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Abstract: The performance evaluation of state estimators for nonlinear regular systems, in which
the current measurement only depends on the current state directly, has been widely studied using
the Bayesian Cramér-Rao lower bound (BCRLB). However, in practice, the measurements of many
nonlinear systems are two-adjacent-states dependent (TASD) directly, i.e., the current measurement
depends on the current state as well as the most recent previous state directly. In this paper, we
first develop the recursive BCRLBs for the prediction and smoothing of nonlinear systems with
TASD measurements. A comparison between the recursive BCRLBs for TASD systems and nonlinear
regular systems is provided. Then, the recursive BCRLBs for the prediction and smoothing of two
special types of TASD systems, in which the original measurement noises are autocorrelated or
cross-correlated with the process noises at one time step apart, are presented, respectively. Illustrative
examples in radar target tracking show the effectiveness of the proposed recursive BCRLBs for the
prediction and smoothing of TASD systems.

Keywords: Bayesian Cramér-Rao lower bound (BCRLB); two-adjacent-states dependent (TASD)
measurements; autocorrelated noises; cross-correlated noises; prediction; smoothing

1. Introduction

Filtering, prediction and smoothing have attracted wide attention in many engineering
applications, such as target tracking [1,2], signal processing [3], sensor registration [4],
econometrics forecasting [5], localization and navigation [6,7], etc. For filtering, the Kalman
filter (KF) [8] is optimal for linear Gaussian systems in the sense of minimum mean squared
error (MMSE). However, most real-world system models are usually nonlinear, which
does not meet the assumptions of the Kalman filter. To deal with this, many nonlinear
filters have been developed. The extended Kalman filter (EKF) [9] is the most well-known
one, which approximates nonlinear systems as linear systems by the first-order Taylor
series expansion of the nonlinear dynamic and/or measurement systems. The divided
difference filter (DDF) was proposed in [10] using the Stirling interpolation formula. DDFs
include the first-order divided difference filter (DD1) and second-order divided difference
filter (DD2), depending on the interpolation order. Moreover, some other nonlinear filters
have also been proposed, including the unscented Kalman filter (UKF) [11,12], quadrature
Kalman filter (QKF) [13], cubature Kalman filter (CKF) [14,15], etc. All these nonlinear
filters use different approximation techniques, such as function approximation and moment
approximation [16]. Another type of nonlinear filter is the particle filter (PF) [17,18], which
uses the sequential Monte Carlo method to generate random sample points to approximate
the posterior density. Prediction is also very important since it can help people make
decisions in advance and prevent unknown dangers. Following the same idea of filters,
various predictors have been studied, e.g., Kalman predictor (KP) [19], extended Kalman
predictor (EKP) [20], unscented Kalman predictor (UKP) [21], cubature Kalman predictor

Sensors 2022, 22, 4667. https://doi.org/10.3390/s22134667 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9107-8767
https://orcid.org/0000-0001-7366-5984
https://orcid.org/0000-0002-4836-4431
https://doi.org/10.3390/s22134667
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134667?type=check_update&version=2


Sensors 2022, 22, 4667 2 of 23

(CKP) [22] and particle predictor (PP) [23]. It is well known that smoothing is, in general,
more accurate than the corresponding filtering. To achieve higher precision for estimation,
many smoothers have been proposed, such as the Kalman smoother (KS) [24], extended
Kalman smoother (EKS) [25], unscented Kalman smoother (UKS) [26], cubature Kalman
smoother (CKS) [27] and particle smoother (PS) [28].

Despite the significant progress in nonlinear filtering, prediction and smoothing, they
mainly deal with nonlinear regular dynamic systems, in which the current measurement
depends only on the current state directly. However, in practice, many systems may have
two-adjacent-states dependent (TASD) measurements. For example, the nonlinear systems
having autocorrelated measurement noises or cross-correlated measurement and process
noises at one time step apart [24] can be regarded as systems with TASD measurements.
These types of systems are common in practice. For example, in many radar systems,
the auto-correlations of measurement noises can not be ignored [29,30] due to the high mea-
surement frequency. In satellite navigation systems, multi-path error and weak GPS signals
make the measurement noise regarded as integral to white noise [31]. Further, in signal
processing, measurement noises are usually autocorrelated because of time-varying fading
and band-limited channel [32,33]. In sensor fusion, the time alignment of different sensors
will cause the dependency of process noise and measurement noise [34]. In target-tracking
systems, the discretization of continuous systems can induce the cross-correlation between
the process and measurement noises at one time step apart [35]. In aircraft inertial nav-
igation systems, the vibration of the aircraft has a common effect on the sources of the
process and measurement noises, which results in the cross-correlation between them [36].
For these systems, some estimators have been studied. To deal with the nonlinear systems
with autocorrelated measurement noise, which is modeled as a first-order autoregressive
sequence, a nonlinear Gaussian filter and a nonlinear Gaussian smoother were proposed
in [37,38], respectively. It makes the new measurement noise white by reformulating a
TASD measurement equation. A PF was proposed for the nonlinear systems with depen-
dent noise [39], in which the measurement is dependent on two adjacent states due to the
cross-correlation between process and measurement noises. For nonlinear systems with
the cross-correlated process and measurement noises at one time step apart, the Gaussian
approximate filter and smoother were proposed in [40].

As is well known, assessing the performance of estimators is of great significance.
The posterior Cramér-Rao lower bound (PCRLB) defined as the inverse of Fisher infor-
mation matrix (FIM), also called Bayesian Cramér-Rao lower bound (BCRLB), provides a
lower bound on the performance of estimators for nonlinear systems [41,42], Ch. 4 of [43].
In [44,45], a recursive BCRLB was developed for the filtering of nonlinear regular dynamic
systems in which the current measurement is only dependent on the current state directly.
Moreover, the BCRLBs for the prediction and smoothing of nonlinear regular dynamic
systems was proposed in [45]. Compared with the conventional BCRLB, a new concept
called conditional PCRLB (CPCRLB) was proposed in [46]. This CPCRLB is conditioned
on the actual past measurements and provides an effective online performance bound for
filters. In [47], another two CPCRLBs, i.e., A-CPCRLB and D-CPCRLB, were proposed.
Since the auxiliary FIM is discarded, A-CPCRLB in [47] is more compact than the CPCRLB
proposed in [46]. D-CPCRLB in [47] is not recursive and directly approximates the exact
bound through numerical computations.

Some recent work has conducted a filtering performance assessment of TASD systems.
In [48], a BCRLB was provided for the filtering of nonlinear systems with higher-order col-
ored noises. Further, they presented the BCRLB for a special case in which the measurement
model is driven by first-order autocorrelated Gaussian noises. In [49], the BCRLBs were
proposed for the filtering of nonlinear systems with two types of dependence structures,
of which the type II dependency can lead to TASD measurements. However, both of them
did not generalize the BCRLB in [48,49] to the general form of TASD systems. In addition,
the recursive BCRLBs for the prediction and smoothing of TASD systems were not covered
in [48,49]. For the general form of TASD systems, a CPCRLB for filtering was developed
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in [50], which is dependent on the actual measurements. Compared with the BCRLB, this
CPCRLB can provide performance evaluations for a particular nonlinear system’s state
realization and better criteria for online sensor selection. In practice, the TASD systems
sometimes may incorporate some unknown nonrandom parameters. For the performance
evaluation of joint state and parameter estimation for nonlinear parametric TASD systems,
a recursive joint CRLB (JCRLB) was studied in [51].

As equally important as CPCRLB is the BCRLB. It only depends on the structures and
parameters of the dynamic model and measurement model but not the specific realization
of measurement. As a result of this, BCRLBs can be computed offline. The BCRLB for
the filtering of the general form of TASD systems has been obtained as a special case of
the JCRLB in [51] when the parameter belongs to the empty set. However, the BCRLBs
for the prediction and smoothing of the general form of TASD systems have not been
studied yet. This paper aims to obtain the BCRLB for the prediction and smoothing of
such nonlinear systems. First, we develop the recursive BCRLBs for the prediction and
smoothing of general TASD systems. A comparison between the BCRLBs for TASD systems
and regular systems is also made, and specific and simplified forms of the BCRLBs for
additive Gaussian noise cases are provided. Second, we study specific BCRLBs for the
prediction and smoothing of two special types of TASD systems, with autocorrelated
measurement noises and cross-correlated process and measurement noises at one time step
apart, respectively.

The rest of this paper is organized as follows. Section 2 formulates the BCRLB problem
for nonlinear systems with TASD measurements. Section 3 develops the recursions of
BCRLB for the prediction and smoothing of general TASD systems. Section 4 presents
specific BCRLBs for two special types of nonlinear systems with TASD measurements.
In Section 5, some illustrative examples in radar target tracking are provided to verify the
effectiveness of the proposed BCRLBs. Section 6 concludes the paper.

2. Problem Formulation

Consider the following general discrete-time nonlinear systems with TASD measurements

xk+1 = fk(xk, wk) (1)

zk = hk(xk, xk−1, vk) (2)

where xk ∈ Rn and zk ∈ Rm are the state and measurement at time k, respectively, the pro-
cess noise 〈wk〉 and the measurement noise 〈vk〉 are mutually independent white sequences
with probability density functions (PDFs) p(wk) and p(vk), respectively. We assume that
the initial state x0 is independent of the process and measurement noise sequences with
PDF p(x0).

Definition 1. Define Xk = [x′0, · · · , x′k]
′ and Zk = [z′1, · · · , z′k]

′ as the accumulated state and
measurement up to time k, respectively. The superscript “′” denotes the transpose of a vector
or matrix.

Definition 2. Define X̂ j|k and x̂j|k as estimates of X j and xj given the measurement Zk, respec-
tively. x̂j|k are state estimates for filtering, prediction and smoothing when j = k, j > k and
j < k, respectively.

Definition 3. The mean square error (MSE) of X̂ j|k is defined as

Mj|k , E[X̃ j|k(X̃ j|k)′] =
∫
Rkm

∫
R(j+1)n

X̃ j|k(X̃ j|k)′p(X j, Zk)dX jdZk
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The MSE of x̂j|k is defined as

Mj|k , E[x̃j|k(x̃j|k)
′] =

∫
Rkm

∫
Rn

x̃j|k(x̃j|k)
′p(xj, Zk)dxjdZk

where X̃ j|k = X j − X̂ j|k and x̃j|k = xj − x̂j|k are the associated estimation errors, p(X j, Zk) and
p(xj, Zk) are the joint PDFs. Mj|k are MSEs for filtering, prediction and smoothing when j = k,
j > k and j < k, respectively.

Definition 4. Define the FIM J j|k about the accumulated state X j as

J j|k , E[−∆X j

X j ln p(X j, Zk)]

= −
∫
Rkm

∫
R(j+1)n

(∆X j

X j ln p(X j, Zk))p(X j, Zk)dX jdZk

where ∆ denotes the second-order derivative operator, i.e., ∆b
a = ∇a∇′b, and ∇ denotes the gradi-

ent operator.

Lemma 1. The MSE of X̂ j|k satisfying certain regularity conditions as in [41] is bounded from
below by the inverse of J j|k as [41,45]

Mj|k , E[X̃ j|k(X̃ j|k)′] ≥ (J j|k)−1

where the inequality means that the difference M j|k − (J j|k)−1 is a positive semidefinite matrix.

Definition 5. Define J−1
j|k as the n× n right-lower block of (J j|k)−1 and Jj|k as the FIM about xj,

where “n” is the dimension of the state xk. Jj|k are FIMs for filtering, prediction and smoothing
when j = k, j > k and j < k, respectively.

Lemma 2. The MSE of x̂j|k satisfying certain regularity conditions as in [41] is bounded from
below by the inverse of Jj|k as [41,44]

Mj|k , E[x̃j|k(x̃j|k)
′] ≥ J−1

j|k

Compared with regular systems, the measurement zk of the nonlinear systems (1) and (2)
not only depends on the current state xk but also the most recent previous state xk−1
directly. The main goal of this paper is to obtain the recursive FIMs Jj|k for the prediction
and smoothing of nonlinear TASD systems without manipulating the larger matrix J j|k.

3. Recursive BCRLBs for Prediction and Smoothing
3.1. BCRLBs for General TASD Systems

For simplicity, the following notations are introduced in advance{
Dm,n

k+1 = E[−∆xm
xn ln p(xk+1|xk)] = (Dn,m

k+1)
′

Em,n
k+1 = E[−∆xm

xn ln p(zk+1|xk+1, xk)] = (En,m
k+1)

′ (3)

where m, n ∈ {k, k + 1}, and D0,0
0 = E[−∆x0

x0 ln p(x0)].
To initialize the recursion for FIMs of prediction and smoothing, the recursion of the

FIM Jk|k for filtering is required. This can be obtained from Corollary 3 of [51], as shown in
the following lemma.

Lemma 3. The FIM Jk|k for filtering obeys the following recursion [51]

Jk+1|k+1 = Dk+1,k+1
k+1 + Ek+1,k+1

k+1 − (Dk,k+1
k+1 + Ek,k+1

k+1 )
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· (Dk,k
k+1 + Ek,k

k+1 + Jk|k)
−1(Dk+1,k

k+1 + Ek+1,k
k+1 ) (4)

with J0|0 = D0,0
0 = E[−∆x0

x0 ln p(x0)].

3.1.1. BCRLB for Prediction

Theorem 1. The FIMs Jj+1|k and Jj|k are related to each other through

Jj+1|k = Dj+1,j+1
j+1 − Dj,j+1

j+1 (Dj,j
j+1 + Jj|k)

−1Dj+1,j
j+1 (5)

for j = k, k + 1, k + 2, · · · .

Proof. See Appendix A.

Substituting j = k, k + 1, · · · , k + m− 1 into (5), the recursions of the FIM for m-step
prediction can be obtained as

Jk+1|k = Dk+1,k+1
k+1 − Dk,k+1

k+1 (Dk,k
k+1 + Jk|k)

−1Dk+1,k
k+1

Jk+2|k = Dk+2,k+2
k+2 − Dk+1,k+2

k+2 (Dk+1,k+1
k+2 + Jk+1|k)

−1Dk+2,k+1
k+2

...

Jk+m|k = Dk+m,k+m
k+m − Dk+m−1,k+m

k+m (Dk+m−1,k+m−1
k+m + Jk+m−1|k)

−1Dk+m,k+m−1
k+m

(6)

where m ≥ 1.

3.1.2. BCRLB for Smoothing

Let X̂k|k = [x̂′0|k, · · · , x̂′j|k, x̂′k|k]
′, 1 6 j 6 k − 1 be an estimate of the accumulated

state consisting of the smoothing estimates x̂0|k, x̂1|k, · · · , x̂k−1|k, and the filtering estimate
x̂k|k. The MSE Mk|k for X̂k|k is bounded from below by the inverse of Jk|k. Thus (Jk|k)−1

contains the smoothing BCRLBs J−1
j|k , j = 0, 1, · · · , k− 1, and filtering BCRLB J−1

k|k on its
main diagonal. Then we have

(Jk|k)−1 =



J−1
0|k

. . .
J−1

j|k

J−1
j+1|k

. . .
J−1

k|k


=

[
[(Jk|k)−1]11

[(Jk|k)−1]22

]
(7)

where zero blocks have been left empty, [(Jk|k)−1]11 = diag(J−1
0|k , · · · , J−1

j|k ), [(Jk|k)−1]22 =

diag(J−1
j+1|k, · · · , J−1

k|k ), and ‘diag’ denotes diagonal matrix [52].

Theorem 2. The FIM Jj|k for smoothing can be recursively obtained as

Jj|k = Jj|j + Dj,j
j+1 + Ej,j

j+1 − (Dj+1,j
j+1 + Ej+1,j

j+1 )(Jj+1|k

+ Dj+1,j+1
j+1 + Ej+1,j+1

j+1 − Jj+1|j+1)
−1(Dj,j+1

j+1 + Ej,j+1
j+1 ) (8)

for j = k− 1, k− 2, · · · , 0. This backward recursion is initialized by the FIM Jk|k for filtering.
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Proof. See Appendix B.

3.2. Comparison with the BCRLBs for Nonlinear Regular Systems

For nonlinear regular systems, measurement zk only depends on state xk directly,
i.e., zk = hk(xk, vk). Clearly, nonlinear regular systems are special cases of nonlinear TASD
systems (2) since

zk = hk(xk, vk)

= hk(xk, vk) + 0 · xk−1

= h∗k (xk, xk−1, vk) (9)

As a result, the likelihood function p(zj+1|xj+1, xj) for TASD systems in (3) will be

reduced to p(zj+1|xj+1) for regular systems. Correspondingly, Ej,j
j+1, Ej+1,j

j+1 and Ej+1,j+1
j+1

in (3) will be reduced to 

Ej,j
j+1 = E[−∆

xj
xj ln p(zj+1|xj+1, xj)] = 0

Ej+1,j
j+1 = E[−∆

xj+1
xj ln p(zj+1|xj+1, xj)] = 0

Ej+1,j+1
j+1 = E[−∆

xj+1
xj+1 ln p(zj+1|xj+1, xj)]

= E[−∆
xj+1
xj+1 ln p(zj+1|xj+1)]

(10)

Substituting Ej,j
j+1, Ej+1,j

j+1 and Ej+1,j+1
j+1 in (10) into (8), the recursion of the FIM for

smoothing of TASD systems will be reduced to

Jj|k = Jj|j + Dj,j
j+1 − Dj+1,j

j+1 (Jj+1|k + Dj+1,j+1
j+1 + Ej+1,j+1

j+1 − Jj+1|j+1)
−1Dj,j+1

j+1 (11)

This is exactly the recursion of the FIM for smoothing of nonlinear regular systems
in [45]. That is, the recursion of the FIM for the smoothing of nonlinear regular systems is a
special case of the recursion of the FIM for the smoothing of nonlinear TASD systems.

For the FIM of prediction, it can be seen that the FIMs for prediction in (5) of TASD
systems are governed by the same recursive equations as the FIMs for regular systems
in [45], except that Jj|k, j = k, k + 1, k + 2, · · · , is different. This is because predictions for
both TASD systems and regular systems only depend on the same dynamic Equation (1).

Next, we study specific and simplified BCRLBs for TASD systems with additive
Gaussian noises.

3.3. BCRLBs for TASD Systems with Additive Gaussian Noise

Assume that the nonlinear systems (1) and (2) is driven by additive Gaussian noises as

xk+1 = fk(xk) + wk (12)

zk = hk(xk, xk−1) + vk (13)

where wk ∼ N (0, Qk), vk ∼ N (0, Rk) and the covariance matrices Qk and Rk are invertible.
Then the D’s and E’s of (3) used in the recursions of FIMs for prediction and smoothing
will be simplified to

Dk,k
k+1 = E{[∇xk f ′k(xk)]Q

−1
k [∇xk f ′k(xk)]

′}

Dk+1,k
k+1 = −E

[
∇xk f ′k(xk)

]
Q−1

k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = E{[∇xk h′k+1(xk+1, xk)]R

−1
k+1[∇xk h′k+1(xk+1, xk)]

′}

Ek+1,k
k+1 = E{[∇xk h′k+1(xk+1, xk)]R

−1
k+1[∇xk+1 h′k+1(xk+1, xk)]

′}

Ek+1,k+1
k+1 = E{[∇xk+1 h′k+1(xk+1, xk)]R

−1
k+1[∇xk+1 h′k+1(xk+1, xk)]

′}

(14)
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Assume that the systems (12) and (13) is further reduced to a linear Gaussian system as

xk+1 = Fkxk + wk (15)

zk = Hkxk + Ck−1xk−1 + vk (16)

where wk ∼ N (0, Qk), vk ∼ N (0, Rk) and the covariance matrices Qk and Rk are invertible.
Then the D’s and E’s of (3) used in the recursions of FIMs for prediction and smoothing
will be further simplified to 

Dk,k
k+1 = F ′kQ−1

k Fk

Dk+1,k
k+1 = −F ′kQ−1

k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = C′kR−1

k+1Ck

Ek+1,k
k+1 = C′kR−1

k+1Hk+1

Ek+1,k+1
k+1 = H ′k+1R−1

k+1Hk+1

(17)

Remark 1. If we rewrite the linear TASD systems (15) and (16) as the following augmented form[
xk+1

xk

]
=

[
Fk

Fk−1

][
xk

xk−1

]
+ w∗k (18)

zk =
[

Hk Ck−1
][ xk

xk−1

]
+ vk (19)

where zero blocks have been left empty and w∗k = [w′k, w′k−1]
′, then the process noise w∗k in (18) will be

correlated with its adjacent noises w∗k−1 and w∗k+1, but uncorrelated with {w∗0 , · · · , w∗k−2, w∗k+2, · · · }.
For this special type of linear system, how to obtain its BCRLBs is still unknown.

4. Recursive BCRLBs for Two Special Types of Nonlinear TASD Systems

Two special types of nonlinear systems, in which the measurement noises are autocor-
related or cross-correlated with the process noises at one time step apart, can be deemed as
nonlinear TASD systems described in (1) and (2). These two types of nonlinear systems are
very common in many engineering applications. For example, in target-tracking systems,
the high radar measurement frequency will result in autocorrelations of measurement
noises [29] and the discretization of continuous systems can induce the cross-correlation
between the process and measurement noises at one time step apart [35]. In naviga-
tion systems, the multi-path error and weak GPS signal will make measurement noises
autocorrelated [31] and the effect caused by vibration on the aircraft may result in the
cross-correlation between the process and measurement noises [36]. Next, specific recursive
BCRLBs for the prediction and smoothing of these two systems are obtained by applying
the above theorems in Section 3.

4.1. BCRLBs for Systems with Autocorrelated Measurement Noises

Consider the following nonlinear system

xk+1 = fk(xk) + wk (20)

yk = lk(xk) + ek (21)

where lk is a nonlinear measurement function, 〈ek〉 is autocorrelated measurement noise
satisfying a first-order autoregressive (AR) model [38]

ek = Ψk−1ek−1 + ξk−1 (22)
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where Ψk−1 is the known correlation parameter, the process noise 〈wk〉 and the driven
noise 〈ξk−1〉 are mutually independent white noise sequences, and both independent of
the initial state x0 as well.

To obtain the BCRLBs for the prediction and smoothing of nonlinear systems with
autocorrelated measurement noises, a TASD measurement equation is first constructed by
differencing two adjacent measurements as

zk = yk −Ψk−1yk−1 (23)

Then, we can get a pseudo measurement equation depending on two adjacent states as

zk = lk(xk)−Ψk−1lk−1(xk−1) + ek −Ψk−1ek−1

= hk(xk, xk−1) + vk (24)

where

hk(xk, xk−1) = lk(xk)−Ψk−1lk−1(xk−1)

vk = ξk−1

Clearly, the pseudo measurement noise 〈vk〉 in (24) is white and independent of the
process noise 〈wk〉 and the initial state x0.

From the above, we know that the systems (20)–(22) is equivalent to the TASD sys-
tems (20) and (24). Applying Theorems 1 and 2 to this TASD system, we can get the
BCRLBs for the prediction and smoothing of nonlinear systems with autocorrelated mea-
surement noises.

Next, we discuss some specific and simplified recursions of FIMs for the prediction
and smoothing of nonlinear and linear systems with autocorrelated measurement noises
when the noises are Gaussian.

Theorem 3. For the nonlinear systems (20)–(22), if the process noise wk ∼ N (0, Qk) and the
driven noise ξk ∼ N (0, Rk), then the D’s and E’s of (3) used in the recursions of FIMs for
prediction and smoothing will be simplified to

Dk,k
k+1 = E{[∇xk f ′k(xk)]Q

−1
k [∇xk f ′k(xk)]

′}

Dk+1,k
k+1 = −E

[
∇xk f ′k(xk)

]
Q−1

k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = E{[∇xk l′k(xk)Ψ

′
k]R
−1
k [∇xk l′k(xk)Ψ

′
k]
′}

Ek+1,k
k+1 = −E{[∇xk l′k(xk)Ψ

′
k]R
−1
k [∇xk+1 l′k+1(xk+1)]

′}

Ek+1,k+1
k+1 = E{[∇xk+1 l′k+1(xk+1)]R

−1
k [∇xk+1 l′k+1(xk+1)]

′}

(25)

Proof. See Appendix C.

Corollary 1. Assume that the systems (20)–(22) is reduced to a linear Gaussian system as

xk+1 = Fkxk + wk (26)

yk = Lkxk + ek (27)

ek = Ψk−1ek−1 + ξk−1 (28)
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Then the D’s and E’s of (25) in Theorem 3 will be simplified to

Dk,k
k+1 = F ′kQ−1

k Fk

Dk+1,k
k+1 = −F ′kQ−1

k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = L′kΨ′kR−1

k ΨkLk

Ek+1,k
k+1 = −L′kΨ′kR−1

k Lk+1

Ek+1,k+1
k+1 = L′k+1R−1

k Lk+1

(29)

Theorem 4. For the linear Gaussian systems (26)–(28) with autocorrelated measurement noises,
the inverse of FIM Jk+m|k for m-step prediction in Corollary 1 is equivalent to the MSE matrix
Pk+m|k of the optimal prediction, m ≥ 1, i.e.,

Pk+m|k = J−1
k+m|k (30)

Proof. See Appendix D.

Since Pk+m|k = J−1
k+m|k, m ≥ 1, the optimal predictors can attain the BCRLBs for

prediction proposed in Corollary 1, i.e., the optimal predictors are efficient estimators for
the linear Gaussian systems (26)–(28) with autocorrelated measurement noises.

4.2. BCRLBs for Systems with Noises Cross-Correlated at One Time Step Apart

Consider the following nonlinear system

xk+1 = fk(xk) + wk (31)

zk = lk(xk) + ek (32)

where wk ∼ N (0, Qk), ek ∼ N (0, Ek) and they are cross-correlated at one time step
apart [39], satisfying E[wke′j] = Ukδk,j−1, where δk,j−1 is the Kronecker delta function. Both
〈wk〉 and 〈ek〉 are independent of the initial state x0.

To obtain the BCRLBs for the prediction and smoothing of nonlinear systems with
noises cross-correlated at one time step apart, as in [50], a TASD measurement equation is
constructed as

zk = lk(xk) + ek + Gk(xk − fk−1(xk−1)−wk−1)

= hk(xk, xk−1) + vk (33)

where

hk(xk, xk−1) = lk(xk) + Gk(xk − fk−1(xk−1))

vk = ek −Gkwk−1

Gk = U ′k−1Q−1
k−1

Clearly, the pseudo measurement noise 〈vk〉 is uncorrelated with the process noise
〈wk−1〉, and E[vk] = 0, cov(vk) = Rk = Ek −U ′k−1Q−1

k−1Uk−1.

Proposition 1. For the reconstructed TASD systems (31) and (33), hk(xk, xk−1) is independent of
the pseudo measurement noise 〈vk〉.

Proof. First, from the assumption of noise independence, we know that xk−1 is indepen-
dent of 〈ek〉 and 〈wk−1〉. Therefore, it is obvious that xk−1 is independent of 〈vk〉. Second,
because the state xk in hk(xk, xk−1) is only determined by {x0, w0, · · · , wk−1}, which is
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independent of 〈vk〉, the state xk is independent of 〈vk〉. Therefore, hk(xk, xk−1) is indepen-
dent of the pseudo measurement noise 〈vk〉. This completes the proof.

Proposition 1 shows that the reconstructed TASD systems (31) and (33) satisfies the
independence assumption of the TASD systems in Section 2.

From the above, we know that the systems (31) and (32) is equivalent to the TASD
systems (31) and (33). Applying Theorems 1 and reftheorem4 to this TASD system, the
BCRLBs for the prediction and smoothing of nonlinear systems in which the measurement
noise is cross-correlated with the process noise at one time step apart can be obtained.

Next, we discuss some specific and simplified recursions of FIMs for the prediction
and smoothing of nonlinear and linear systems with Gaussian process and measurement
noises cross-correlated at one time step apart.

Theorem 5. For the nonlinear systems (31)–(32), if the process noise wk ∼ N (0, Qk) and the
measurement noise ek ∼ N (0, Ek), then the D’s and E’s of (3) used in recursions of FIMs for
prediction and smoothing will be simplified to

Dk,k
k+1 = E{[∇xk f ′k(xk)]Q

−1
k [∇xk f ′k(xk)]

′}

Dk+1,k
k+1 = −E[∇xk f ′k(xk)]Q

−1
k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = E{[∇xk f ′k(xk)G

′
k+1]R

−1
k+1[∇xk f ′k(xk)G

′
k+1]

′}

Ek+1,k
k+1 = −E{[∇xk f ′k(xk)G

′
k+1]R

−1
k+1[∇xk+1 l′k+1(xk+1) + G′k+1]

′}

Ek+1,k+1
k+1 = E{[∇xk+1 l′k+1(xk+1) + G′k+1]R

−1
k+1[∇xk+1 l′k+1(xk+1) + G′k+1]

′}

(34)

Corollary 2. Assume that the systems (31)–(32) is reduced to a linear Gaussian system as

xk+1 = Fkxk + wk (35)

zk = Lkxk + ek (36)

Then the D’s and E’s of (34) in Theorem 5 will be simplified to

Dk,k
k+1 = F ′kQ−1

k Fk

Dk+1,k
k+1 = −F ′kQ−1

k

Dk+1,k+1
k+1 = Q−1

k

Ek,k
k+1 = F ′kG′k+1R−1

k+1Gk+1Fk

Ek+1,k
k+1 = −F ′kG′k+1R−1

k+1(L′k+1 + G′k+1)
′

Ek+1,k+1
k+1 = (L′k+1 + G′k+1)R−1

k+1(L′k+1 + G′k+1)
′

(37)

Theorem 6. For the linear Gaussian systems (35) and (36) with cross-correlated process and
measurement noises at one time step apart, the inverse of FIM Jk+m|k for m-step prediction in
Corollary 2 is equivalent to the MSE matrix Pk+m|k of the optimal prediction, m ≥ 1, i.e.,

Pk+m|k = J−1
k+m|k (38)

Proof. See Appendix E.

Since Pk+m|k = J−1
k+m|k, m ≥ 1, the optimal predictors can attain the BCRLBs for

prediction proposed in Corollary 2, i.e., the optimal predictors are efficient estimators for
the linear Gaussian systems (35) and (36) with cross-correlated process and measurement
noises at one time step apart.
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5. Illustrative Examples

In this section, illustrative examples in radar target tracking are presented to demon-
strate the effectiveness of the proposed recursive BCRLBs for the prediction and smoothing
of nonlinear TASD systems.

Consider a target with nearly constant turn (NCT) motion in a 2D plane [14,40,48,53].
The target motion model is

xk+1 =


1 sin ωT

ω 0 cos ωT−1
ω

0 cos ωT 0 − sin ωT
0 1−cos ωT

ω 1 sin ωT
ω

0 sin ωT 0 cos ωT

xk + wk (39)

where xk = [xk, ẋk, yk, ẏk]
′ is the state vector, T = 1 s is the sampling interval, ω = 2◦s−1 is

the turning rate and the process noise wk ∼ N (0, Qk) with [53]

Qk = Sw


2(ωT−sin ωT)

ω3
1−cos ωT

ω2 0 (ωT−sin ωT)
ω2

1−cos ωT
ω2 T − (ωT−sin ωT)

ω2 0

0 − (ωT−sin ωT)
ω2

2(ωT−sin ωT)
ω3

1−cos ωT
ω2

(ωT−sin ωT)
ω2 0 1−cos ωT

ω2 T

 (40)

where Sw = 0.1 m2s−3 is the power spectral density.
Assume that a 2D radar is located at the origin of the plane. The measurement model is

zk+1 =

[
rm

k+1
θm

k+1

]
=

[ √
x2

k+1 + y2
k+1

tan−1(yk+1, xk+1)

]
+ ek+1 (41)

where the radar measurement vector zk+1 is composed of the range measurement rm
k+1 and

bearing measurement θm
k+1, and ek+1 is the measurement noise.

5.1. Example 1: Autocorrelated Measurement Noises

In this example, we assume that the measurement noise sequence 〈ek+1〉 in (41) is
first-order autocorrelated and modeled as

ek+1 = 0.4Iek + ξk (42)

where I is a 2× 2 identity matrix, the driven noise ξk ∼ N (0, Rk)with Rk = diag(σ2
r (ξ), σ2

θ (ξ)),
σr(ξ) = 30 m and σθ(ξ) = 30 mrad. Further, 〈wk〉 and 〈ξk〉 are mutually independent.
The initial state X0 ∼ N (X̄0, P0) with

X̄0 = [1000 m, 120 ms−1, 1000 m, 0 ms−1]′

P0 = diag(10,000 m2, 100 m2s−2, 10,000 m2, 10 m2s−2)

To show the effectiveness of the proposed BCRLBs in this radar target tracking example
with autocorrelated measurement noises, we use the cubature Kalman filter (CKF) [37],
cubature Kalman predictor (CKP) [37] and cubature Kalman smoother (CKS) [38] to obtain
the state estimates. These estimators generate an augmented measurement to decorrelate
the autocorrelated measurement noises instead of using the first-order linearization method.
Meanwhile, these Gaussian approximate estimators can obtain accurate estimates with very
low computational cost, especially in the high-dimensional case with additive Gaussian
noises. The RMSEs and BCRLBs are obtained over 500 Monte Carlo runs.

Figure 1 shows the RMSE versus
√

BCRLB for position and velocity estimation. It
can be seen that the proposed BCRLBs provide lower bounds to the MSEs of CKP and
CKS. Moreover, the gaps between the RMSEs of CKP and CKS and the

√
BCRLBs for

one-step prediction and fixed-interval smoothing are very small. This means that the
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CKP and CKS are close to being efficient. Moreover, it can be seen that the
√

BCRLB for
one-step prediction lies above the

√
BCRLB for filtering and the RMSE of CKP lies above

the RMSE of CKF. This is because prediction only depends on the dynamic model, whereas
filtering depends on both the dynamic and measurement models. Since smoothing uses
both past and future information, the

√
BCRLB for fixed-interval smoothing is lower than

the
√

BCRLB for filtering and the RMSE of CKS is lower than the RMSE of CKF.
Figure 2 shows the

√
BCRLBs for multi-step prediction, i.e., 1-step to 5-step prediction.

It can be seen that the more steps we predict ahead, the larger the
√

BCRLB for prediction
is. This is because if we take more prediction steps, the predictions for position and velocity
will be less accurate.

Figure 3 shows the
√

BCRLBs for fixed-lag and fixed-interval smoothing. It can be
seen that the

√
BCRLB for 1-step fixed-lag smoothing is the worst and the

√
BCRLB for

fixed-interval smoothing is the best. This is because the smoothing estimation becomes
more and more accurate as the length of the data interval increases.
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(b) Velocity estimation

Figure 1. RMSE versus
√

BCRLB in Example 1.
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Figure 2.
√

BCRLBs for prediction in Example 1.
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Figure 3.
√

BCRLBs for smoothing in Example 1.

5.2. Example 2: Cross-Correlated Process and Measurement Noises at One Time Step Apart

In this example, we assume that the process noise sequence 〈wk〉 in (39) is cross-
correlated with the measurement noise sequence 〈ek〉 in (41) at one time step apart.

The cross-correlation covariance is E[wke′k+1] = Uk =

[
0.5 0.5 0.3 0.3
0 0 0 0

]′
. The distri-

bution of ek is N (0, Ek) with Ek = diag(σ2
r (e), σ2

θ (e)), σr(e) = 30 m and σθ(e) = 40 mrad.
The initial state X0 ∼ N (X̄0, P0) with

X̄0 = [1000 m, 120 ms−1, 1000 m, 10 ms−1]′

P0 = diag(10,000 m2, 1000 m2s−2, 10,000 m2, 10 m2s−2)

To show the effectiveness of the proposed BCRLBs in this radar target tracking example
with the the cross-correlated process and measurement noises at one time step apart, we
use the cubature Kalman filter (CKF), cubature Kalman predictor (CKP) and cubature
Kalman smoother (CKS) in [40] to obtain the state estimates. These estimators decorrelate
the cross-correlation between process and measurement noises by reconstructing a pseudo
measurement equation. Compared with the Monte Carlo approximation method, these
Gaussian approximate estimators can give an effective balance between estimation accuracy
and computational cost. A total of 500 Monte Carlo runs are performed to obtain the RMSEs
and BCRLBs.

Figure 4 shows the RMSEs of CKF, CKP and CKS versus three types of
√

BCRLBs,
i.e., for filtering, one-step prediction and fixed-interval smoothing. It can be seen that
the RMSEs of CKP and CKS are bounded from below by their corresponding

√
BCRLBs.

It can also be observed that the gaps between the RMSEs of CKP and CKS and their
corresponding

√
BCRLBs are very small. This indicates that these estimators are close to

being efficient. Moreover, we can see that the
√

BCRLB for one-step prediction lies above
the
√

BCRLB for filtering, and the RMSE of CKP lies above the RMSE of CKF because
prediction uses less information than filtering. Since smoothing uses data within the whole
interval, the

√
BCRLB for fixed-interval smoothing is lower than the

√
BCRLB for filtering

and the RMSE of CKS is lower than the RMSE of CKF.
Figure 5 shows the

√
BCRLBs for multi-step prediction. We can see that the

√
BCRLB

for prediction grows as the prediction step increases. This is because if we predict more
steps ahead, the predictions for position and velocity will be less accurate.
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Figure 6 shows the
√

BCRLBs for fixed-lag and fixed-interval smoothing. Clearly,
smoothing becomes more accurate as the length of the data interval increases. Hence,
the
√

BCRLB for 1-step fixed-lag smoothing is the worst. In contrast, the
√

BCRLB for
fixed-interval smoothing is the best.
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Figure 4. RMSE versus
√

BCRLB in Example 2.
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Figure 5.
√

BCRLBs for prediction in Example 2.
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Figure 6.
√

BCRLBs for smoothing in Example 2.

6. Conclusions

In this paper, we have proposed recursive BCRLBs for the prediction and smoothing
of nonlinear dynamic systems with TASD measurements, i.e., the current measurement
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depends on both the current and the most recent previous state directly. A comparison with
the recursive BCRLBs for nonlinear regular systems, in which the current measurement
only depends on the current state directly, has been made. It is found that the BCRLB for
the smoothing of regular systems is a special case of the newly proposed BCRLB, and the
recursive BCRLBs for the prediction of TASD systems have the same forms as the BCRLBs
for the prediction of regular systems except that the FIMs are different. This is because
prediction only depends on the dynamic model, which is the same for both of them. Specific
and simplified forms of the BCRLBs for the additive Gaussian noise cases have also been
given. In addition, the recursive BCRLBs for the prediction and smoothing of two special
types of nonlinear systems with TASD measurements, in which the original measurement
noises are autocorrelated or cross-correlated with the process noises at one time step apart,
have been presented, respectively. It is proven that the optimal linear predictors are efficient
estimators if these two special types of nonlinear TASD systems are linear Gaussian.
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Appendix A. Proof of Theorem 1

For the FIM J j+1|k, the joint PDF of X j+1 and Zk is

pj+1
k , p(X j+1, Zk) = p(X j, Zk)p(xj+1|X j, Zk)

= pj
k p(xj+1|xj) (A1)
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Partition X j as X j = [(X j−1)′, x′j]
′ and J j|k as

J j|k = −E
pj

k

[
∆X j−1

X j−1 ln pj
k ∆

xj

X j−1 ln pj
k

∆X j−1
xj

ln pj
k ∆

xj
xj ln pj

k

]

=

[
J11

j|k J12
j|k

J21
j|k J22

j|k

]
(A2)

Since J−1
j|k is equal to the n× n right-lower block of (J j|k)−1, from the inversion of a

partitioned matrix [24], the FIM about xj can be obtained as

Jj|k = J22
j|k − J21

j|k(J11
j|k)
−1 J12

j|k (A3)

Partition X j+1 as X j+1 = [(X j−1)′, x′j, x′j+1]
′ and J j+1|k as

J j+1|k = −E
pj+1

k


∆X j−1

X j−1 ln pj+1
k ∆

xj

X j−1 ln pj+1
k ∆

xj+1

X j−1 ln pj+1
k

∆X j−1
xj

ln pj+1
k ∆

xj
xj ln pj+1

k ∆
xj+1
xj ln pj+1

k

∆X j−1
xj+1

ln pj+1
k ∆

xj
xj+1 ln pj+1

k ∆
xj+1
xj+1 ln pj+1

k

 (A4)

where

E
pj+1

k
(−∆X j−1

X j−1 ln pj+1
k ) = −

∫
Rkm

∫
R(j+2)n

pj+1
k (∆X j−1

X j−1 ln pj+1
k )dX j+1dZk

= −
∫
Rkm

∫
R(j+2)n

pj
k p(xj+1|xj)[∆X j−1

X j−1(ln pj
k + ln p(xj+1|xj))]dX j+1dZk

= −
∫
Rkm

∫
R(j+1)n

pj
k(∆

X j−1

X j−1 ln pj
k)dX jdZk

(A2)
= J11

j|k (A5)

Similarly, we can obtain

E
pj+1

k
(−∆

xj

X j−1 ln pj+1
k ) = J12

j|k

E
pj+1

k
(−∆

xj
xj ln pj+1

k ) = J22
j|k + Dj,j

j+1

E
pj+1

k
(−∆

xj+1

X j−1 ln pj+1
k ) = 0

E
pj+1

k
(−∆

xj+1
xj ln pj+1

k ) = Dj+1,j
j+1

E
pj+1

k
(−∆

xj+1
xj+1 ln pj+1

k ) = Dj+1,j+1
j+1

(A6)

Then, J j+1|k can be rewritten as

J j+1|k =


J11

j|k J12
j|k 0

J21
j|k J22

j|k + Dj,j
j+1 Dj+1,j

j+1

0 Dj,j+1
j+1 Dj+1,j+1

j+1

 (A7)

Since the prediction FIM matrix Jj+1|k is the inverse of the right-lower n× n submatrix
of J j+1|k, from (A7), we have

Jj+1|k = Dj+1,j+1
j+1 −

[
0 Dj,j+1

j+1

][ J11
j|k J12

j|k
J21

j|k J22
j|k + Dj,j

j+1

]−1[
0

Dj+1,j
j+1

]
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= Dj+1,j+1
j+1 − Dj,j+1

j+1 [J22
j|k + Dj,j

j+1 − J21
j|k(J11

j|k)
−1 J12

j|k]
−1Dj+1,j

j+1

(A3)
= Dj+1,j+1

j+1 − Dj,j+1
j+1 (Dj,j

j+1 + Jj|k)
−1Dj+1,j

j+1

This completes the proof.

Appendix B. Proof of Theorem 2

For the FIM Jk|k, the joint PDF of Xk and Zk at arbitrary time k is

p(Xk, Zk) = p(Xk−1, Zk−1)p(xk|Xk−1, Zk−1)p(zk|xk, Xk−1, Zk−1)

= p(Xk−1, Zk−1)p(xk|xk−1)p(zk|xk, xk−1) (A8)

Similar to (A7), by using (A8), we can partition Jk|k as

Jk|k =

[
Tj|j Sj,k

S′j,k Ψj,k

]

=



K0 N1

N ′1
. . . . . .
. . . Kj Nj+1

N ′j+1 Kj+1
. . .

. . . . . . . . .
. . . Kk−1 Nk

N ′k Dk,k
k + Ek,k

k



(A9)

where zero blocks have been left empty, Kk = Dk,k
k + Ek,k

k + Dk,k
k+1 + Ek,k

k+1, Nk = Dk,k−1
k +

Ek,k−1
k , and the block matrix Tj|j is

Tj|j =

[
J11

j|j J12
j|j

J21
j|j J22

j|j + Dj,j
j+1 + Ej,j

j+1

]
(A10)

Since J−1
j|k is the lower-right block of [(Jk|k)−1]11 defined in (7), we have

J−1
j|k = [0, In][(Jk|k)−1]11[0, In]

′ (A11)

From (A9) and the inversion of a partitioned matrix [24], we have

[(Jk|k)−1]11 = T−1
j|j + T−1

j|j Sj,k[(Jk|k)−1]22S′j,kT−1
j|j (A12)

and

[0, In]T−1
j|j [0, In]

′ = (J22
j|j + Dj,j

j+1 + Ej,j
j+1 − J21

j|j (J11
j|j )
−1 J12

j|j )
−1

= (Jj|j + Dj,j
j+1 + Ej,j

j+1)
−1 (A13)

Substituting (A12) into (A11) and using (A13) yields

J−1
j|k = (Jj|j + Dj,j

j+1 + Ej,j
j+1)

−1 + (Jj|j + Dj,j
j+1 + Ej,j

j+1)
−1(Dj+1,j

j+1 + Ej+1,j
j+1 )J−1

j+1|k
· (Dj,j+1

j+1 + Ej,j+1
j+1 )(Jj|j + Dj,j

j+1 + Ej,j
j+1)

−1
(A14)
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Then using the matrix inversion lemma [24], the FIM Jj|k is given by

Jj|k = Jj|j + Dj,j
j+1 + Ej,j

j+1 − (Dj+1,j
j+1 + Ej+1,j

j+1 )[(Dj,j+1
j+1 + Ej,j+1

j+1 )(Jj|j + Dj,j
j+1 + Ej,j

j+1)
−1

· (Dj+1,j
j+1 + Ej+1,j

j+1 ) + Jj+1|k]
−1(Dj,j+1

j+1 + Ej,j+1
j+1 )

(A15)

Substituting (4) into (A15), we have

Jj|k = Jj|j + Dj,j
j+1 + Ej,j

j+1 − (Dj+1,j
j+1 + Ej+1,j

j+1 )(Jj+1|k + Dj+1,j+1
j+1 + Ej+1,j+1

j+1 − Jj+1|j+1)
−1

· (Dj,j+1
j+1 + Ej,j+1

j+1 )
(A16)

This completes the proof.

Appendix C. Proof of Theorem 3

From the assumptions that the noises are additive Gaussian white noises, we have

ln p(xk+1|xk) = c2 −
1
2
(xk+1 − fk(xk))

′Q−1
k (xk+1 − fk(xk)) (A17)

where c2 is a constant.
Thus, the partial derivatives of ln p(xk+1|xk) are

−∇xk ln p(xk+1|xk)

= ∇xk [
1
2 ((xk+1 − fk(xk))

′Q−1
k (xk+1 − fk(xk))]

= ∇xk
1
2 [x
′
k+1Q−1

k xk+1 − x′k+1Q−1
k fk(xk)− f ′k(xk)Q

−1
k xk+1 + f ′k(xk)Q

−1
k fk(xk))]

= ∇xk f ′k(xk, θx)Q−1
k ( fk(xk)− xk+1)

(A18)
−∆xk

xk ln p(xk+1|xk)
= −∇xk∇′xk

ln p(xk+1|xk)

= ∇xk [( f ′k(xk)− x′k+1)Q
−1
k ∇xk fk(xk)]

= ∇xk f ′k(xk)Q
−1
k ∇xk fk(xk) + ∆xk

xk f ′k(xk, θx)Q−1
k fk(xk)− ∆xk

xk f ′k(xk)Q
−1
k xk+1

= ∇xk f ′k(xk)Q
−1
k ∇xk fk(xk)− ∆xk

xk f ′k(xk, θx)Q−1
k (xk+1 − fk(xk))

(A19)

Substituting (A19) into (3), we have

Dk,k
k+1 = E[−∆xk

xk ln p(xk+1|xk)]

= E[∇xk f ′k(xk)Q
−1
k ∇xk fk(xk)− ∆xk

xk f ′k(xk)Q
−1
k (xk+1 − fk(xk))]

= E[∇xk f ′k(xk)Q
−1
k ∇xk fk(xk)]

(A20)

The remaining Dk+1,k
k+1 , Dk+1,k+1

k+1 , Ek,k
k+1, Ek+1,k

k+1 and Ek+1,k+1
k+1 can be obtained similarly.

This completes the proof.

Appendix D. Proof of Theorem 4

Applying the optimal filter [24] to the linear Gaussian systems (26)–(28), we have

H∗k = Lk+1Fk −ΨkLk (A21)

R∗k = Lk+1QkL′k+1 + Rk (A22)

F∗k = Fk −QkL′k+1(R∗k )
−1H∗k (A23)

Q∗k = Qk −QkL′k+1(R∗k )
−1Lk+1Qk (A24)

Kk = Pk|k(H∗k )
′S−1

k (A25)

Sk = H∗k Pk|k(H∗k )
′ + R∗k (A26)

Pk|k+1 = Pk|k − KkSkK′k
(A25)
= Pk|k − Pk|k(H∗k )

′S−1
k H∗k Pk|k (A27)
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Pk+1|k+1 = F∗k Pk|k+1(F∗k )
′ + Q∗k (A28)

For simplicity, we introduce
B11

k = Dk,k
k+1 + Ek,k

k+1

B12
k = Dk+1,k

k+1 + Ek+1,k
k+1 = (B21

k )′

B22
k = Dk+1,k+1

k+1 + Ek+1,k+1
k+1

(A29)

From (4) and the matrix inversion lemma [24], we have

J−1
k+1|k+1 = [B22

k − B21
k (B11

k + Jk|k)
−1B12

k ]−1

= (B22
k )−1 + (B22

k )−1B21
k [B11

k + Jk|k − B12
k (B22

k )−1B21
k ]−1B12

k (B22
k )−1

(A30)

Let
Pk|k = J−1

k|k (A31)

The inverse of B22
k in (A30) can be rewritten as

(B22
k )−1 = (Q−1

k + L′k+1R−1
k+1Lk+1)

−1

= Qk −QkL
′
k+1(R∗k )

−1Lk+1Qk

(A24)
= Q∗k . (A32)

Rewrite (B22
k )−1B21

k in (A30) as

(B22
k )−1B21

k

= (Qk −QkL
′
k+1(R∗k )

−1Lk+1Qk)(−Q−1
k Fk − L

′
k+1R−1

k ΨkLk)

= −Fk −QkL′k+1R−1
k ΨkLk + QkL

′
k+1(R∗k )

−1Lk+1Fk

+QkL
′
k+1(R∗k )

−1Lk+1QkL
′
k+1R−1

k ΨkLk

(A23)
= −F∗k + QkL

′
k+1(R∗k )

−1ΨkLk

−QkL
′
k+1(R∗k )

−1[R∗k − Lk+1QkL′k+1]R
−1
k ΨkLk

(A22)
= −F∗k .

(A33)

Similarly, rewrite B11
k + Jk|k − B12

k (B22
k )−1B21

k as

B11
k + Jk|k − B12

k (B22
k )−1B21

k

= Jk|k+F
′
kQ−1

k Fk+L
′
kΨ
′
kR−1

k ΨkLk−(F′kQ−1
k +L′kΨ′kR−1

k Lk+1)

· [Qk −QkL
′
k+1(R∗k )

−1Lk+1Qk](F ′kQ−1
k + L′kΨ′kR−1

k Lk+1)
′

= Jk|k+F
′
kQ−1

k Fk+L
′
kΨ
′
kR−1

k ΨkLk−(F ′kQ−1
k +L′kΨ′kR−1

k Lk+1)

·Qk(F ′kQ−1
k + L′kΨ′kR−1

k Lk+1)
′ + (F ′kQ−1

k + L′kΨ′kR−1
k Lk+1)

·QkL
′
k+1(R∗k )

−1Lk+1Qk(F ′kQ−1
k + L′kΨ′kR−1

k Lk+1)
′

= Jk|k + F
′
kQ−1

k Fk + L
′
kΨ
′
kR−1

k ΨkLk − F
′
kQ−1

k Fk − F ′k L
′
k+1R−1

k ΨkLk (A34)

− L′kΨ′kR−1
k Lk+1QkL

′
k+1R−1

k ΨkLk − L′kΨ′kR−1
k Lk+1Fk

+ [(H∗k )
′L′kΨ′kR−1

k R∗k )](R∗k )
−1[(H∗k )

′L′kΨ′kR−1
k R∗k )]

′

= Jk|k − (H∗k )
′R−1

k ΨkLk − L′kΨ′kR−1
k Lk+1QkL

′
k+1R−1

k ΨkLk − L′kΨ′kR−1
k Lk+1Fk

+ (H∗k )
′(Lk+1QkL

′
k+1 + Rk)

−1H∗k + L′kΨ′kR−1
k H∗k



Sensors 2022, 22, 4667 20 of 23

+ (H∗k )
′R−1

k ΨkLk + L′kΨ′kR−1
k R∗k R−1

k ΨkLk

= Jk|k − L′kΨ′kR−1
k H∗k + (H∗k )

′(R∗k )
−1H∗k

− L′kΨ′kR−1
k (Lk+1QkL

′
k+1 − R∗k )R−1

k ΨkLk

= Jk|k + (H∗k )
′(R∗k )

−1H∗k .

Thus, the inverse of B11
k + Jk|k − B12

k (B22
k )−1B21

k becomes

(B11
k + Jk|k − B12

k (B22
k )−1B21

k )−1

= (P−1
k|k + (H∗k )

′(R∗k )
−1H∗k )

−1

= Pk|k − Pk|k(H∗k )
′[R∗k + H∗k Pk|k(H∗k )

′]−1H∗k Pk|k (A35)

= Pk|k − Pk|k(H∗k )
′S−1

k H∗k Pk|k
(A27)
= Pk|k+1

Then, from (A30), (A32), (A33) and (A35), the inverse of Jk+1|k+1 is

J−1
k+1|k+1 = Q∗k + F∗k Pk|k+1(F∗k )

′ (A28)
= Pk+1|k+1. (A36)

Using (6) and Corollary 1, the FIM for one-step prediction can be obtained as

Jk+1|k = Dk+1,k+1
k+1 − Dk,k+1

k+1 (Dk,k
k+1 + Jk|k)

−1Dk+1,k
k+1

= Q−1
k −Q−1

k Fk(F ′kQ−1
k Fk + Jk|k)

−1F ′kQ−1
k (A37)

= (Qk + Fk J−1
k|k F ′k)

−1

For the optimal one-step predictor, the MSE matrix Pk+1|k is given by

Pk+1|k = E[x̃k+1|k x̃′k+1|k|y
k] = FkPk|kF ′k + Qk (A38)

Then we have

Pk+1|k
(A31)(A37)

= J−1
k+1|k (A39)

Using (6) and Corollary 1, the FIM for two-step prediction can be written as

Jk+2|k = Dk+2,k+2
k+2 − Dk+1,k+2

k+2 (Dk+1,k+1
k+2 + Jk+1|k)

−1Dk+2,k+1
k+2

= Q−1
k+1 −Q−1

k+1Fk+1(F ′k+1Q−1
k+1Fk+1 + Jk+1|k)

−1F ′k+1Q−1
k+1

= (Qk+1 + Fk+1 J−1
k+1|kF ′k+1)

−1 (A40)

For the optimal two-step predictor, one has

x̃k+2|k = xk+2 − x̂k+2|k

= Fk+1(xk+1 − x̂k+1|k) + vk+1 (A41)

and

Pk+2|k = E[x̃k+2|k x̃′k+2|k|y
k]

= Fk+1Pk+1|kF ′k+1 + Qk+1 (A42)

Then it follows from (A39), (A40) and (A42) that

Pk+2|k = J−1
k+2|k (A43)
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Similarly, we can prove that Pk+m|k = J−1
k+m|k, m ≥ 3. This completes the proof.

Appendix E. Proof of Theorem 6

For the linear Gaussian systems (35) and (36), from [49], we have Pk|k = J−1
k|k .

Using (6) and Corollary 2, the FIM for one-step prediction can be written as

Jk+1|k = Dk+1,k+1
k+1 − Dk,k+1

k+1 (Dk,k
k+1 + Jk|k)

−1Dk+1,k
k+1

= Q−1
k −Q−1

k Fk(F ′kQ−1
k Fk + Jk|k)

−1F ′kQ−1
k (A44)

= (Qk + Fk J−1
k|k F ′k)

−1

For the optimal one-step predictor, the MSE matrix Pk+1|k is given by

Pk+1|k = FkPk|kF ′k + Qk (A45)

From (A44), (A45) and Pk|k = J−1
k|k , we can obtain

Pk+1|k = J−1
k+1|k (A46)

Using (6) and Corollary 2, the FIM for two-step prediction is given by

Jk+2|k = Dk+2,k+2
k+2 − Dk+1,k+2

k+2 (Dk+1,k+1
k+2 + Jk+1|k)

−1Dk+2,k+1
k+2

= Q−1
k+1 −Q−1

k+1Fk+1(F ′k+1Q−1
k+1Fk+1 + Jk+1|k)

−1F ′k+1Q−1
k+1 (A47)

= (Qk+1 + Fk+1 J−1
k+1|kF ′k+1)

−1

For the optimal two-step predictor, one has

x̃k+2|k = xk+2 − x̂k+2|k

= Fk+1(xk+1 − x̂k+1|k) + vk+1 (A48)

and

Pk+2|k = E[x̃k+2|k x̃′k+2|k|Z
k]

= Fk+1Pk+1|kF ′k+1 + Qk+1 (A49)

Then it follows from (A46), (A47) and (A49) that

Pk+2|k = J−1
k+2|k (A50)

Similarly, we can prove that Pk+m|k = J−1
k+m|k, m ≥ 3. This completes the proof.
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