quality of
readings from mobile, low-cost sensors is significantly inferior to stationary sensors. This makes it
necessary to evaluate the various characteristics of monitoring systems depending on the properties of
the mobile sensors used. This paper presents an approach in which the time of pollution detection is
considered a random variable. To the best of our knowledge, we are the first to deduce the cumulative
distribution function of the pollution detection time depending on the features of the monitoring
system. The obtained distribution function makes it possible to optimize some characteristics of air
pollution detection systems in a smart city.

Keywords: aerosols; air pollution monitoring; mobile sensors; cumulative distribution function;
system performance optimization

1. Introduction

Due to the large increase in the number of vehicles and industrial enterprises in urban
areas, real-time monitoring of the environment is necessary in order to constantly analyze
the composition of the air and take measurements at the appropriate time. Great harm
to human health in a megalopolis is caused by tiny floating particles, called aerosols or
particulates, which pollute the atmosphere, and of course, the potential hazard of urban air
is not limited to particulate air pollution. Chemical pollutants in urban air can adversely
affect the nervous system, cause eye tremors, dermatitis, and other diseases that require
long-term treatment, and dramatically reduce the quality of life [1].

It is necessary to continuously monitor the state of the atmosphere, process the received
data in real time, and make timely decisions to reduce harmful emissions in the atmosphere.
Fixed stations are designed for regular air sampling at specific locations. However, many
researchers note that data from fixed stations are not sufficient for an accurate assessment
of the level of aerosol pollution in the atmosphere [2,3]. An essential addition to data from
fixed stations may be data received from a new generation of inexpensive, smaller, mobile,
and intelligent sensor systems. The benefits of using such systems were discussed in [4].
The mobility of measuring devices can significantly increase the spatiotemporal resolution
of the received data. Wireless sensor networks, including those with mobile nodes, already
monitor air pollution. Mobile sensors can be carried by people (volunteers) as well as placed
on vehicles. However, the quality of readings from mobile, low-cost sensors is significantly
inferior to stationary sensors. Commercial low-cost sensor readings were assessed against
a regulatory monitor in [5]. Based on experiments with single sensors, the authors do not
recommend the use of inexpensive sensors to report absolute air pollution concentrations
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or to verify compliance with air quality standards. At the same time, it was mentioned that
low-cost distributed sensors allow air quality trends to be monitored. Other articles were
devoted to the analysis of the quality of these data [6,7], and those authors noted the great
possibilities of using mobile sensors and the shortcomings of low-cost devices.

For prompt decision-making in the event of emergencies, it is necessary to obtain
reliable information on the presence of pollutants. To do this, we can use both fixed stations
and mobile sensors to detect air pollutants of various categories: gaseous pollutants,
persistent organic pollutants, toxic heavy metals, and particulate matter. Stationary sensors
almost always reliably detect the presence of pollution, but they are extremely expensive
and suitable only for local monitoring. Inexpensive mobile sensors can cover the entire
area, but can we be sure of timely detection of contamination? Stationary sensors can be
used to test the efficiency of mobile sensors. Depending on the result, it makes sense to
organize monitoring of the same area of interest with several mobile sensors.

One of the urgent problems that arise in the monitoring of megacities is to optimize a
pollution detection system. This can be performed with the help of natural experiments and
simulations as well as mathematical techniques that make it possible to obtain appropriate
statements of optimization problems and solve them. A survey of sensor system opti-
mization techniques [8] notes that deploying more sensor nodes will increase the overall
probability of detecting events in the system, albeit at the expense of increased deployment
and operational costs. In search of a compromise between the number of sensors and the
latency of detection, costly full-scale and simulation experiments were used in very partic-
ular cases. Rigorous formal methods make it possible to obtain results more efficiently in
the general case. Despite a number of significant advantages to the mathematical approach,
there is an acute shortage of appropriate mathematical methods in the literature. In this
paper, we partially fill this gap: to the best of our knowledge, we are the first to deduce
the cumulative distribution function for air pollution detection time. Next, we use this
result and propose a probabilistic approach to optimizing monitoring systems, taking into
account the properties of the sensors used.

The problem of air pollution monitoring by mobile sensors can be considered from
the standpoint of timely detection of a location (the so-called danger zones) where the level
of air pollution exceeds a certain threshold. In other words, the mobile sensor temporarily
enters a certain danger zone and detects it (Figure 1). It seems quite obvious that the time
of detection by the monitoring system in a danger zone depends on both the number of
mobile sensors entering the zone and the sensing quality. In this paper, the time at which
detection in a danger zone takes place is considered a random variable. We present the
corresponding cumulative distribution function. Two variants of the intensity of entry
by mobile sensors into the danger zone are considered: when the time intervals between
mobile sensor entry into the danger zone are deterministic and when the mobile sensors
form a Poisson flow. The obtained distribution function makes it possible to evaluate
various characteristics of the monitoring system, depending on the detection quality of the
sensors used (the average time to detect a danger zone, the probability of detecting the
entire danger zone within a fixed time, and so on). This function helps to formalize and
solve optimization problems related to the development of a mobile air pollution detection
system. This makes it possible to obtain an assessment of monitoring quality in various
situations without costly testing.
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We organized the rest of this paper as follows. In the next section, we describe related
works. Section 3 describes low-cost sensors for measuring the presence of atmospheric
aerosols. System models are presented in Section 4. Monitoring system optimization is
investigated in Section 5, and Conclusions are presented in Section 6.

2. Related Work

Under industrialization, the large number of factories in urban areas led to a decrease
in air quality and environmental degradation around the world. Air quality in a megapolis,
the presence of harmful impurities, especially particulate matter, and chemical pollutants,
has become an urgent problem in recent years, and many scientific studies have been
devoted to this topic [9–11]. Traditional methods of measuring air pollution—using fixed
stations or mobile laboratories—have various limitations (high cost, the impossibility of
measuring in hard-to-reach places, etc.). In modern monitoring systems, air quality data
are gathered using various devices (sensors, geo-sensors) connected to wireless networks.
Devices distributed over a large area that are nodes of a data transmission network can
collect data and transmit them to sinks or base stations. Furthermore, this information is
processed in analytical centers to obtain a complete picture of the state of the atmosphere.
Compared to fixed stations, a wireless sensor network provides air quality monitoring
that can be more detailed. Real-time data delivery improves the accuracy of atmospheric
monitoring and forecasting. Systems for monitoring urban air pollution are being devel-
oped by many scientists; descriptions of the functioning of these systems were presented
in previous work. Some of these air monitoring systems include fixed stations, mobile
laboratories, and mobile sensors, with the communication structure most often wireless.

A lot of work on this topic describes the problems that arise when providing wireless
communication between sensors distributed in space and on an intelligent platform [12–15].
Modules in such systems are responsible for collecting and storing data, pre-processing
data, and converting them into usable information. This information can be useful for
making decisions in emergencies and predicting potential air pollution, depending on
the time of day, wind direction, etc. The authors of many papers have noted that it is
necessary to develop new methods and technologies in order to track various indicators
of environmental pollution. For example, a monitoring system for assessing air pollution
in Sydney uses a machine learning model that combines sparse data from fixed stations
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along with dense data collected from mobile sensors [13]. Another monitoring system
uses sensors placed on cars for cases when the nodes’ mobility may be uncontrollable
(for example, on a taxi) [14]; the authors solve two problems associated with the optimal
functioning of such a mobile network: optimizing data transmission from mobile nodes,
and using opportunistic communication to reduce network message transmission. In
a survey of monitoring systems based on the WSN, systems were classified into three
categories based on sensor carriers: the Static Sensor Network (SSN), the Community
Sensor Network (CSN), and the Vehicle Sensor Network (VSN) [15].

Yet other researchers noted that a higher density of nodes in the monitored area im-
proves monitoring [16–18]. Based on publications in recent years, the current trend is the
use of low-cost sensors connected to wireless networks. As noted by many authors, this
makes it possible to use a large number of sensors, collect real-time data from different
places, and compile a detailed map of air pollution in the city [12–16]. In [16], the au-
thors described an experiment to monitor gaseous air pollutants in the environment of
a metropolis. A wireless network with distributed sensors to measure air pollution with
a high spatial resolution was used. The measurements were carried out using devices
placed at a distance of 150 m from each other. The authors noted that this network is
capable of capturing high-resolution spatial and temporal changes in concentrations, but
to maintain the accuracy of measurements, calibration of the sensors is necessary. The
authors described a procedure for calibrating sensors to improve the functioning of the
monitoring system. The authors in [17] described their research—the development of a
low-cost, multi-sensor node for measuring air pollution, as well as protocols to optimize
the collection of data from sensors in a WSN. An overview of state-of-art uses for low-cost
sensors in environmental monitoring was presented in [18].

For air quality monitoring, it is possible to use not only stationary sensors but sensors
placed on moving objects, i.e., mobile sensors. Many studies on the topic of modern
monitoring in megacities are devoted to the use of special vehicle ad hoc networks (VANETs)
for data collection [11,19–22]. In this case, nodes of the wireless network are sensors placed
on vehicles (cars, buses) that move around the city and periodically measure the content
of pollutants in the air. In [2], the authors analyzed the current state of the art, the critical
problems, and the perspectives on mobile monitoring. The authors noted technological
developments in recent years that can be applied to real-time air quality monitoring and that
significantly improved spatial and temporal resolution of the available datasets, making air
pollution maps more accurate.

The authors of [19] presented a study of real-time air pollution monitoring by sensors
placed on public transport vehicles in the city of Uppsala, Sweden. The data obtained from
such mobile sensors complement the measurements of stationary sensors and monitoring
stations. The authors carried out experiments to assess the quality of communication and
the quality of the data received. The authors of [20] described a monitoring system in which
multiple sensors are placed on public transport buses. The sensors act as onboard mobile
data collection centers and monitor outdoor and vehicular air quality. The novelty of this
approach lies in the fact that the system provides additional sleeper nodes as part of the
sensor network, thereby increasing the fault tolerance of the entire system.

The authors of [21] described their research on air monitoring in Paris using a network
of mobile sensors called Pollutrack. The main purpose of the study was to determine the
presence of particulate matter in the air. The measurements were carried out by devices
placed on the roofs of cars. The data obtained were analyzed to determine zones with mass
concentrations of pollution. The authors noted that the efficiency of using mobile sensors
was higher compared to the use of known aerosol counters (for example, the Light Optical
Aerosols Counter). Thanks to the large number of measurements that can be taken with
mobile sensors, it has been possible to create accurate maps of areas with a high-level PM2.5
concentration. The authors believe such accurate maps can form the basis for requiring
relevant services to respond to air pollution and make timely decisions.
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Other papers described problems that arise when monitoring the atmosphere of an
urban area using mobile devices [22–26]. For example, it is necessary to have a schedule for
data collection in order to optimize the power consumption in the network. The following
problems are also relevant: placement of base stations for collecting data from mobile
devices; installation of sensors for use on the public transport system; correction of the
received data, taking into account weather conditions. For problems where mobile data
collection is preferable to using stationary sensors, you can use mobile receivers that cover
the entire network of sensors and collect accumulated data from them, so the problem
arises of optimal routes for mobile receivers.

To monitor air pollution with sensors, you can use various moving objects: pedestrians,
cars, and public transportation. In [27], the authors described an aerial system that consists
of unmanned aerial vehicles (UAVs), exhaust gas monitoring devices, and mobile control
terminals. Each container is equipped with a gas collection module and sensors to determine
in real-time the presence of harmful impurities in the air. The authors noted that with the help
of UAVs, it is possible to obtain data for analyzing the state of the air even in hard-to-reach
areas—for example, monitoring harmful emissions from ships during navigation.

Mobile sensor nodes can take measurements in different places, thereby reducing
the requirement for a large number of nodes to monitor extended areas. However, for
accuracy, it is necessary to collect data as often as possible, and the problem of balancing
monitoring accuracy versus communication costs arises: how to set up a schedule for
data transmission by mobile nodes in order to ensure monitoring quality while reducing
communication costs [28–30]. For example, in an area where there are many vehicles with
sensors, you can reduce the frequency of data transmission from some nodes to avoid
possible duplication. On the other hand, in areas where the concentration of harmful
substances changes dramatically, the system can be configured to increase the sensing
frequency to improve monitoring accuracy.

In order to solve air pollution monitoring problems, various methods are used, in-
cluding probability theory and statistical methods [30–34]. They are commonly used to
investigate the location and identification of emission sources (for example, conditional
probability functions are used for source identification). The study described in [34] pre-
sented the use of statistical methods for monitoring a territory using mobile nodes. The
authors noticed that air monitoring results are unreliable due to measurement uncertainties,
spatial variability, and time variations in air pollution concentrations. Thus, the timely
detection of hazardous air pollution is a challenging task.

When analyzing scientific papers and patents, we did not find examples of using
probability theory apparatus to evaluate various characteristics of a monitoring system
related to the detection time in danger zones, taking into account the quality of the mobile
sensors used. Therefore, the related optimization problems were not considered. We intend
to fill this gap.

3. Sensors and Sensing Models

For monitoring the state of the air, the data used come from various types of sensors
in environmental monitoring systems. The quality of the data obtained by these systems
depends on the sensors and their parameters. The most popular types of low-cost air
quality sensors are electrochemical and metal-oxide sensors, photoionization detectors,
and optical particle counters [35,36]. There are many companies in the world producing
inexpensive sensors for measuring the presence of atmospheric aerosols. However, the
quality of the data obtained from such inexpensive sensors is often questionable. Data
quality is influenced by atmospheric conditions, the concentration of the pollutants, and the
time of day when measurements are taken. The factors influencing sensor measurements
are described elsewhere [37,38].

The authors of [39] developed a device that can collect and transmit environmental
data while moving. It was possible to increase the efficiency of collecting spatiotempo-
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ral data during the movement of the device due to a more accurate assessment of the
uncertainty of spatial measurements associated with this movement.

In some work [40,41], the following model was used to estimate the concentration of
polluting gas emitted by a point source of contamination:

C(x, y, z) =
Q

2πk1
exp

(
− y2

2g2

) (
exp

(
− (z− H)2

g2

)
+ exp

(
− (z + H)2

g2

))
(1)

where the terms are defined as follows:
C(x, y, z)—the pollution concentration (g/m3) at a point in Euclidean space (x, y, z),

where it is assumed the source of pollution is at the origin of the coordinates;
Q—the level of pollutant emissions, which is considered constant;
H—the effective emission height of the pollutant; and
g1 and g2—wind speed and atmospheric stability index.
The concentration of pollutants depends on many random factors that are difficult

to account for. The higher the concentration of a substance in the air, the more likely the
sensors will detect it. If the sensor is in a contaminated area for a limited time, it can be
assumed that the probability of detecting contamination is a random variable. The vehicle
is moving in the monitoring area at a constant speed, i.e., the operating time of the sensor
is constant. Averaging over the coordinates x, y, z, we obtain a random value for the
sensor success:

p = α C(x, y, z) (2)

Here, α is a constant that can be determined using regression analysis.
In other papers, the alternative probabilistic model was used to model sensor perfor-

mance [42–45]:

p =

{
1, 0 ≤ d ≤ R

e−β(x−R), d > R
(3)

where R is the range over which the event is reliably detected; d is the average distance from
the sensor to the source of pollution; and β is a constant depending on the characteristics of
the sensor and the environment, determined experimentally or by using additional models.

Thus, further down in the text, we assume that sensors located on mobile objects
detect an event to be monitored at a certain probability: p (entrance to an area where the
level of air pollution exceeds a certain given threshold value). Highly reliable sensors can
be used to estimate the likelihood of event detection by mobile sensors. We believe that
the stationary sensor accurately detects the presence of aerosols in the atmosphere. These
results can be used to estimate the performance of low-cost mobile sensors.

To evaluate the efficiency of detecting solid particles by low-cost mobile sensors, we
apply a probabilistic approach as follows.

We introduce a discrete value, Y, which is 1 if the mobile sensor detects an event, but
is 0, otherwise:

Y =

{
1 0

p 1− p

}
(4)

It is obvious that the mathematical expectation of a random variable Y is

EY = 1·p + 0·(1− p) = p (5)

It follows that to obtain the value of p, we can use the data obtained from stationary
sensors:

p =
∑M

i=1 Yi

M
(6)

where Yi is the i-th observation received by a stationary sensor, and M is the number of
observations.
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In the rest of the paper, we assume that the value of p is given. This value depends on
the technical characteristics of the device, as well as on the concentration of pollutants in
the monitoring area.

4. System Models

Let us consider a model for the problem of air pollution detection in some zone, Z,
using mobile sensors (Figure 1). The mobility of sensors can be organized in different
ways; here, we consider two main options. In the first case, the sensors are placed on
public transport vehicles, which move according to a schedule. In the second case, the
sensors move with volunteers (on foot or by car). In the first case, the time intervals
between arrivals of mobile sensors in zone Z can be known and not random. In the second
case, the intervals between arrivals of mobile sensors in zone Z are random. We assume
this flow of mobile sensors to zone Z to be Poisson, i.e., the time between each input is
distributed exponentially [46]. A study was conducted in Beijing, which in our opinion,
can be considered an experimental confirmation of this assumption [47]. If several zones
are examined, then the combined flow will also be Poisson with an intensity equal to the
total intensity of the flows.

For further calculations, we need to know the exponential distribution parameter
for the time between arrivals of mobile sensors in zone Z. To estimate the parameter, it
is enough to calculate the average number of mobile sensors in zone Z per unit of time
(intensity λ). Let NZ mobile sensors arrive in the region over a fixed time interval, t.

In [24], we introduced the following notations to describe the system model.
N is the total number of mobile objects (vehicles, buses, unmanned aerial vehicles,

and so on), equipped with sensors for air pollution detection.
Z is a region of interest (a pollution zone).
NZ(t) is the number of mobile sensors that have passed through zone Z during time

interval t for pollution detection.
τ is a time interval between the arrivals of adjacent mobile objects. It can be random

or deterministic. Both cases have been considered.
λ is the mobile objects’ rate.
p is the probability of detecting pollution (this property is directly related to the

quality of the sensor) during the time the mobile sensor stays in zone Z.
TD is the pollution detection time.
In addition, we assume that we know all the characteristics of the sensors, and we can

determine the quality of their work—the ability to detect pollution. To do this, you can use
preliminary experiments or special models.

First, let us consider the case when the flow of mobile objects to zone Z is not random,
i.e., there is a deterministic time between arrivals of mobile nodes. It is logical to assume
that if an event was detected in the first experiment, then the detection time will equal τ. Let
us obtain the distribution function, TD. Pollution detection requires a random geometrically
distributed number of mobile sensors. Under the definition of cumulative distribution
function (CDF), we write:

FTD (t) = P(TD < t) = p
k∗(t)

∑
k=1

(1− p)k−1 (7)

We use the formula for the sum of geometric progressions and obtain the CDF of
detecting rate TD as follows:

FTD (t) = 1− (1− p)k∗(t)−1 (8)

Here,
k∗(t) = argmax { k| ∀ k ∈ N : τk < t }
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Thus, TD is a continuous random variable with the following mathematical expectation,
E, and dispersion, D:

E[TD] =
τ

p
(9)

D[TD] =
τ2(1− p)

p2 (10)

Figure 2 shows a piecewise constant non-decreasing function for value τ = 1 and some
values of p.
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Now, consider the case of Poisson traffic flow into monitoring area Z; in other words,
the inter-arrival time of mobile sensors, τ, is an independent exponentially distributed
random variable. If τ ≥ t, then during time t, no mobile objects arrive, i.e.,

P(τ ≥ t) = P(Nz(t) = 0) = e−λt (11)

Consequently, the CDF of τ is as follows:

Fτ(t) = P(τ < t) = 1− e−λt (12)

The average time between arrivals of mobile objects in the monitored area is known:

E[τ] =
1
λ

(13)

A sensor placed on a mobile object detects an increased level of pollution with probability
p when entering zone Z. The number of mobile objects that visit Z from the moment of heavy
pollution to its detection is a random variable, M, with the following geometric distribution:

P(M = k) = p(1− p)k−1, k = 1, 2, 3 . . . (14)

We calculate the detection time of critical pollution, TE:

TE =
τk

∑
k=1

τk (15)

where τk denotes exponentially distributed random values with parameter λ.
Thus, for the given M, the detection time has an Erlang distribution. Next, we use the

law of total probability to obtain the probability density function of the random variable, TE:

fTE(t) =
∞

∑
k=1

p(1− p)k−1 λktk−1

(k− 1)!
e−λt (16)
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and

fTE(t) = pλ

(
∞

∑
k=0

(λt(1− p))k

k!

)
e−λt = pλeλt(1−p)e−λt (17)

Hence,
fTE(t) = θe−θt (18)

where θ = pλ.
We have shown that TE has an exponential distribution with parameter θ and the

well-known CDF.
FTE(t) = 1− e−θt (19)

The results obtained can be used for various applied problems, where it is necessary
to manage and control the cost and efficiency of the monitoring system.

5. System Optimization

Let us consider some problems in optimizing the monitoring system. Air pollution
in a certain area must be detected in h units of time with a given probability, α. Let us
calculate the minimum number of sensors, N, installed on mobile objects.

We formulate a formal statement of the corresponding optimization problem as fol-
lows:

N → min

P(TE < h) ≥ α (20)

We assume the traffic rate of mobile objects linearly depends on the total number of
objects involved, λ = cN, 0 < c < 1, where c is a constant. We can estimate this constant
using linear regression.

In this example, TE is exponentially dependent on pcN. We have been given a threshold
value for the contamination detection time. We calculate the probability that real-time
detection of contamination does not exceed the specified value h with the following formula:

P(TE < h) = 1− e−pcNh (21)

The probability of detecting the air pollution level within a period not exceeding the
given value h depends on the number of devices placed on mobile objects. Figure 3 shows
this dependence. Here, it is assumed that the sensing parameter, p, takes values from the
set {0.1; 0.3; 0.7}.
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The probability, P(TE < h), is a monotonically increasing function of N. Thus,

Nmin = arg { P(TE < h) = α } (22)
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We can calculate the required minimal value as follows:

Nmin = − ln(1− α)

pch
(23)

Next, we consider the following problem of balancing the cost of a system versus its
efficiency. The cost of a monitoring network depends on the number of sensors and is equal
to Na1 where a1 is the cost of each sensor. Pollution has to be detected as soon as possible.
A delay in detection leads to penalties. If a2 is a delayed penalty per unit of time, then the
general expenses can be defined as follows:

ETE a2 + Na1 (24)

Here ETE is the expected pollution detection time. Thus, using introduced designa-
tions, we obtain the following penalty function:

g(λ) =
λa1

c
+

a2

pλ
(25)

We need to minimize the penalty, so we define the optimal value of traffic intensity:

g′λ(λ) =
a1

c
− a2

pλ2 (26)

and

g′λ(λ
∗) = 0 ⇒ λ∗ =

√
a2c
a1 p

(27)

Next,

g′′λ(λ) =
2a2

pλ3 > 0 ∀λ > 0 (28)

Therefore, the penalty function has a global minimum point at the value λ*. Hence,
we obtain the optimal traffic intensity of mobile objects (vehicles, pedestrians) equipped
with sensors.

6. Discussion

We gave a rigorous mathematical foundation of the proposed original results. The
formalistic conception of mathematics that has developed to date appeals to a purely
logical conclusion from the initial assumptions. A mathematical derivation is valid if and
only if it can be formally deduced from its premises. Once the starting points are fully
formulated, everything else is built from them, without recourse to the outside world,
intuition, or experiment. Thus, experimental verification can only be applied to our initial
assumptions. However, this has already been performed in plenty of previous works. First,
we use the assumption of probabilistic detection in the sense that a sensor node is able to
detect an event (air pollution) with a certain predefined probability. This assumption is
widely used in a variety of situations [48,49], including air pollution monitoring [40,50].
An experimental evaluation of the respective capabilities of the air sensors was also carried
out [51,52]. Moreover, in Section 3, we discussed how to calculate this probability in a
very general situation, and secondly, we assumed this flow of mobile sensors (vehicles) to
the zone of interest to be Poisson. This is also a widely used principle [53] that has been
experimentally confirmed in many studies [46,54,55].

7. Conclusions

To the best of our knowledge, the cumulative distribution function of air pollution
detection time by mobile sensors has not yet been studied. We have deduced this function
explicitly using the assumptions as follows. A single mobile sensor is capable of detecting
air pollution with a certain predetermined probability. Arrivals of mobile sensors into the
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pollution zone form a Poisson process. Thus, we provide a rigorous mathematical basis for
solving various applied problems related to air pollution monitoring. In particular, we use
this distribution function to minimize the number of sensor nodes for a given probability
of detecting pollution in a fixed time and find the optimal traffic intensity of mobile sensors.
Please note that the suggested results can be applied in a wide variety of scenarios.
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