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Abstract: Object detection is one of the most important and challenging branches of computer
vision. It has been widely used in people’s lives, such as for surveillance security and autonomous
driving. We propose a novel dual-path multi-scale object detection paradigm in order to extract
more abundant feature information for the object detection task and optimize the multi-scale object
detection problem, and based on this, we design a single-stage general object detection algorithm
called Dual-Path Single-Shot Detector (DPSSD). The dual path ensures that shallow features, i.e.,
residual path and concatenation path, can be more easily utilized to improve detection accuracy.
Our improved dual-path network is more adaptable to multi-scale object detection tasks, and we
combine it with the feature fusion module to generate a multi-scale feature learning paradigm called
the “Dual-Path Feature Pyramid”. We trained the models on PASCAL VOC datasets and COCO
datasets with 320 pixels and 512 pixels input, respectively, and performed inference experiments to
validate the structures in the neural network. The experimental results show that our algorithm has
an advantage over anchor-based single-stage object detection algorithms and achieves an advanced
level in average accuracy. Researchers can replicate the reported results of this paper.

Keywords: convolution neural networks; object detection; single-stage; multi-scale

1. Introduction

After the success of deep convolution neural networks (DCNN) [1] in the field of image
classification, the object detection algorithm also introduces deep-learning technology and
has achieved significant progress [2,3]. These new algorithms based on deep learning
are much better than the traditional algorithm because the feature of the manual design
is replaced with the feature representation computed via convolution neural networks.
However, multi-scale feature learning is a critical problem of the detection algorithms
based on deep learning. To optimize this problem and improve the detection effect of
the single-stage multi-scale detector based on the anchor box, we conducted a relevant
literature search and experiments.

In general, the objects are placed in a complex environment and have a large variance
in scale; for example, in applications such as pedestrian detection, face detection and
autonomous driving, the algorithm has to be robust to changes in the scale of the object [4].
It is critical to train a robust and discriminate feature to obtain good detection performance.
There are four main paradigms to address the multi-scale feature learning problem: the
image pyramid, the prediction pyramid, integrated features and the feature pyramid
(Figure 1). SNIP [5] uses the image pyramid to solve the multi-scale problem, where
each layer is responsible for a certain range of scales (Figure 1a). In this way, the same
sample needs to be converted into different scales and repeatedly input to the network for
training. This results in many redundant calculations. By fusing the shallow features rich
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in space and the deep features rich in semantics, the newly constructed features contain
rich information and, thus, can detect the objects of different scales. Single-Shot MultiBox
Detector (SSD) [6] and Multi-scale Deep Convolutional Neural Network (MSCNN) [7] use
both shallow features rich in geometric information and deep features rich in semantic
information to predict objects at different scales, which we call multi-scale prediction, using
a prediction pyramid, where each layer is responsible for a certain scale of objects, as shown
in Figure 1b. The Inside-Outside Network (ION) [8] and HyperNet [9] use integrated
features to combine multiple layers of features to build a single feature map, and they make
a final prediction based on it (Figure 1c). The Feature Pyramid Network (FPN) [10] uses the
feature pyramid to integrate different scale features with lateral connections in a top-down
fashion to build a set of scale-invariant feature maps to train multiple scale-dependent
classifiers. This method also combines the deep semantic-rich features and the shallow
spatially rich features (Figure 1d). FPN has significantly improved the performance of
object detection algorithms and has achieved advanced state-of-the-art results in learning
multi-scale features. However, these paradigms can only use information from a single
layer of feature maps at different scales.
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Figure 1. Four paradigms of multi-scale object detection. (a) Image Pyramid: It learns multiple
detectors from different scale images. (b) Prediction Pyramid: It predicts on multiple feature maps.
(c) Integrated Features: They predict on a single feature map generated from multiple features.
(d) Feature Pyramid: It combines the structure of the prediction pyramid and integrated features.
(e) Dual-Path Feature Pyramid: It uses the structure of the prediction pyramid and two methods of
feature fusion.

Feature fusion is the merging of different feature maps. In order to fully capture
information at all levels of the feature map at different scales [4], we propose a paradigm
to address multi-scale feature learning problems by using the dual-path feature pyramid
(Figure 1e), which uses the structure of prediction pyramid and two methods of feature
fusion, i.e., residual connection [1] and concatenation connection [11]. Figure 2 shows
the overall structure of our detector. “Element-wise sum” denotes the matrix addition
and is abbreviated as “Elts”. The overall framework consists of a base network, a feature
fusion module and a prediction module. We used the idea of dual-path networks [12] to
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design our base network for the single-stage detector to obtain robust and discriminate
features. Our dual-path network can generate six different resolutions of feature maps for
multi-scale object detection. After experimental validation, we used a 3-by-3 convolution
and deconvolution operation to fuse two feature maps adjacent to the resolution, and the
fusion module contains five sub-networks to obtain five different scales of feature maps
for prediction. The advantages of the single-stage object detection algorithm include a
simple model training strategy and network structure and fast computing speed [4]. The
whole detector retains the advantages of the single-stage algorithm and enables end-to-end
training. Our object detector has the following innovations:

(a) We first introduced a dual-path network in the single-stage object detector by proposing a
paradigm called the “Dual-Path Feature Pyramid”, as shown in Figure 1e. It combines
two feature fusion methods, i.e., residual connection and concatenation connection.

(b) After experimental validation, a new feature fusion module was proposed to enhance
the fusion of high-level semantic and low-level spatial features to further optimize
the multi-scale feature learning problem.
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Figure 2. The architecture of the dual-path single shot detector. We designed a dual-path network
and a feature fusion module to obtain six high-level and low-level features after fusion. Finally, the
classification and bounding box regression were carried out by one-by-one convolution. The figure
shows that several layers in the base network were extracted as the features for predicting objects of
different sizes.

2. Related Work

Currently, object detection can be divided into single stage and two stage. Two stage
means that the object detection process is divided into a region proposal stage and a detection
stage, while single stage means that both of these stages are carried out simultaneously. Object
detection has many applications, such as face detection, pedestrian detection and automatic
driving. However, multi-scale detection is the key to realize these applications [4].

The representative two-stage detectors include R-CNN [2], Fast-RCNN [13], Faster-
RCNN [3] and R-FCN [14]. These algorithms first generate pooling and bounding box
regression. The detection accuracy of two-stage detectors is good, but the frameworks
limit the detection speed. Some researchers have been devoted to single-stage detectors,
such as OverFeat [15], SSD [6] and YOLO [16]. The advantage of these detectors is that
there is no need to generate region proposals, and each position on the input image may
be the target object, using the end-to-end training method, so the detection speed is very
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fast. However, these methods have similar architectures for solving multi-scale detection
problems. SNIP [5] and R-CNN [2] adopt the structure of Figure 1a in solving multi-
scale problems. Fast-RCNN [13], Faster-RCNN [3], OverFeat [15], SSD [6], R-SSD [17]
and R-FCN [14] use the structure of Figure 1b. The Inside-Outside Network (ION) [8],
HyperNet [9] and STDN [18] use integrated features to combine multiple layers of features
to build a single feature map, and they make a final prediction based on it (Figure 1c).
DSSD [19] and FPN [10] use the feature pyramid paradigm to develop multi-scale detectors.
Recent research advances, including M2Det [20], BPN [21] and ASFF [22], have proposed
efficient feature fusion networks under the feature pyramid paradigm (Figure 1d).

However, current feature pyramid paradigms do not take full advantage of feature
information at different scales when constructing feature pyramids, which limits the detec-
tion of multi-scale detectors [4]. To solve this problem, we propose a new feature pyramid
structure, as shown in Figure 1e, which is mainly derived from the ideas of DSSD [19] and
R-SSD [17]. Fu et al., proposed a Deconvolutional Single-Shot Detector (DSSD) [19], which
adds a residual block to each feature map, then performs the element-wise product on the
different scale feature maps for feature fusion. The advantage of DSSD is that it introduces
a residual operation to scale the feature map. Jeong et al., proposed R-SSD [17], which uses
rainbow concatenation through both pooling and deconvolution to improve the accuracy
of the conventional SSD [6]. The advantage of R-SSD is that it uses a concatenation method
to enrich the features of each level.

In sum, there are generally two main methods to further improve the detection accu-
racy of multi-scale objects. One is to use a residual block to build various feature pyramid
structures, as in DSSD [19]. Another is the concatenation that uses the concatenation of
multi-layer features to detect objects, as in R-SSD [17]. We combine these two approaches
and propose the dual-path feature pyramid to optimize the multi-scale object detection
problem, as shown in Figure 1e.

We used our improved dual-path network to extract the features of different resolu-
tions, used the feature fusion module to fuse the different levels of features, and enhanced
them through convolution and deconvolution operations. Our detector combines the ad-
vantages of two methods and, finally, obtains six robust and discriminate features to make
a prediction.

3. Dual-Path Single-Shot Detector

In this section, the entire structure of the neural network is described, and the internal
structure of each module is further detailed. In addition, the whole process of model
training will be introduced in detail, including the construction of the programming
environment, the setting of the training hyper-parameters and the loss function.

3.1. Convolution Neural Network

Our proposed network consists of three parts: a base network for feature extraction
(Conv3, Conv5, Conv6, Conv7, Conv8 and Conv9); a feature fusion module for adjacent
feature fusion; and a prediction module. We first use our dual-path network to extract
features at six resolutions. The output of the last layer of the base network, Conv9, has
the lowest resolution and is fed directly into the prediction module, which implements a
linear combination of multiple channel features for classification and prediction by using
one-by-one convolution operations and residual connections. Then, we input the Conv8
and Conv9 to the feature fusion module, and then input the obtained results and the
features of the Conv7 to the feature fusion module, repeat the above process to obtain
five fused feature maps with different resolutions, and finally pass them to the prediction
module for the final object classification and localization.

3.1.1. Dual-Path Network

The improved dual-path network combines the core ideas of ResNet [1], ResNeXt [23]
and DenseNet [11]. The first stage contains a 7-by-7 convolution layer and a maximum
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pooling layer, and the remaining eight stages have similar structures. The first layer of
each stage can be divided according to the channel dimension of the residual connection
and the concatenation connection in the features and can choose whether to perform the
down sampling operation or not. The later layers of each stage can increase the number of
feature channels, deepen the number of network layers and improve the learning of the
network capability. To retain as much sub-layer information as possible and ensure that
we obtain the features at different scales [12], we skip Conv1, Conv2 and Conv4 and select
the outputs of the Conv3, Conv5, Conv6, Conv7, Conv8 and Conv9 as the original feature
maps, whose structure is shown in Table 1.

Table 1. Dual-path network architecture.

Layers Parameters Output Layers Parameters Output
Size/Stride Groups Size/Stride Groups

Conv1_1
conv 7 × 7/2 1

80 × 80 × 64
Conv5_1

conv_a 1 × 1/1 1
20 × 20 × 1024
20 × 20 × 384

maxpool 3 × 3/2 1 conv_b 1 × 1/1 1

Conv2_1

conv_a 1 × 1/1 1
80 × 80 × 256
80 × 80 × 48

conv_b_1 3 × 3/1 32
conv_b 1 × 1/1 1 conv_b_2 1 × 1/1 1

conv_b_1 3 × 3/1 32 Conv5_2
-

Conv5_3

conv_b 1 × 1/1 1 20 × 20 × 1024
20 × 20 ×
512(+128)

conv_b_2 1 × 1/1 1 conv_b_1 3 × 3/1 32
Conv2_2

-
Conv2_3

conv_b 1 × 1/1 1
80 × 80 × 256
80 × 80 × 80

conv_b_2 1 × 1/1 1
conv_b_1 3 × 3/1 32

Conv6_1

conv_a 1 × 1/2 1
10 × 10 × 1024
10 × 10 × 384

conv_b_2 1 × 1/1 1 conv_b 1 × 1/1 1

Conv3_1

conv_a 1 × 1/2 1
40 × 40 × 512
40 × 40 × 96

conv_b_1 3 × 3/2 32
conv_b 1 × 1/1 1 conv_b_2 1 × 1/1 1

conv_b_1 3 × 3/2 32

Conv7_1

conv_a 1 × 1/2 1
5 × 5 × 1024
5 × 5 × 384

conv_b_2 1 × 1/1 1 conv_b 1 × 1/1 1
Conv3_2

-
Conv3_4

conv_b 1 × 1/1 1 40 × 40 × 512
40 × 40 ×
128(+32)

conv_b_1 3 × 3/2 32
conv_b_1 3 × 3/1 32 conv_b_2 1 × 1/1 1
conv_b_2 1 × 1/1 1

Conv8_1

conv_a 1 × 1/2 1
3 × 3 × 1024
3 × 3 × 384Conv4_1

conv_a 1 × 1/2 1
20 × 20 × 1024

20 × 20 × 72

conv_b 1 × 1/1 1
conv_b 1 × 1/1 1 conv_b_1 3 × 3/2 32

conv_b_1 3 × 3/2 32 conv_b_2 1 × 1/1 1
conv_b_2 1 × 1/1 1

Conv9_1

conv_a 1 × 1/2 1
1 × 1 × 1024
1 × 1 × 384

Conv4_2
-

Conv4_20

conv_b 1 × 1/1 1 20 × 20 × 1024
20 × 20 × 96(+24)

conv_b 1 × 1/1 1
conv_b_1 3 × 3/1 32 conv_b_1 3 × 3/2 32
conv_b_2 1 × 1/1 1 conv_b_2 1 × 1/1 1

In the remaining layers of each stage, the two groups of features output from the first
layer are channel merged first and then input to the next layer; the output of the next layer
can again be divided into two groups by one-by-one or channel separation, and the two
output features of the first layer corresponding to the channels are summed and channel
merged, respectively, as shown in Figure 3. Figure 3 shows the specific implementation
of each layer in Table 1, which is the structure of the dual-pathway base network and
corresponds to the top row in Figure 2. Feature segmentation refers to the method of
cutting existing features in the dimension of the channel to obtain multiple sets of features.
We studied the ablation of these two feature segmentation paradigms.
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Figure 3. Two paradigms of dual-path block: (a) Feature segmentation is realized by channel merging.
(b) The 1 × 1 convolution operation is used for feature segmentation.

3.1.2. Feature Fusion Module

The base network outputs feature maps of different resolutions that are responsible
for predicting objects of different scales, and in the assignment principle, we continue the
anchor frame matching principle in the SSD [6]. The DSSD [19] and RetinaNet [24] have
demonstrated that, for single-stage object detection algorithms, the fusion of features at
different levels can improve the detection effect. Therefore, we combine our own base
network and experimental tests to design an efficient feature fusion module, which accepts
two input feature maps to generate a fused feature. A 3-by-3 convolution operation is
performed for the features with larger resolution in the input features, and conversely,
a 3-by-3 deconvolution operation is performed for the smaller features; finally, the two
results are summed to obtain the fused feature map, as shown in Figure 4. The effect
of deconvolution is similar to bi-linear interpolation, which can improve the resolution
of the feature map. The following describes the specific implementation process of the
deconvolution kernel, as shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16 
 

 

 

 
Figure 4. Four paradigms of feature fusion module. (a) Using a two-layer convolution operation, 
features are fused by sum. (b) Using a two-layer convolution operation, features are fused by the 
product. (c) Using a one-layer convolution operation, features are fused by sum. (d) Changing the 
number of channels for fusion features, and using a two-layer convolution operation, features are 
fused by sum. 

  

Figure 4. Four paradigms of feature fusion module. (a) Using a two-layer convolution operation,
features are fused by sum. (b) Using a two-layer convolution operation, features are fused by the
product. (c) Using a one-layer convolution operation, features are fused by sum. (d) Changing the
number of channels for fusion features, and using a two-layer convolution operation, features are
fused by sum.
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The deconvolution operation can be considered the inverse operation of convolution
in terms of resolution. As is well known, there is a mathematical relationship between
the resolution of the input and output in the convolution layer, and the mathematical
expression is as follows:

On =

[
In + 2Pn − Kn

Sn

]
+ 1 (n = h, w) (1)

where On is the layer of output size, In is the layer of input size, Pn is the layer of padding
size, Kn is the operation kernel size, Sn is the convolution stride size and n represents the
two optional dimensions of height and width. The output channel depends on the number
of convolution kernels.

As the inverse of convolution, the mathematical formula for the deconvolution is
expressed as the following:

O′n =
(

I′n − 1
)
× Sn + Kn − 2Pn + m (n = h, w) (2)

where m is the layer of output padding, and it ranges from 0 to Sn − 1. Due to the
rounding operation, one input will correspond to m outputs when Sn is greater than 1.
The deconvolution seems to be the inverse process of convolution; however, there is no
reversible relationship between the two in terms of numerical computation, except for
feature resolution. The deconvolution layer is just an ordinary convolution layer, which is
also needed in order to learn by gradient descent in a neural network. Therefore, for each
deconvolution layer, we can actually use another convolution layer to perform the recovery
as well.

The feature fusion module can fuse features of different channels at different levels.
We set up ablation experiments with the number of fusion channels, fusion method and
fusion layers, as shown in Figure 4.

3.1.3. Prediction Module

The prediction module has two sub-networks, one for classification prediction and
the other for localization prediction, operating independently on each feature map. To
ensure the reuse of the prediction results for the lower-level features, we designed a jump
connection to connect the first layer and the sum of the final output layer features, as shown
in Figure 6, and the experimental results are shown in Table 2.
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Table 2. Ablation study on PASCAL VOC 2007 test set.

Method mAP Anchor Boxes Input Resolution

DPN (a) + PM (a) 78.9 17,080 320 × 320
DPN (a) + FFM (a) + PM (a) 81.2 17,080 320 × 320
DPN (a) + FFM (b) + PM (a) 80.6 17,080 320 × 320
DPN (a) + FFM (c) + PM (a) 80.8 17,080 320 × 320
DPN (a) + FFM (d) + PM (a) 80.5 17,080 320 × 320
DPN (a) + FFM (a) + PM (b) 80.9 17,080 320 × 320
DPN (b) + FFM (a) + PM(a) 67.1 17,080 320 × 320

3.2. Training Model

Our detector is developed using the PyTorch [25] framework. It is trained on NVIDIA
TITAN Xp GPU. Our training strategy is almost the same as SSD [6], including a data
augmentation trick following SSD [6], e.g., random flip, random scale, random crop,
random brightness and random rotation, and an SGD (Stochastic Gradient Descent) solver.
We perform pre-training on the Imagenet+5k, which means that the network has been
pre-trained on Imagenet5k before being fine-tuned on Imagenet1k, and then further trained
on the PASCAL VOC datasets and COCO datasets using the strategy of batch size of 14,
learning rate of 0.001 and 120,000 iterations, with a 10-fold learning rate reduction at the
80,000th and 100,000th batches of the training process, and obtain two models with input
image resolutions of 320 and 521.

In training the model with an input image of 320 pixels, the six feature map anchor
boxes have step parameters of 8, 16, 32, 64, 107 and 320; minimum size parameters of 21, 45,
99, 153, 107 and 320; maximum size parameters of 45, 99, 153, 207, 261 and 315; and feature
map resolution parameters of 1, 3, 5, 10, 20 and 40. For experiments on the PASCAL VOC
datasets, anchor box aspect ratios of 1.6, 2.0 and 3.0 were used to generate eight anchor
boxes per anchor point, and for experiments on the COCO datasets, anchor box aspect
ratios of 2:3 were used to generate six anchor boxes per anchor point for comparison with
the relevant models and following DSSD [19].

The training loss function consists of the combination of the localization loss Smooth
L1 and the classification loss Softmax. The offset encoding of the ground truth of object
localization is required before training, which can effectively reduce the learning difficulty,
and the mathematical formula is as follows:

L(X, c, l, a, g) =
1
N

(
Lcon f (X, c) + αLloc(X, l, a, g)

)
(3)

Lcon f (X, c) = −
N

∑
i∈Pos

Xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log
(

ĉ0
i

)
. (4)
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where ĉp
i =

exp
(

cp
i

)
∑p exp

(
cp

i

) (5)

Lloc(l, a, g) =
N

∑
i∈Pos

∑
m∈{cx,cy,w,h}

smoothL1

(
lm
i − ĝm

j

)
. (6)

ĝcx
j =

(
gcx

j − acx
i

)
/aw

i . (7)

ĝcy
j =

(
gcy

j − acy
i

)
/ah

i . (8)

ĝw
j = log

(
gw

j /aw
i

)
(9)

ĝh
j = log

(
gh

j /ah
i

)
(10)

smoothL1(x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise

. (11)

where X is the prediction vector for classification, α. is to balance the importance of the
two losses, c is the classification label, l is the prediction vector for localization, a is the
coordinate of the anchor box and g indicates the offset of the ground truth with respect
to the anchor box. Lcon f is the classification loss, Lloc is the localization loss, i is the index
of anchor boxes, j is the index of the ground truth in an image and p is the index of each
category in the classification vector. In Equations (7)–(10), x and y are the coordinates of the
center point of the bounding box; w and h are the width and height of the bounding box.

Equations (7)–(11) are brought into Equation (6) to obtain the complete expression of
the localization loss, Equation (5) is brought into Equation (4) to obtain the classification
loss, and finally, Equations (4) and (6) are substituted into Equation (3) to obtain the total
loss expression.

4. Experiments
4.1. Experiment Consideration

Our detector was evaluated on the PASCAL VOC [26] and COCO [27] datasets, the
former with 20 object classes and the latter with 80 object classes. For the PASCAL VOC
datasets, we followed the protocol in [10] and combined VOC 2007 trainval and VOC 2012
trainval as training sets for training and testing on the VOC 2007 test. For the COCO datasets,
to compare with the previous algorithm, we combined train2014 and valminusminival2014
as training sets for training and testing on the test-dev2015 test set.

We used the mean accuracy (mAP) as the core criterion for evaluation. For PASCAL
VOC, we used an IOU (Intersection over Union) threshold of 0.5 to report the mAP score.
For COCO, we used the evaluation matrix provided by the datasets itself. Experiments
on PASCAL VOC and COCO are to verify the effectiveness of our proposed dual-path
pyramid paradigm. Ablation experiments on the PASCAL VOC were used to explore
different network structures of DPSSD.

The GPU we used was TITAN Xp/PCle/SSE2, and the CPU was Intel Core I7-8700K
CPU @ 3.70ghz × 12. The training time of the model on PASCAL VOC datasets was 19 h
and on the COCO datasets was 41 h.

4.2. Experiment on PASCAL VOC

We designed a dual-path network that generates feature maps with different depths
and resolutions and enables the fusion of feature maps with different resolutions through a
feature fusion module we designed specifically for it, which is a multi-scale object detection
paradigm that learns more discriminate features.

We compared it with similar algorithms which are improved based on the SSD [6] to
demonstrate that our proposed multi-scale feature learning paradigm has better detection
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results. SSD [6] belongs to (b) structure in Figure 1. STDN [18] belongs to (c) structure in
Figure 1. DSSD [19] belongs to (d) structure in Figure 1. DPSSD (ours) belongs to (e) struc-
ture in Figure 1. The experimental results are shown in Table 3. The accuracy of DPSSD320
is 2.6% higher than that of DSSD321; DPSSD512 is 1.4% higher than DSSD513; DPSSD320 is
1.9% higher than STDN321; DPSSD512 is 2.0% higher than STDN513; DPSSD320 is 3.7%
higher than that of SSD300; DPSSD512 is 3.4% higher than SSD512. Our model provides a
significant improvement in terms of complexity and computational cost and enables the
reuse of shallow features and the exploration of new features, which helps to generate a
robust and discriminate feature with good detection performance.

Table 3. PASCAL VOC2007 test detection results. All models were trained on the joint training set of
VOC 2007 trainval and 2012 trainval and were tested on the VOC 2007 test dataset.

Method SSD300 [6] SSD512 [6] STDN300
[18]

STDN321
[18]

STDN513
[18]

DSSD321
[19]

DSSD513
[19]

DPSSD320
(Ours)

DPSSD512
(Ours)

Network VGG VGG DenseNet-
169

DenseNet-
169

DenseNet-
169

Residual-
101

Residual-
101 DPN DPN

mAP 77.5 79.5 78.1 79.3 80.9 78.6 81.5 81.2 82.9
aero 79.5 84.8 81.1 81.2 86.1 81.9 86.6 88.5 87.9
bike 83.9 85.1 86.9 88.3 89.3 84.9 86.2 87 88
bird 76 81.5 76.4 78.1 79.5 80.5 82.6 82.3 87.1
boat 69.6 73 69.2 72.2 74.3 68.4 74.9 76.2 79.9

bottle 50.5 57.8 52.4 54.3 61.9 53.9 62.5 56.5 66.3
bus 87 87.8 87.7 87.6 88.5 85.6 89 88.7 88.5
car 85.7 88.3 84.2 86.5 88.3 86.2 88.7 88.2 89
cat 88.1 87.4 88.3 88.8 89.4 88.9 88.8 88.4 88.4

chair 60.3 63.5 60.2 63.5 67.4 61.1 65.2 67.4 71.2
cow 81.5 85.4 81.3 83.2 86.5 83.5 87 84.6 87.3
table 77 73.2 77.6 79.4 79.5 78.7 78.7 77.3 79.2
dog 86.1 86.2 86.6 86.1 86.4 86.7 88.2 86.7 88

horse 87.5 86.7 88.9 89.3 89.2 88.7 89 89 89.1
mbike 83.9 83.9 87.8 88 88.5 86.7 87.5 87.8 87.3
person 79.4 82.5 76.8 77.3 79.3 79.7 83.7 80.9 85
plant 52.3 55.6 51.8 52.5 53 51.7 51.1 59.5 59
sheep 77.9 81.7 78.4 80.3 77.9 78 86.3 84.3 86.1
sofa 79.5 79 81.3 80.8 81.4 80.9 81.6 83.7 81.9
train 87.6 86.6 87.5 86.3 86.6 87.2 85.7 87 86.2

tv 76.8 80 77.8 82.1 85.5 79.4 83.7 80.6 82.8

These results reflect the improvement in the accuracy of our multi-scale detector and
the effectiveness of our dual-path feature pyramid in object detection. We believe that
the reason for this is that our designed dual-path network with the feature fusion module
increases the amount of information in the feature pyramid at different scales of feature
maps and enhances connection between low-level features and high-level features. It
simultaneously maintains a good computational speed, as shown in Figure 7.

The datasets contain a total of 20 classes of objects, and our model achieves good
detection accuracy for aeroplane, bird, boat, bottle, car, chair, cow, person, plant and sofa.
The gap between our method and the methods listed in the table is no more than 1.5% in
terms of multi-scale detection effectiveness on other categories. This further validates the
generalization ability of the model for multi-scale detection.
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4.3. Ablation Experiment on the PASCAL VOC

We designed a series of comparative experiments on PASCAL VOC2007 [26] to verify
the effectiveness and rationality of each module in DPSSD. The results are shown in Table 2.

In Table 2, DPN denotes the dual-path network, FFM denotes the feature fusion
module and PM denotes the prediction module. DPN + PM indicate that we used our dual-
path network to extract the CNN features at different depths to perform object detection.
DPN + FFM indicate that we tried to obtain multi-scale feature maps by using a feature
fusion module. Using only the base network, the mAP of DPSSD320 was 78.9% and was
5.1% higher than that of SSD [6]. This proves that the base network is effective.

From the first to the fifth rows of Table 2, we can see that the four different feature
fusion modules more or less improved the detection accuracy, and the feature fusion
module with the best effect increased the accuracy from 78.9% to 81.2%. We believe that
the reason for this is that humans need to consider the geometry and category properties
of an object in recognizing its category and locating its position, while the fusion of deep
semantic information features and shallow geometric spatial features of neural networks is
exactly in line with our human localization and recognition of objects in spatial locations.

The second and sixth row of Table 2 show that a prediction module with a residual
connection can slightly improve the object detection accuracy from 80.9% to 81.2%. The
reason for this is that the shortcut increases the reuse of features.

The division method of channels in each stage of our designed base network contains
both one-by-one convolution and channel segmentation. As shown in the second and
seventh row of Table 2, the channel segmentation approach had better detection results
than the one-by-one convolution approach.

4.4. Experiment on the Microsoft COCO

We also trained two models, DPSSD320 and DPSSD512, on the Microsoft COCO
datasets [27] to further evaluate our detectors, and the results are shown in Table 4 We
trained on the union of train2014 and valminusminival2014 and tested on test-dev2015.
The different train datasets of the methods listed in Figure 4 do not affect the evaluation
under the same test datasets because the different train datasets only affect the training
stage. The evaluation indicators in the table were carried out on the same datasets, and the
whole evaluation process was carried out on the official server; the real labels are not open
to the public.
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Table 4. COCO test-dev2015 detection results.

Method Data Network
Avg. Precision, IoU: Avg. Precision,

Area: Avg. Recall, #Dets: Avg. Recall, Area:

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

SSD300 [6] trainval35k VGG 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4
SSD512 [6] trainval35k VGG 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42.0 16.5 46.6 60.8

DSSD321 [19] trainval35k Residual-101 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6
DSSD513 [19] trainval35k Residual-101 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4
STDN300 [18] trainval DenseNet-169 28.0 45.6 29.4 7.9 29.7 45.1 24.4 36.1 38.7 12.5 42.7 60.1
STDN513 [18] trainval DenseNet-169 31.8 51.0 33.6 14.4 36.1 43.4 27.0 40.1 41.9 18.3 48.3 57.2

DPSSD320
(ours) trainval35k DPN 30.6 50.2 32.2 10.3 32.0 47.6 26.8 39.5 41.5 16.1 44.9 62.6

DPSSD512
(ours) trainval35k DPN 33.9 53.8 36.3 14.5 37.5 48.7 28.7 43.4 45.7 20.6 51.2 64.3

We focus on comparing the four methods of SSD [6], DSSD [19], STDN [18] and DPSSD
(ours) because they are single-stage methods and are the same except for the structure of
the feature pyramid. The average accuracy of SSD300, DSSD321, STDN300 and DPSSD320
(ours) on the test-dev2015 test set reached 25.1%, 28.0%, 28.0% and 30.6%, respectively.
SSD512, DSSD513, STDN513 and DPSSD512 (ours) reached 28.8%, 33.2%, 31.8% and 33.9%,
respectively. It can be seen that the average accuracy of our proposed model for multi-
scale object detection holds an advantage. The experimental results further validate the
effectiveness of our proposed dual-path feature pyramid paradigm. As shown in Figures 1e
and 3a, the dual-path convolution block can improve the efficiency of the feature pyramid
in object detection.

However, it can be seen that our algorithm DPSSD513 was slightly lower than DSSD513
in terms of average accuracy and average recall for small and large objects. The density
of the proposed area and the accuracy of the location will affect the recall rate [28]. We
used 6 anchor boxes for training at each anchor point. The number of anchor boxes
determines the density of the proposed area. The denser the proposed area, the fewer
missed detections and the greater the recall rate of the model, but it will greatly increase the
computational cost. In addition, considering the detection accuracy on objects of different
scales, we find that the model achieves 51.2% detection accuracy for medium-scale objects
and 20.6% and 64.3% for small and large objects, respectively. Through comparison, it
can be concluded that the detection effect of the DPSSD in small objects has a lot of space
to improve. Small objects have fewer features to use because they have a small area in
the image. The semantic information of the environment should be used to improve the
small-object detection effect [29]. Modeling the semantic relationship between environment
and object through neural networks is our next research focus.

4.5. Experiment on Inference Speed

We tested 4952 images from the PASCAL VOC2007 test datasets on a Titan Xp and Intel
Core i7-8700K CPU @7.70GHz device at a batch size of 1 to calculate the inference speed of
our DPSSD model. The main factors affecting the detection speed include the complexity
of the model, the calculation and the transmission speed of the hardware.

As shown in Table 5. For comparison, we replicated the official codes and training
models of SSD [6] and DSSD [19] and conducted the test on the same hardware environment.
We focused on comparing the four methods of SSD (copied), DSSD (copied), STDN [18],
and DPSSD (ours) because they are the same except for the structure of the feature pyramid.
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Table 5. The speed and accuracy of the algorithm are summarized as follows. The training data are
the combination of VOC2007 trainval and VOC2012 trainval.

Method Base Network mAP Speed (fps) Anchor Boxes GPU Input Resolution

SSD300 [6] VGG16 77.5 46 8732 Titan X 300 × 300
SSD512 [6] VGG16 79.5 19 24,564 Titan X 512 × 512

SSD300 (copied) VGG16 77.6 49 8732 Titan Xp 300 × 300
SSD512 (copied) VGG16 79.7 24 24,564 Titan Xp 512 × 512

DSSD321 [19] Residual-101 78.6 9.5 17,080 Titan X 321 × 321
DSSD513 [19] Residual-101 81.5 5.5 43,688 Titan X 513 × 513

DSSD321 (copied) Residual-101 78.7 12.7 17,080 Titan Xp 321 × 321
DSSD513 (copied) Residual-101 81.3 9.8 43,688 Titan Xp 513 × 513

STDN300 [18] DenseNet-169 78.1 41.5 13,888 Titan Xp 300 × 300
STDN321 [18] DenseNet-169 79.2 40.1 17,080 Titan Xp 321 × 321
STDN513 [18] DenseNet-169 80.9 28.6 43,680 Titan Xp 513 × 513

DPSSD320 (ours) DPN 81.2 30.7 17,080 Titan Xp 320 × 320
DPSSD512 (ours) DPN 82.9 21.3 43,680 Titan Xp 512 × 512

We plotted a scatter plot of accuracy and speed, as shown in Figure 7, to visualize the
advantages and disadvantages of each algorithm. A good detector should gradually move
closer to the top right corner of the graph. It can be seen that the DPSSD320 had a good
trade-off between speed and accuracy, and the DPSSD512 is highly accurate but relatively
slow. The dual-path feature pyramid is more effective than other pyramid structures in the
field of object detection.

5. Conclusions

Our contribution is validating the effectiveness of a new feature pyramid paradigm,
named the dual-path feature pyramid. This paradigm can give researchers a new way of
constructing their own feature pyramid to optimize multi-scale problems. We improved
a dual-path network and a feature fusion module specifically for the anchor-based object
detection algorithm, which greatly improves the quality of features extracted by convo-
lution neural networks with powerful learning capabilities. To verify its effectiveness,
we trained the Dual-Path Single Shot Detector (DPSSD) on PASCAL VOC and COCO
datasets, following SSD [6] strategy, and used it for comparing with detectors that have
different pyramid paradigms. The extensive experiments above show that the dual-path
single shot detector can achieve a good trade-off between speed and accuracy. At 30.7 FPS,
DPSSD320 obtained 81.2 mAP on VOC 2007. At 21.3 FPS, DPSSD512 obtained 82.9 mAP. It
can be seen that our detector still has some advantages over the comparable state-of-the-art
detection algorithms.

Subsequently, we will continue to do relevant research on object detection. Specifically,
we will work on the problem of sample imbalance, explore what kind of technology can
further improve the detection effect of small objects and research applications of object
detector in edge computing [29].
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