
Citation: Kamikokuryo, K.; Haga, T.;

Venture, G.; Hernandez, V.

Adversarial Autoencoder and

Multi-Armed Bandit for Dynamic

Difficulty Adjustment in Immersive

Virtual Reality for Rehabilitation:

Application to Hand Movement.

Sensors 2022, 22, 4499.

https://doi.org/10.3390/s22124499

Academic Editors: Matthew

Joordens, Pubudu N. Pathirana and

Jeff Prevost

Received: 30 April 2022

Accepted: 7 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adversarial Autoencoder and Multi-Armed Bandit
for Dynamic Difficulty Adjustment in Immersive Virtual Reality
for Rehabilitation: Application to Hand Movement
Kenta Kamikokuryo 1,†, Takumi Haga 1,†, Gentiane Venture 2 and Vincent Hernandez 1,3,*

1 Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology,
Tokyo 184-0012, Japan; kenta.kamikokuryo0708@gmail.com (K.K.); takumihaga629@gmail.com (T.H.)

2 Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8654, Japan;
venture@cc.tuat.ac.jp

3 Surfclean Inc., Sagamihara 252-0131, Kanagawa, Japan
* Correspondence: vincent.hernandez1985@gmail.com
† These authors contributed equally to this work.

Abstract: Motor rehabilitation is used to improve motor control skills to improve the patient’s
quality of life. Regular adjustments based on the effect of therapy are necessary, but this can be
time-consuming for the clinician. This study proposes to use an efficient tool for high-dimensional
data by considering a deep learning approach for dimensionality reduction of hand movement
recorded using a wireless remote control embedded with the Oculus Rift S. This latent space is
created as a visualization tool also for use in a reinforcement learning (RL) algorithm employed to
provide a decision-making framework. The data collected consists of motions drawn with wireless
remote control in an immersive VR environment for six different motions called “Cube”, “Cylinder”,
“Heart”, “Infinity”, “Sphere”, and “Triangle”. From these collected data, different artificial databases
were created to simulate variations of the data. A latent space representation is created using an
adversarial autoencoder (AAE), taking into account unsupervised (UAAE) and semi-supervised
(SSAAE) training. Then, each test point is represented by a distance metric and used as a reward for
two classes of Multi-Armed Bandit (MAB) algorithms, namely Boltzmann and Sibling Kalman filters.
The results showed that AAE models can represent high-dimensional data in a two-dimensional latent
space and that MAB agents can efficiently and quickly learn the distance evolution in the latent space.
The results show that Sibling Kalman filter exploration outperforms Boltzmann exploration with
an average cumulative weighted probability error of 7.9 versus 19.9 using the UAAE latent space
representation and 8.0 versus 20.0 using SSAAE. In conclusion, this approach provides an effective
approach to visualize and track current motor control capabilities regarding a target in order to reflect
the patient’s abilities in VR games in the context of DDA.

Keywords: machine learning; reinforcement learning; multi-armed bandit; immersive virtual reality;
dynamic difficulty adjustment; end effector

1. Introduction

The main goal of motor rehabilitation is to improve motor control abilities through
intensive and repetitive intervention in order to improve the patient’s quality of life.
Regular evaluations are necessary to measure the effectiveness of the therapy on the patient
and to adapt it if necessary. However, it is a tedious task, and it would be interesting to find
a way to facilitate the rehabilitation evaluations with simplified metrics. Furthermore, it is
important to provide tools that can help the patient to continue the rehabilitation process
at home. Supporting the analysis process with various sensors could be very interesting,
as the data can be used for automated and remote monitoring [1,2]. In addition, given

Sensors 2022, 22, 4499. https://doi.org/10.3390/s22124499 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7767-4765
https://orcid.org/0000-0001-6686-2410
https://doi.org/10.3390/s22124499
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124499?type=check_update&version=2

Sensors 2022, 22, 4499 2 of 22

the time-consuming and repetitive aspect of conventional therapy, some complementary
approaches are needed to keep the patient motivated [3].

Virtual reality (VR) refers to a technology used to interact with a simulated environment
that attempts to recreate certain aspects of the real world to engage the user in various actions.
VR rehabilitation is a promising and relevant tool as an additional tool to conventional
rehabilitation [4,5] that allows the creation of specific environments for therapy that incor-
porate precise control of the actions performed [3]. Various studies that have compared
rehabilitation with and without game integration have shown that it significantly improves
outcomes if VR games are involved [6]. The enjoyment of VR games can help promote patient
engagement by reducing boredom from task repetition by providing an alternative to clinical
environments [7,8]. Interaction with the virtual environment through motor action allows
patients to feel part of a virtual world and can contribute to the rehabilitation process [9].
In addition, through recordings and performance evaluation, it is possible to assess current
progress and provide a personalized experience by adjusting the difficulty and scenario of the
game according to the patient’s motor control ability [10–12].

Specifically, immersive VR is based on a head-mounted display (HMD) that allows
participants to be immersed in an audiovisual virtual environment. Interaction with the
virtual world is made possible by wireless remote devices held in both hands, allowing an
interactive experience with the virtual world. This device is integrated with most HMD
systems (e.g., Oculus Rift or HTC Vive) and allows for an accurate assessment of the
position of the HMD and the remote control [13,14]. HMD-VR systems are becoming more
affordable and can be an attractive tool for home rehabilitation [2].

A more advanced functional assessment of the patient’s performance level can be achieved
using motion tracking technology such as IMUs, motion capture systems, or Kinect, to name
a few [8]. This can enhance the experience by incorporating visuomotor feedback that aims
to represent the movement of the patient’s limb in the virtual world by incorporating an
embedded body. Other approaches, such as tactile feedback (vibrations, small forces applied to
the skin) or force feedback (resistance movement), can also be considered [8].

To improve the effectiveness of using immersive VR in rehabilitation, the level of difficulty
must be adapted to the patient’s current motor control abilities. Indeed, patients may become
bored if the game is too easy or frustrated if it is too difficult, which may reduce their engage-
ment in the game. Changing the motor task to be performed according to the patient’s abilities
is important [3]. This should be assessed and adjusted sequentially as the patient is involved
in the therapeutic process. Providing an accurate level of challenge during therapy can be a
difficult and time-consuming task for healthcare professionals, as it requires continuous analy-
sis of data from previous and new rehabilitation sessions. Therefore, automatic adjustment of
the level of challenge is necessary by adapting features such as the rates of specific tasks to be
offered at a given time based on motor control capabilities.

Dynamic Difficulty Adjustment (DDA) is defined as a method of adapting the characteris-
tics of a serious game to adjust the level of difficulty based on the player’s skills to provide a
good balance of difficulty. According to the flow theory in human–computer interaction [15],
the appropriate level of difficulty of a game should depend on the player’s skills [16–18].

The concept of DDA in rehabilitation is to provide a continuous adjustment of the dif-
ficulty of the online game and adapt to the player’s motor control capability. Furthermore,
if the patient’s ability has changed significantly since the last gaming session, the system
must adapt quickly. It must constantly adapt to any change, whether it is an improvement
or a decrease in performance, in order to maintain the player’s motivation and focus [19].
To customize the difficulty, the DDA can adjust certain features of the game, such as the
behavior of the enemies or the game scenario.

Few DDA methods have examined real-time difficulty adjustment using sequential
data in the context of VR rehabilitation [11,20–23]. Our motivation is to propose probabilis-
tic decision-making for adjusting the difficulty based on the patient’s movement in order to
dynamically modify the game requirement throughout the sessions. This can reduce the
need for direct supervision by a therapist and allow for adaptive and individualized home

Sensors 2022, 22, 4499 3 of 22

video game therapy. Most DDA approaches are based on adjusting the game according to
the ratio of gains to losses, the time required to complete a specific task, and the remaining
life points, to name a few. Such an approach can be improved by taking into account the
current level of motor control based on recorded movement, thus integrating an essential
part of physical therapy into the decision-making process.

The objective of this paper is twofold. The first is to provide an efficient visualization
tool for high-dimensional data by considering an effective dimensionality reduction of
the hand motion recorded using a wireless remote control embedded in the Oculus Rift S.
The second is to use the reinforcement learning (RL) approach as a basis for DDA based on
the multi-armed bandit (MAB) algorithm based on the latent space representation.

A data dimensionality reduction model, called adversarial autoencoder (AAE), is
considered to represent each matrix as a single two-dimensional point in a latent space.
The original shape of the signal is represented in a lower-dimensional space that preserves
the similarity between the motions. This allows for the creation of a simplified visualization
that allows the current motion to be represented among other motions and helps detect
outliers and patterns [24]. In this study, each motion is represented by a single point
in a two-dimensional latent space generated by AAE, which is a powerful and efficient
approach to perform the dimensionality reduction of nonlinear data [24].

Finally, this simplified data representation can be used as a visualization tool to present the
current progress of the patient in the latent space with respect to a target (Figure 1). In addition,
an RL approach based on the MAB algorithm is used to learn the patient’s current motor
abilities by considering the distance in latent space as a simplified metric and applying DDA to
the game. To the best of our knowledge, such an approach has not yet been considered.

Figure 1. Project Overview. The adversarial autoencoder (AAE) is trained by considering a regular-
ization component to create a set of six Gaussian distributions in a latent space. The trained AAE is
then fed with a new sample (with Triangle as an example) and represented in the latent space (red
cross). Finally, a distance metric is computed between a target (green centroid) and used as a reward
for the MAB algorithm.

2. Related Work

Most serious VR games use a static difficulty approach requiring manual selection of
the difficulty level or a “staircase” progression in which, after the player has completed
specific tasks at a given level, the algorithm increases the difficulty of the next level [25–28].
Predefined difficulty levels have several disadvantages, as the player may choose an
inappropriate difficulty level, and the consideration of possible player improvement is

Sensors 2022, 22, 4499 4 of 22

not automated. There has been limited research proposing the adjustment of the difficulty
of video games in the context of rehabilitation.

Wilms [20] propose an actor-critic method used to create a learning agent that adjusts
the difficulty level during cognitive rehabilitation training programs based on response time.
They provide an efficient agent that adapts quickly to change, but the threshold parameters
of the fitness function between what is considered an easy or difficult task are manually set
and task-specific.

Sekhavat [11] propose a multi-periodic reinforcement learning approach for DDA
to adjust parameters such as distance, speed, and size based on a periodic assessment
at three different intervals during the rehabilitation game. The goal of the game is to hit
a specific ball placed on an arc of balls. The participants’ movement is recorded with a
Kinect to control the arm of a virtual character. The learning agent adjusts its probability
chromosome to increase or decrease the speed, size, and distance of the balls based on
success or failure in hitting the ball to adapt the game.

Pirovano et al. [21] have developed a VR game for rehabilitation using the Kinect sensor.
The game uses fuzzy logic to monitor joint angles and provide feedback to the patient.
If the movement is not performed correctly, the game triggers an alarm during the game.
The game adapts the difficulty level using the adaptive Bayesian Quest method based on the
win/loss ratio.

Andrade et al. [22] and Andrade et al. [23] proposed an approach for robotic rehabili-
tation based on an evolutionary algorithm to adjust the difficulty of the game. The game
consists of moving a squirrel to catch hazelnuts that fall on a screen. The game is adapted
according to the success or failure to reach the hazelnut before it touches the ground and is
validated on various simulated movement behaviors.

To the authors’ knowledge, no study has yet used time-series data of hand movements
as the basis for DDA in the context of immersive VR rehabilitation to provide a person-
alized experience. In addition, time-series data is highly dimensional, and reducing the
dimensionality of this data is important to produce an RL agent that can learn in a rapidly
changing environment.

Hernandez et al. [24] proposed a data dimensionality reduction approach to visualize
high-dimensional data from the Wii Balance Board during upper and lower body exercises.
This study uses a data dimensionality reduction approach with deep learning models called
adversarial autoencoder to visualize time series in a 2D latent space. The study is limited to the
visualization approach, and no trajectory identification or learning agents have been proposed.

In this context, it would be interesting to combine two different approaches to address
the constraints discussed above. The first relies on reducing the dimensionality of hand
movement time series in an immersive VR context to provide a simplified representation of
the data. The second uses RL agents based on multi-armed bandits to provide a basis for the
decision-making model, with an arm representing information about one movement. A high
distance in latent space increases the probability, and a low distance decreases it. In other
words, the information about each arm is equivalent to the information about the difficulty
for the patient to perform a movement. Such an RL model must be able to adapt to a rapidly
changing environment and take into account the uncertainty associated with untested action
over time. These aspects are important in the field of rehabilitation, as a patient’s condition
may change abruptly.

3. Materials and Methods
3.1. Experiments

Data were collected on 10 participants (age: 26.0 (4.1) years, height: 1.70 (0.07) m,
mass: 69.9 (8.3) kg) that had no upper extremity pathology that could affect their ability
to perform the movements. They gave informed consent after the purpose and content
of the study were explained. They were free to withdraw at any time. The data collected
consisted of movements drawn with wireless remote control in a VR environment for
6 different movements as presented in Figure 2, called “Cube”, “Cylinder”, “Heart”, “Infin-

Sensors 2022, 22, 4499 5 of 22

ity”, “Sphere”, and “Triangle”. The motion data were then projected onto the frontal plane
facing the HMD. Data were collected from 10 participants. Each movement was collected
3 times for each participant for each session and 3 sessions were performed, thus providing
a total of 9 repetitions of each movement per participant. Therefore, the total number of
movements collected in the database was 540. Data were collected using Unity 2020.3.26f1
with the Oculus Rift S and resampled to 32 points using the “PDollar Point-Cloud Gesture
Recognizer” asset library [29]. Data collected on all participants are freely available in
the Mendeley repository at the following: https://dx.doi.org/10.17632/kbbprxr4nw.1
(accessed on 7 June 2022).

3.2. Database

Each movement is represented by a matrix Xl ∈ Rm×n with m = 32 and n = 2.
For each movement, their corresponding label yl ∈ Rp with p = 6, is represented as a binary
one-hot vector. Finally, one dataset Dt = {Xl, yl}N

l=1 is created with N = 54 representing
the total number of movements collected. From this data, various artificial data are created
in four different steps.

The first step consists, for each label, of randomly selecting an associated matrix
Xl in D. Three augmentation parameters, namely vertical stretch, horizontal stretch, and
rotation, are considered to create variations in the dataset. Vertical and horizontal stretches
are achieved by randomly selecting a starting percentage pv and ph, respectively, and a
starting rotation θ according to the values presented in Table 1. For each augmentation
parameter, 20 points are sampled between ph and 1 for the horizontal stretch, between pv
and 1 for the vertical stretch, and between θ and 0 for the rotation. The previous sampling
is performed on two different, randomly chosen behaviors, which are the linear and the
random staircase. A set of motions created according to the augmentation parameters
and the corresponding created data are presented in Figure 2 for the “Cube” motion. In
addition, each new artificial matrix generated is then augmented three times by adding
random noise on the X and Y-coordinates, resulting in a total number of artificial data
created equal to 60 for one label.

The second step is to repeat the first step for each label. All the data are then combined
into an artificial dataset named D

′
i = {Xl, yl}N

l=1 with N = 360. The th,ird step is to
repeat the second step a total of 20 times and gather all the data into a database with

D
′
index =

{
D

′
i

}N

i=1
with N = 20 (index in D

′
index are referred in Table 1).

Finally, the fourth step consists of repeating the third step for each database presented
in Table 1, considering different ranges for the augmentation parameters with pv and ph for
the vertical and horizontal stretches and θ for the starting rotation.

Table 1. Parameters considered for the creation of the various artificial databases. X represents the
range of factors for the vertical stretch, Y represents the range of factors for the horizontal stretch,
and R represents the range of factors for the rotation. Each database contained 20 artificial datasets.
Each dataset contained 60 matrices for each label, thus 360 matrices in total.

Database X Y R

D
′
x 10 ≥ ph ≥ 50 90 ≥ pv ≥ 100 −5 ≥ θ ≥ 5

D
′
y 90 ≥ ph ≥ 100 10 ≥ pv ≥ 50 −5 ≥ θ ≥ 5

D
′
r 90 ≥ ph ≥ 100 90 ≥ pv ≥ 100 −45 ≥ θ ≥ 45

D
′
xy 10 ≥ ph ≥ 50 10 ≥ pv ≥ 50 −5 ≥ θ ≥ 5

D
′
xr 10 ≥ ph ≥ 50 90 ≥ pv ≥ 100 −45 ≥ θ ≥ 45

D
′
yr 90 ≥ ph ≥ 100 10 ≥ pv ≥ 50 −45 ≥ θ ≥ 45

D
′
xyr 10 ≥ ph ≥ 50 10 ≥ pv ≥ 50 −45 ≥ θ ≥ 45

https://dx.doi.org/10.17632/kbbprxr4nw.1

Sensors 2022, 22, 4499 6 of 22

Figure 2. (a) Example of each movement recorded with the VR wireless controller. (b) Example of
artificial data created for the movements “Cube”. A total of 20 movements are created based on the
horizontal (Ratio X), vertical stretch (Ratio Y), and rotation factors (c).

3.3. Training, Validation, and Test Dataset

Each database is separated into three parts, which correspond to training, validation,
and testing data. All dataset D

′
i in each database (Table 1) were randomly separated into

three parts with a ratio of 70%/15%/15% [30] that corresponds to the 12 D
′
i dataset used

for the training, 3 Di dataset for the validation, and 3 dataset D
′
i for the model testing. The

test set is only used to evaluate the final performance of the selected models, while the
training and validation sets are used for model selection.

3.4. Autoencoder

Autoencoders (AE) are parametric models primarily used for data dimensionality re-
duction. They are trained in an unsupervised manner, meaning that no label information
is provided, and as a deep learning approach, they can provide the nonlinear mapping.
They consist of an artificial neural network (ANN) separated into two parts, the encoder
and decoder, connected through a latent space (z). The encoder part, Equation (1), is
used to reduce the dimensionality of the input data X. The decoder part, Equation (2), is
used to reconstruct the original data at its output (X ′ ∈ Rm) from z. The structure of the
autoencoder is as follows:

f(Encoder) : X ∈ Rm → z ∈ Rd (1)

f(Decoder) : z ∈ Rd → X ′ ∈ Rm (2)

Sensors 2022, 22, 4499 7 of 22

The number of nodes in the output layer (z ∈ Rd) of the encoder is set to 2 to create a
two-dimensional latent space.

The essential information about the input vector z can be represented in a lower-
dimensional space using the encoder part. Such an approach allows the distribution of
data to be embedded in z, allowing similar input vectors to be close to each other, and
thus visually detecting similarities and patterns. To obtain a continuous latent space
z, a regularization must be applied to the latent space to shape it in relation to some
prior distribution. For this purpose, we consider the adversarial autoencoder model [31]; a
diagram of the model is presented in Figure 3.

3.5. Adversarial Autoencoder

An adversarial autoencoder (AAE) [31] consists of an autoencoder integrating adver-
sarial training used to constrain the encoding distribution q(z|X) to the desired distribution
called the prior distribution p(z). This provides an q(z) aggregated distribution in the
latent space that matches p(z). This allows a flexible approach for unsupervised and
semi-supervised clustering.

The AAE structure is composed of an autoencoder, an adversarial network, Equation (5),
composed of the encoder part of the autoencoder, Equation (3), and a discriminator.
The discriminator, Equation (4), is connected to the encoder through the latent space z
and its output w is a singular node.

The structure of the AAE consists of the same structure as presented in Equations (1)
and (2), with the additional constraints as follows:

f(Autoencoder) : X ∈ Rm → z ∈ Rd → X ′ ∈ Rm (3)

f(Discriminator) : z ∈ Rd → w ∈ R1 (4)

f(Adversarial network) : X ∈ Rm → z ∈ Rd → w ∈ R1 (5)

3.6. Adversarial Autoencoder Training

A K-Fold cross-validation was performed by considering a K = 5 folds rotation with
12 and 3 datasets, respectively, for each K-fold by selecting D

′
i in the training and validation

sets randomly (Section 3.3). The validation set is always used to stop training when the
considered loss metrics decrease on the test set but increase on the validation set, which would
correspond to an over-fitting of the model on the training set. This procedure was used to tune
the hyperparameters of the adversarial autoencoder presented in detail in Section 3.8.

At each training epoch, the AAE is trained in two distinct steps called the reconstruc-
tion and the adversarial step. In the reconstruction step, the Autoencoder is trained by
minimizing the mean square error LAE, Equation (6), in order to reconstruct X at the output
of the decoder X ′ as follows:

LAE =
1
n ∑

i
|X ′

i − Xi|2 (6)

In the adversarial step, the discriminator part of the adversarial network is trained
by minimizing the cross-entropy LD, Equation (7), to discriminate p(z), called the positive
sample, from q(z), called the negative sample, as follows;

LD = − 1
N

N

∑
n=1

[y′n log(yn) + (1− yn) log(1− y′n)] (7)

with q(z) corresponding to the current distribution in z provided by the encoder. Each
sample in z has a corresponding label y equal to 0, and each sample in z′ randomly extracted
from the prior distribution p(z) has a corresponding label y equal to 1. In this step, the
parameters of the encoder part of the adversarial network are not updated.

Then, the encoder part of the adversarial network is trained by minimizing LG,
Equation (8). This step allows the encoder to confuse the discriminator by generating

Sensors 2022, 22, 4499 8 of 22

the distribution q(z) closer to p(z). In this step, the parameters of the discriminator part of
the adversarial network are not updated.

LG = − 1
N

N

∑
n=1

[y′n log(yn) + (1− yn) log(1− y′n)] (8)

Once the training is finished, the encoder becomes a generative model that maps p(X)
to p(z).

In this study, two different approaches are considered. The first one considers an
Unsupervised AAE (UAAE) model trained in a fully unsupervised manner with p(z)
defined as a set of six two-dimensional Gaussian distributions representing N = 6 move-
ments with the ith movement as zi ∼ N (µ, σ2) [24,31]. The second approach considers a
Semi-Supervised AAE (SSAAE) approach by integrating the label information at the input
of the discriminator Equation (9) during the adversarial phase according to the following
modification for the discriminator:

f(Discriminator) : (z, l) ∈ Rd+N → w ∈ R1 (9)

with l representing the one-shot encoded vector concatenated with z. This approach leads
the encoder to confuse the discriminator by integrating each sample into its corresponding
zi N (µ, σ2). This approach is called semi-supervised since the encoder does not know the
labels (only the discriminator does).

The prior distribution used to train the AAE consists of six two-dimensional Gaussian
distributions uniformly distributed in a polar coordinate system, and its shape is similar to
a polar rose [24].

3.7. Latent Space Evaluation

The purpose of using AAE in this study is to generate a latent space where the data
points of each movement data can be properly embedded by building an encoder model.
It is necessary to perform a proper evaluation of the latent space while training the models.
The performance of the models at generating a two-dimensional distribution close to the
specified prior distribution is evaluated by considering the average of the Kullback–Leibler
(KL) Equation (10) divergence [32] for each two-dimensional Gaussian distribution.

Let p(z) be the prior distribution and q(z) be the output distribution in the latent
space for one two-dimensional Gaussian distribution (so p(z) and q(z) are represented as
p(z) ∼ N (µp, Σp) and q(z) ∼ N (µq, Σq) for each); then the KL divergence is obtained
as follows:

DKL(p||q) = 1
2

(
tr
(

Σ−1
q Σp

)
+
(
µq − µp

)T
Σ−1

q
(
µq − µp

)
− γ + ln

(
detΣq

detΣp

))
(10)

with γ as the dimension of the distribution. Thus, the mean value of each KL divergence
obtained for each cluster, Equation (11), is used as a baseline comparison when training the
AAE model as follows:

M =
1
N

N

∑
n=1

DKL,i (11)

with DKL,i, the KL divergence of the ith movement, and M to be minimized.

3.8. Adversarial Autoencoder Hyperparameters

Finding the proper combination of hyperparameters is important because deep learning
models can have different degrees of performance depending on their hyperparameters. Vari-
ous combinations of hyperparameters were tested during a hyperparameter search performed
by a genetic algorithm (GA); studies [24,33] indicate the hyperparameters considered.

Table 2 provides the details of the hyperparameters considered, which are the number
of layers, the number of nodes per layer, the activation function of the autoencoder, the
activation function of the discriminators, the learning rate, and the dropout rate.

Sensors 2022, 22, 4499 9 of 22

Regarding the combination of the number of layers and the number of nodes in each layer,
three different approaches are considered. The first one uses the same number of neurons on
each layer, the second one uses a decreasing number of nodes (e.g., 16, 8, 4 nodes for 3 layers),
and the last one uses an increasing number of nodes (e.g., 4, 8, 16 nodes for 3 layers). The total
number of possible combinations is 4499. The following GA parameters were considered:
population size of 50, 10 generations, use of tournament selection to choose 10 individuals
to be the parents of the next generation, uniform crossover, and 5% chance of random
mutation on each gene. The GA is used during cross-validation of the K-Fold on the X
database for UAAE, and the hyperparameters found are then used for all models and the
database (Table 1). The fitness function considered is the KL divergence described earlier.

Three different activation functions that are sigmoid, Equation (12), hyperbolic tangent
(tanh), Equation (13), and rectified linear unit (ReLU), Equation (14), are considered.

f (z) = sigmoid(z) =
1

(1 + e−z)
(12)

f (z) = tanh(z) =
(ez − e−z)

(ez + e−z)
(13)

f (z) =

{
0 i f z < 0
z i f z ≥ 0

(14)

The AAE model was trained on a mini-batch size of 64, with the Adam optimizer used
to minimize the loss function, Equations (6)–(8). Keras 2.7 [34] was used with Python 3.8 to
build the AAE models.

The architecture of the selected models is presented in detail for the SSAAE in Figure 3.
One AAE model with the same architecture is built for each database (Table 1).

Figure 3. Semi-supervised adversarial autoencoder architecture with z representing the latent space
and l as the label representing the one-hot vector. The unsupervised adversarial autoencoder will just
consist of removing the input l.

Sensors 2022, 22, 4499 10 of 22

Table 2. Tested hyperparameters.

Hidden
Layers Dense Size Autoencoder

Activation
Discriminator

Activation Learning Rate Dropout
Rate

4, 8, 16, 32, Sigmoid, ReLU Sigmoid 0.01, 0.005, 0.001, 0, 0.1, 0.2,
2, 3 64, 128, 256, 512 Tanh ReLU 0.0005, 0.0001 0.3, 0.4

3.9. Latent Space Distance

The database, Dt, representing the collected data are passed through the trained en-
coder model to get their representation in the two-dimensional latent space. For each label,
a cl centroid called “target centroid” is computed by considering the average coordinates
of all points representing a specific label.

For each database, each sample in the testing set (Section 3.3) is then passed through
the trained encoder to represent it as a two-dimensional point z ∈ Rd with d = 2, providing
a new representation of the data. Then, a distance metric, dl , Equation (15), for each point z
is computed as follows by considering their corresponding centroid cl :

dl =
√
(zl − cn)2 (15)

Then, by repeating this distance calculation for each label, a new dataset
Ri = {dl, yl}N

l=1 representing the ith artificial subject from the testing set is created.
The procedure is repeated for all databases D

′
index (Table 1).

3.10. Latent Space Accuracy

For each database, the accuracy of the testing set in the latent space z ∈ Rd is evaluated [24].
The k-nearest neighbors classifier is used to associate each test point with its k-nearest training
points with K = 10. The predicted class ŷl is then evaluated by a majority vote considering the
most common class among the neighbors and compared to the true label yl.

4. Multi-Armed Bandit Problem

The RL approach in a VR game for rehabilitation would be beneficial to maintaining
a game flow that is neither too difficult nor too easy. RL approaches define a framework
between an agent and its environment with respect to states, actions, and rewards [35].

MAB [36] is a specific form of RL that allows exploration and exploitation of an
environment without changing its state. By repeatedly updating its internal knowledge
with new data (e.g., new records during VR games), the model is constantly kept up to date.
MAB does not require large amounts of data, allowing the model to be effective after only
a few iterations. The reason for not using a full RL algorithm such as Q-Learning is that the
set of possible states and transition probabilities in a Markov decision process cannot be
determined at this stage.

In this study, a non-stationary stochastic MAB problem [37,38] is considered to solve
sequential decisions during VR games. The MAB problem is considered as a decision-
making agent with one state and K = 6 arms representing the numbers of movements.

At each iteration t = 1, 2, ..., 60, among each arm K ∈ Rn with n = 6, the agent chooses
an arm k ∈ K as an action and receives a reward Rk(t) associated with this arm. Then, the
agent updates its internal knowledge about the expected reward µ̂k(t) and chooses a new
action accordingly.

µ̂k(t) denotes the expected reward that is estimated sequentially on the basis of the
observed reward Rk(t) in order for the agent to keep track of changes in the state. Rk(t) is
considered as the distance in the latent space as described in the previous section, which
will update the agent’s internal knowledge based on the patient’s motor skills.

The arm selection probability is specifically used here since the goal is not only to
select the arm that will provide the highest reward but to select the arms according to
the stochastic vector P(t), which represents the relationship with the arm selection and is

Sensors 2022, 22, 4499 11 of 22

obtained using the softmax activation function on the vector µ̂(t). The updated internal
knowledge becomes prior knowledge for the next iteration. The weapons are selected in a
probabilistic way (i.e., selection rule) with the objective of adjusting the agent’s knowledge
and adapting (i.e., update rule) its decision. The probability is decreased if the reward is
small (small distance in the latent space representing a movement close to a target) and
increased if it is large (large distance in the latent space representing a movement far from
a target). Then, the softmax activation function, Equation (16), is considered as the basis of
the selection rule to create P(t) as follows:

Pk(t) =
exp (µ̂k(t)/τ)

∑K
j=1 exp (µ̂k′ (t)/τ)

(16)

This selection rule formulates the probability of each arm as a function of their dis-
tance in latent space. This provides a meaningful way for the agent to not only focus on
the maximum reward but also to consider options with lower expectations. The ratio of
the exploration/exploitation trade-off varies as a function of the temperature, called τ. As
τ increases, selection becomes milder, and probabilities become more uniform (more explo-
ration). Conversely, when τ approaches zero, selection approaches are at a maximum (more
exploitation).

Two different MAB exploration methods are considered: Boltzmann (Section 4.1) and
Sibling Kalman Filter (Section 4.2). Details on how the models select an action and are
updated at each iteration are described in the following sections.

4.1. Boltzmann

The Boltzmann model is a model-free method for non-stationary MAB [35]. In a non-
stationary MAB problem, the rewards will vary over time. In this case, the method gives
more weight to rewards received more recently than to those in the past. After receiving
a reward, the agent’s internal knowledge is updated following Equation (17), where the
learning rate α is a constant value of 0 < α ≤ 1.

µ̂k(t + 1) = µ̂k(t) + α(Rk(t)− µ̂k(t)) (17)

Upper Confidence Bound (UCB)

The Upper Confidence Bound (UCB) [35,39] consists of adding uncertainties about
action-value estimation by adding an uncertainty vector to the expected reward vector,
Equation (18). This allows the trade-off ratio to vary according to the uncertainty, increasing
the proportion of exploration. Every time an arm, k, is explored, the uncertainty decreases
with the number of attempts, Nk(t). The degree of exploration can be adjusted by a constant
value c > 0, providing a new expected reward vector as presented as follows:

µ̂k(t) = µ̂k(t) + c

√
log t

2Nk(t)
(18)

Boltzmann exploration is an interesting approach for tracking non-stationary problems, as
well as for selecting an arm based on a stochastic vector. A problem remains: the learning rate
is not adaptive to the received and expected reward. Indeed, a low learning rate will make the
model take several iterations to adapt to potential abrupt changes. Conversely, a high learning
rate will make the model more sensitive to noise in the reward. In addition, UCB only increases
the degree of exploration at the beginning, and constant updating of the uncertainty of the
unselected arms would be useful. To overcome this problem, a state-of-the-art model called
the Sibling Kalman Filter is implemented and compared to the Boltzmann model.

4.2. Sibling Kalman Filter

The Sibling Kalman Filter model [38,40,41] is an alternative option to the Boltzmann
model that varies at each iteration according to the degree of uncertainty on the expected
rewards and the variance of the environment in which the agent is operating.

Sensors 2022, 22, 4499 12 of 22

At iteration t, the Kalman Filter [42,43] provides posterior distributions associated
with the reward Rk(t) for each arm, Equation (19). These distributions indicate the time-
varying mean of the expected reward, µk(t), as well as the variance associated with the
uncertainty of the expectations, εk(t) (i.e., degree of variability in the patient’s actual motor
capability and current performance). This uncertainty of the expected reward is sampled
from a normal distribution with zero mean and variance σ2

ε , called “observation variance”,
as follows:

Rk(t) = µk(t) + εk(t) εk(t) ∼ N(0, σ2
ε) (19)

Moreover, since µk varies over time, the uncertainty ξk(t) associated with the untested
arm at each iteration t is increased in order to reflect potential variations (i.e., degree of change
in a patient’s motor capabilities), Equation (20). This uncertainty is also sampled from a normal
distribution with zero mean and variance, σ2

ξ , called “innovative variance” as follows:

µk(t) = µk(t) + ξk(t) ξk(t) ∼ N(0, σ2
ξ) (20)

The acquisition of two unique variances is adapted by parameters.
Bayesian estimation of the mean of the expected reward µ̂j(t) and the associated variance

σ̂2
j (t) is performed by the Kalman filter. These prior distributions are considered to be normally

distributed, and the likelihood is considered as being sampled from a normal distribution.
Thus, the posterior distribution can be represented by the same distribution as the prior.

According to the reward, Rk(t), obtained from the selected arm, the agent’s internal
knowledge, µ̂(t), Equation (21), is updated with the following updated rule:

µ̂k(t + 1) =

{
µ̂j(t) + Gj(Rj(t)− µ̂j(t)) i f Arm k = j
µ̂k(t) otherwise

(21)

With Gk(t) being the Kalman gain, Equation (22), used as an adaptive learning rate
and computed as follows:

Gk(t + 1) =

σ̂2

j (t)+σ2
ξ

σ̂2
j (t)+σ2

ξ +σ2
ε

i f Arm k = j

0 otherwise
(22)

Unlike the UCB seen in the previous section with the Boltzmann model, the Sibling
Kalman filter addresses the uncertainty problem not only at the beginning but continuously.
Thus, the uncertainty of the distribution is updated at each iteration following Equation (23),
which reduces the uncertainty with respect to the arm for which the reward is observed
and increases it for the untested arms.

σ̂2
k (t + 1) =

{
(1− Gj(t))(σ̂2

j (t) + σ2
ξ) i f Arm k = j

σ̂2
k (t) + σ2

ξ otherwise
(23)

The first variant of the Sibling Kalman filter considered the use of the softmax activa-
tion function, Equation (16), based on the expected reward vectors, µ̂k(t), Equation (21).
Thus, this model only takes into account the adaptive learning rate.

Two other variants of the Sibling Kalman filter that use the innovative upper confidence
limit and Thomson sampling are described in the next two sections. Thus, these models
consider the adaptive learning rate as well as the uncertainty of the expected rewards.

Sensors 2022, 22, 4499 13 of 22

4.2.1. Innovative Upper Confidence Bound (IUCB)

An Innovative Upper Confidence Bound (IUCB) [40] is here adapted in order to
consider the uncertainty of the prior distribution of the estimated reward. Therefore,
Equation (24) is used as an alternative to the UCB vector described previously in Equation (18)
by considering the uncertainty of the prior distribution as well as the “observation noise”:

µ̂k(t) = µ̂k(t) + c
√

σ̂2
k (t− 1) + σ2

ε (24)

4.2.2. Thomson Sampling (TS)

Thompson Sampling (TS) [38,40,44] is considered a stochastic strategy that samples the
estimated reward based on both the updated estimated mean µ̂k(t) and uncertainty (σ̂2

k (t)).
Thus, the probability that each arm, k, has the highest mean is computed, Equation (25).
For each arm, the predicted reward from the prior distribution is sampled, and this sampled
value, θk(t), is used as a reference, which is normalized by the softmax activation function
to get the stochastic vector P(t) as follows:

Pk(t) =
exp (θk(t)/τ)

∑K
k′=1

exp (θk′ (t)/τ)
θk(t) ∼ N(µ̂k(t), σ̂2

k (t)) (25)

The arm is then selected according to the above-mentioned stochastic vector.

4.3. Agent Models

Based on the methods described so far, five models are presented in Table 3 with
details on the update and selection rules used and their corresponding equations. The
names of these methods are related to the respective update and selection rules: Boltzmann,
Boltzmann UCB, Sibling Kalman Filter, Sibling Kalman Filter IUCB, and Sibling Kalman
Filter TS. A summary of the required parameters for each method is also presented.

The Boltzmann and Sibling Kalman Filter algorithms are presented in detail in the
Appendix A for each method.

Table 3. The models for comparative validation.

Model Update Rule Selection Rule Parameters

Boltzmann Learning rate softmax choice: Equation (16) optimistic Q: Q0 learning rate: α
temperature: τ

Boltzmann UCB Learning rate softmax choice with UCB vector:
Equations (16) and (18)

optimistic Q: Q0 learning rate: α
confidence level: c temperature: τ

Sibling Kalman Filter Kalman gain:
Equation (22) softmax choice: Equation (16)

optimistic Q: Q0 innovative variance: σ2
ξ

observation variance: σ2
ε temperature: τ

Sibling Kalman Filter IUCB Kalman gain:
Equation (22)

softmax choice with IUCB vector:
Equations (16) and (24)

optimistic Q: Q0 innovative variance: σ2
ξ

observation variance: σ2
ε temperature: τ

confidence level: c

Sibling Kalman Filter TS Kalman gain:
Equation (22)

softmax choice on TS on Normal
distribution: Equation (25)

optimistic Q: Q0 innovative variance: σ2
ξ

observation variance: σ2
ε temperature: τ

4.4. Model Evaluation

Usually, the evaluation of MAB models is based on regret, which is defined as the
difference between the reward obtained and the highest expected reward. In the present
case, the selection of consecutive arms with a high expected value is not required, and
the objective is to properly evaluate the probability distribution of the expected reward.
Therefore, by adding a metric to these evaluations, this paper attempts to provide an ap-
propriate evaluation method for the results obtained when using the softmax activation

Sensors 2022, 22, 4499 14 of 22

function. The metric assesses whether each arm can accurately follow the trajectory ob-
tained from the latent space according to the evaluation criterion based on the softmax
activation function.

The following metric is considered by comparing P(t) and µ̂(t) with the true probabil-
ity distribution of the arms and the true rewards denoted by P(t)∗ and µ̂(t)∗, respectively,
which corresponds to the absolute difference between the weighted probability accumu-
lated at iteration point T as follows:

ae(T) =
T

∑
t=0

K

∑
k=1
|Pk(t)∗µ̂k(t)∗ − Pk(t)µ̂k(t)| (26)

with the temperature value in the softmax activation to get the true probability, Pk(t)∗ is set
to an empirical value of 2 to favor exploration (further study is needed on this value).

The hyperparameters presented in Table 4 are the initial Q-values Q0, the learning rate
α, the temperature τ, the confidence level c, the innovative variance σ2

ξ , and the observation
variance σ2

ε , which are tested using a grid search with the X database. The combination of hyper-
parameters that minimize Equation (26) were selected and applied to all remaining databases.
In addition, Table 4 shows the selected parameters in bold for each model.

Table 4. List of hyperparameters. The selected hyperparameters are in bold.

Model Parameters List

Boltzmann
Q0 = [5]

α = [0.05, 0.1, 0.2, 0.5, 1.0]
τ = [1, 2, 3]

Boltzmann UCB

Q0 = [5]
α = [0.05, 0.1, 0.2, 0.5, 1.0]

c = [1, 2, 3]
τ = [1, 2, 3]

Sibling Kalman Filter

Q0 = [5]
σ2

ξ = [0.01, 0.05, 0.1, 0.2, 0.5, 1, 2]
σ2

ε = [0.01, 0.05, 0.1, 0.5, 1]
τ = [1, 2, 3]

Sibling Kalman Filter IUCB

Q0 = [5]
σ2

ξ = [0.01, 0.05, 0.1, 0.2, 0.5, 1, 2]
σ2

ε = [0.01, 0.05, 0.1, 0.5, 1]
τ = [1, 2, 3, 4]
c = [1, 2, 3, 4]

Sibling Kalman Filter TS

Q0 = [5]
σ2

ξ = [0.01, 0.05, 0.1, 0.2, 0.5, 1, 2]
σ2

ε = [0.01, 0.05, 0.1, 0.5, 1]
τ = [1, 2, 3, 4]

5. Results
5.1. Latent Space

The latent space visualizations obtained with UAAE and SSAAE with the XYR
database are presented in Figure 4, with a trajectory for each movement representing
the entirety of an artificial data set. In addition, each label is represented by a unique set of
colors with a color gradient depending on the selected behavior (horizontal stretch, vertical
stretch, or rotation). The darker the color, the closer the artificial data is to the original data.
The latent space created is continuous, and the trajectories clearly go to the target repre-
sented by the original data of the D dataset. The latent space accuracy was evaluated on
the test set (Section 3.10) for each AAE model and averaged across all databases as follows
87.9% (6.9%) and 97.9% (2.2%) for UAAE and SSAAE, respectively. The detailed results are

Sensors 2022, 22, 4499 15 of 22

as follows for UAAE: 100.0%, 85.7%, 95.8%, 79.4%, 88.0%, 82.8%, and 83.6% for databases
X, Y, R, XY, XR, YR, and XYR, respectively. Regarding SSAAE, the results are as follows:
100.0%, 99.9%, 99.1%, 98.7%, 98.7%, 94.6%, and 94.4%. Figure 4 shows the different latent
spaces obtained by UAAE and SSAAE. SSAAE produced a better latent space compared
to the unsupervised one. This is due to the fact that SSAAE uses the label information
during the adversarial phase, which allows the corresponding movement to be placed in
its respective cluster more efficiently. Indeed, the latent space of UAAE has two clusters
(Sphere and Triangle) that are completely entangled. AAE provides better results if it is
guided during the adversarial phase by considering a semi-supervised approach to find an
optimal solution for mapping the data distribution to the prior distribution [24].

Figure 4. UAAE latent space (left) and SAAE latent space (right) representation with their corre-
sponding gradient information regarding the “augmented parameters” values for horizontal stretch
(top), vertical stretch (middle), and rotation (bottom).

5.2. Multi-Armed Bandit Problem

Results for the metrics of Equation (26) are presented in Figure 5 at iterations 5, 10,
30, and 60 for all databases. The Boltzmann UCB and Sibling Kalman Filter TS variants
are specifically presented as they had the lowest cumulative error in their respective
categories. The Sibling Kalman Filter exploration outperformed the Boltzmann exploration

Sensors 2022, 22, 4499 16 of 22

at all iterations. For example, the results showed, at iteration 60, a weighted average
cumulative probability error for all databases of 7.9 versus 19.9 using the UAAE latent
space representation and 8.0 versus 20.0 using the SSAAE latent space representation. In
addition, a detailed graph representing the MAB results for the Sibling Kalman filter with
Thomson sampling for all iterations on an artificial data set in Dxyr is presented in Figure 6.
The results presented in Figures 4 and 6 are from the same artificial data set.

Figure 5. MAB Heatmap showing the results for UAAE (a) and for SSAAE (b) at iterations 5, 10, 30,
and 60 for Boltzmann UCB (left) and Sibling Kalman Filter with Thomson Sampling (right) for each
database (X, Y, R, XY, XR, YR, XYR).

Sensors 2022, 22, 4499 17 of 22

Figure 6. MAB results for UAAE (a) and for SSAAE (b) for the Sibling Kalman Filter with Thomson
Sampling for all iterations on one artificial test dataset from the database XYR. The colored area
represents the uncertainty σ̂k(t)2 about the expected reward µ̂k

6. Discussion

This paper aims to investigate data dimensionality reduction models using models
called adversarial autoencoders to provide an effective visualization tool for high dimen-
sional data. Based on hand movements performed with wireless controllers in an immersive
VR environment, AAE models were tested in unsupervised and semi-supervised contexts
to represent each movement as a single two-dimensional point. This visualization can
be effectively used to detect outliers and trajectories (patterns) for the rapid analysis and
interpretation of novel motions. In addition, the latent space representations of the data
were used to represent the current representation of the motion relative to a target to com-
pute a distance measure used for a specific class of reinforcement learning model, called
Multi-armed Bandit.

Considering an increasing complexity, seven different databases, consisting of 20 artificial
datasets each, were created from the collected data based on various factors, such as
horizontal stretch, vertical stretch, and rotation. In addition, random noise was used as
a data augmentation approach to increase the generalization performance of the deep
learning model [45].

Sensors 2022, 22, 4499 18 of 22

To ensure that the latent space representation provides a correct representation based on
the prior distribution, the KL divergence was used as a fitness function in a genetic algorithm
to find a good set of hyperparameters that can help create such a match. As shown in Figure 4,
the latent space provides a cluster for each label with a homogeneous size by following several
Gaussian distributions in the latent space. This allows a clear visualization and provides a
way to numerically facilitate the comparison between different movements by reducing an
imbalance in the calculated distance in each cluster. The accuracy of the test set was evaluated,
and the results showed an average accuracy for all databases of 87.9% (6.9%) and 97.9% (2.2%)
for UAAE and SSAAE, respectively. As shown in Figure 4, two clusters are entangled for
UAAE, which reduces the accuracy. This may be due to the fact that the data in these areas
are highly distorted, making it difficult for an unsupervised approach to properly separate
the two movements. Using a semi-supervised approach allows AAE to focus on the essential
parts of the signal to correctly separate the signals in the latent space. Nevertheless, AAE
can still perform well and be an interesting approach if no label information is available.
It should be noted that incorporating label information in the adversarial phase does not
significantly increase the complexity of the models, and if labeled data are available, a semi-
supervised approach should be preferred. Furthermore, as presented in Figure 4, trajectories
representing a full set of artificial Di data can be observed clearly. Obtaining such results
with data corresponding to a patient’s progression through various VR game sessions during
rehabilitation would greatly assist clinicians in interpreting a large amount of data. This will
speed up the analysis of improvement and the current status of the patient. It should be noted
that even if the amount of data (360 artificial data) considered in each database is small, the
AAE models are still able to efficiently generalize the movement, as shown by the accuracy
of the test sets. As stated in [46], there is no specific threshold regarding the amount of data
required to use deep learning, as it is related to the task being solved and the size of the neural
network used for it.

The test set points in the latent space are then represented by a distance measure from
a target. The target corresponds to the centroids computed from the data collected from the
healthy participants. These distances are then used as a reward in the MAB algorithm so
that the agent learns the current distance in latent space and thus provides a probabilistic
decision base for the DDA to adapt the game to the patient’s motor capabilities.

The objective is to adjust the agent’s knowledge and adapt its decision by reducing
the probability of choosing an action if the reward is low (good movement represented
by a small distance) and by increasing it if the reward is high (bad movement represented
by a large distance). However, other movements must be tested continuously to maintain
the patient’s motivation and to know their evolution (new distances in the latent space).
In other words, the ratio of these trade-offs allows us to generate a probability sequence for
selecting the next movement. The softmax activation function is used to enable probabilistic
selection, and the ratio of trade-offs is defined by the temperature parameter. Thus, the
agent can adapt the game by selecting moves that are less likely, or more likely, to make the
patient win based on their motor control capability.

Figures 5 and 6 show that the Sibling Kalman filter with Thomson sampling outper-
forms the Boltzmann exploration with UCB. Indeed, the results on the cumulative error at
the end of the episode (iteration 60) are two times smaller for the Sibling Kalman filter with
Thomson sampling compared to the Boltzmann model. Moreover, Sibling Kalman shows a
faster adaptation at the beginning with, for example, an average error of 2.1 at iteration
five compared to 14.4 with Boltzmann exploration.

Kalman filter models have two important advantages over Boltzmann exploration, which
is important in a rapidly changing environment to provide an efficient probability-based
decision model. The first is an adaptive learning rate based on the current difference between
the reward and the expected reward and the estimated variance of the data. The second is that
an additional degree of exploration is considered at each iteration where an action is not tested.
MAB agents based on these models appear to be particularly well suited to a rapidly changing
non-stationary environment, which is of interest in DDA rehabilitation games. In addition,

Sensors 2022, 22, 4499 19 of 22

the MAB is initialized with Q-optimistic values, but these values can be chosen based on past
data based on knowledge of past patients. This can allow the MAB agent to update its internal
knowledge of the condition more accurately for new participants.

7. Limitations

It is important to note that the main limitation of this study is the data. Indeed, further
studies need to investigate whether the use of artificial data can ease the problem of
collecting enough data to create such complex deep learning models. In addition, real
patient data should also be tested and verify whether similar trajectories emerge during
certain clinician-guided rehabilitation processes. In any case, end effector motion data,
combined with effective data dimensionality reduction models, appear to have the potential
to enable the development of effective visualization tools.

Another limitation regarding the internal knowledge of the MAB agent is that it
can be used to make decisions based on adjusted probabilities by changing the temper-
ature value. A large temperature value makes the difference between the milder prob-
ability, while a value closer to zero gives more weight to the higher expected reward.
Further experimentation is needed to find a good temperature value that will provide the
best experience, neither too easy nor too difficult, for patients in real-world rehabilitation
settings. Finally, movements that are too difficult or too easy should also be detected and
replaced if necessary, which was not considered in this study.

8. Conclusions

In conclusion, the use of data dimensionality reduction to create a two-dimensional
latent visualization space combined with a reinforcement learning model based on the
Multi-armed Bandit algorithm provides an interesting approach to visualize and track
current motor control capabilities regarding a target. For example, it is possible to quickly
detect abnormal movements by visual inspection. In addition, this simplified data repre-
sentation can also be used as a way to show the patient his or her progress and to help in
the motivation process.

Indeed, movements that would not be correctly executed due to poor motor control
capabilities can be easily and visually detected in latent space and used in combination with
RL algorithms with the goal of implementing an agent that learns from the environment.
MAB agents update information about each arm as they are rewarded and make the next
decision. Thus, the agent continuously monitors the patient’s ability to perform movements
based on the latent space representation and adapts the probability of selecting the next
action accordingly.

The results showed that AAE models can represent highly dimensional data in a
two-dimensional latent space and that MAB agents can efficiently and quickly learn the
evolution of distance in the latent space. This could be applied in the context of DDA to
reflect the patient’s abilities in VR games by adapting the game parameters (e.g., changing
the properties of an attack or healing) accordingly. This would also be of interest in the
context of DDA to reflect the patient’s abilities in VR games. The use of VR games in
a home rehabilitation training setting with such approaches could provide interesting
complementary tools for the clinician to remotely assess patient progress.

Author Contributions: Conceptualization, V.H.; methodology, V.H.; software, V.H., K.K. and T.H.;
validation, V.H. and G.V.; formal analysis, K.K. and T.H.; investigation, V.H.; resources, G.V.; data
curation, V.H., K.K. and T.H.; writing—original draft preparation, V.H., K.K. and T.H.; writing—
review and editing, V.H. and G.V.; visualization, K.K. and T.H.; supervision, V.H. and G.V.; project
administration, V.H. and G.V.; funding acquisition, V.H. and G.V. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was financially supported by SurfClean Inc., Sagamihara, Kanagawa, Japan.

Sensors 2022, 22, 4499 20 of 22

Institutional Review Board Statement: Ethical review and approval was waived for this study due
to the ethical guidelines of Tokyo University of Agriculture and Technology, which removed the need
for formal approval for such experiments since the data were not collected from external participants
but only from the members of the University.

Informed Consent Statement: Written informed consent was obtained from all subjects after receiv-
ing an explanation of the study.

Data Availability Statement: Data collected on all participants are freely available in the Mendeley
repository at the following: https://dx.doi.org/10.17632/kbbprxr4nw.1 (accessed on 7 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VR Virtual Reality
HMD Head-Mounted Display
RL Reinforcement Learning
DDA Dynamic Difficulty Adjustment
MAB Multi-Armed Bandits
AAE Adversarial Autoencoder
UAAE Unsupervised Adversarial Autoencoder
SSAAE Semi-Supervised Adversarial Autoencoder
UCB Upper Confidence Bound
IUCB Innovative Upper Confidence Bound
TS Thomson Sampling

Appendix A

Algorithm A1 MAB Algorithm—Boltzmann

Parameter: T = 60, K = 6, Q0, α, τ, c
Initialization: Set µ̂(0) := Q0, N(0) := 0

1: for t = 0, 1, . . . , T :
2: if Boltzmann :
3: k← Softmax choice (µ̂(t), τ) with Equation (16)
4: else if Boltzmann UCB :
5: k← Softmax choice with UCB vector (µ̂(t), τ) with Equations (16) and (18)
6: Rk(t)← Bandits (k)
7: µ̂k(t + 1)← Update rule - Learning rate (µ̂k(t), Rk(t), α) with Equation (17)

Algorithm A2 MAB Algorithm—Sibling Kalman Filter

Parameter: T = 60, K = 6, Q0, τ, c, σ2
ξ , σ2

ε

Initialization: Set µ̂(0) := Q0, σ̂2(0), N(0) := 0
1: for t = 0, 1, . . . , T :
2: if Sibling Kalman Filter :
3: k← Softmax choice (µ̂(t), τ) with Equation (16)
4: else if Sibling Kalman Filter IUCB :
5: k← Softmax choice with IUCB vector (µ̂(t), τ, c) with Equations (16) and (24)
6: else if Sibling Kalman Filter TS :
7: k← Softmax choice on TS (µ̂(t), τ) with Equation (25)
8: Rk(t)← Bandits(j)
9: Gk(t), µ̂j(t + 1), σ̂2(t + 1)← Update rule - Kalman gain (µ̂k(t), σ̂2(t), Rk(t), σ2

ξ , σ2
ε , k)

with Equations (21)–(23)

https://dx.doi.org/10.17632/kbbprxr4nw.1

Sensors 2022, 22, 4499 21 of 22

References
1. Perez-Marcos, D.; Solazzi, M.; Steptoe, W.; Oyekoya, O.; Frisoli, A.; Weyrich, T.; Steed, A.; Tecchia, F.; Slater, M.; Sanchez-Vives, M.V. A

Fully Immersive Set-Up for Remote Interaction and Neurorehabilitation Based on Virtual Body Ownership. Front. Neurol. 2012, 3, 110.
[CrossRef] [PubMed]

2. Holden, M.K.; Dyar, T.A.; Dayan-Cimadoro, L. Telerehabilitation Using a Virtual Environment Improves Upper Extremity
Function in Patients With Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 36–42. [CrossRef] [PubMed]

3. Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert
Rev. Med. Devices 2018, 15, 107–117. [CrossRef] [PubMed]

4. Iosa, M.; Morone, G.; Fusco, A.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Pratesi, L.; Paolucci, S. Seven
Capital Devices for the Future of Stroke Rehabilitation. Stroke Res. Treat. 2012, 2012, 1–9. [CrossRef] [PubMed]

5. Levin, M.F.; Weiss, P.L.; Keshner, E.A. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of
Motor Control and Motor Learning Principles. Phys. Ther. 2015, 95, 415–425. [CrossRef] [PubMed]

6. Weiss, P.L.; Rand, D.; Katz, N.; Kizony, R. Video capture virtual reality as a flexible and effective rehabilitation tool. J. Neuroeng.
Rehabil. 2004, 1, 12. [CrossRef]

7. Mihelj, M.; Novak, D.; Milavec, M.; Ziherl, J.; Olenšek, A.; Munih, M. Virtual Rehabilitation Environment Using Principles of
Intrinsic Motivation and Game Design. Presence Teleoperators Virtual Environ. 2012, 21, 1–15. [CrossRef]

8. Kim, W.S.; Cho, S.; Ku, J.; Kim, Y.; Lee, K.; Hwang, H.J.; Paik, N.J. Clinical Application of Virtual Reality for Upper Limb Motor
Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J. Clin. Med. 2020, 9, 3369. [CrossRef]

9. Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B
Biol. Sci. 2009, 364, 3549–3557. [CrossRef]

10. Pinto, J.F.; Carvalho, H.R.; Chambel, G.R.R.; Ramiro, J.; Goncalves, A. Adaptive gameplay and difficulty adjustment in a gamified
upper-limb rehabilitation. In Proceedings of the 2018 IEEE 6th International Conference on Serious Games and Applications for
Health (SeGAH), Vienna, Austria, 16–18 May 2018; pp. 1–8. [CrossRef]

11. Sekhavat, Y.A. MPRL: Multiple-Periodic Reinforcement Learning for difficulty adjustment in rehabilitation games. In Proceedings
of the 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth, Australia, 2–4
April 2017; pp. 1–7. [CrossRef]

12. Barrett, N.; Swain, I.; Gatzidis, C.; Mecheraoui, C. The use and effect of video game design theory in the creation of game-based
systems for upper limb stroke rehabilitation. J. Rehabil. Assist. Technol. Eng. 2016, 3, 205566831664364. [CrossRef]

13. Jost, T.A.; Nelson, B.; Rylander, J. Quantitative analysis of the Oculus Rift S in controlled movement. Disabil. Rehabil. Assist.
Technol. 2021, 16, 632–636. [CrossRef] [PubMed]

14. Monica, R.; Aleotti, J. Evaluation of the Oculus Rift S tracking system in room scale virtual reality. Virtual Real. 2022. [CrossRef]
15. Csikszentmihalyi, M.; Csikzentmihaly, M. Flow: The Psychology of Optimal Experience; Harper & Row: New York, NY, USA, 1990;

Volume 1990.
16. Andrade, G.; Ramalho, G.; Gomes, A.; Corruble, V. Dynamic Game Balancing: An Evaluation of User Satisfaction. In Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Marina del Rey, CA, USA, 20–23 June
2006; Volume 2, pp. 3–8.

17. Tan, C.H.; Tan, K.C.; Tay, A. Dynamic Game Difficulty Scaling Using Adaptive Behavior-Based AI. IEEE Trans. Comput. Intell.
Games 2011, 3, 289–301. [CrossRef]

18. Hunicke, R.; Chapman, V. AI for Dynamic Difficulty Adjustment in Games; Northwestern University: San Jose, CA, USA, 2004;
Volume 2.

19. Cameirão, M.S.; Badia, S.B.I.; Oller, E.D.; Verschure, P.F.M.J. Neurorehabilitation using the virtual reality based Rehabilitation
Gaming System: Methodology, design, psychometrics, usability and validation. J. Neuroeng. Rehabil. 2010, 7, 48. [CrossRef]

20. Wilms, I. Using artificial intelligence to control and adapt level of difficulty in computer-based, cognitive therapy—An explorative
study. J. Cyberther. Rehabil. 2011, 4, 387–397.

21. Pirovano, M.; Mainetti, R.; Baud-Bovy, G.; Lanzi, P.L.; Borghese, N.A. Self-adaptive games for rehabilitation at home. In
Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14 September
2012; pp. 179–186. [CrossRef]

22. Andrade, K.d.O.; Pasqual, T.B.; Caurin, G.A.P.; Crocomo, M.K. Dynamic difficulty adjustment with Evolutionary Algorithm in
games for rehabilitation robotics. In Proceedings of the 2016 IEEE International Conference on Serious Games and Applications
for Health (SeGAH), Orlando, FL, USA, 11–13 May 2016; pp. 1–8. [CrossRef]

23. Andrade, K.O.; Joaquim, R.C.; Caurin, G.A.P.; Crocomo, M.K. Evolutionary Algorithms for a Better Gaming Experience in
Rehabilitation Robotics. Comput. Entertain. 2018, 16, 1–15. [CrossRef]

24. Hernandez, V.; Kulić, D.; Venture, G. Adversarial autoencoder for visualization and classification of human activity: Application
to a low-cost commercial force plate. J. Biomech. 2020, 103, 109684. [CrossRef]

25. Boudreault, M.; Bouchard, B.; Bouchard, K.; Gaboury, S. Maximizing Player Engagement in a Global Warming Sensitization
Video Game Through Reinforcement Learning. In Proceedings of the 4th EAI International Conference on Smart Objects and
Technologies for Social Good, Bologna, Italy, 28–30 November 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 196–201. [CrossRef]

26. Wertz, R.; Katz, R. Outcomes of computer-provided treatment for aphasia. Aphasiology 2004, 18, 229–244. [CrossRef]

http://dx.doi.org/10.3389/fneur.2012.00110
http://www.ncbi.nlm.nih.gov/pubmed/22787454
http://dx.doi.org/10.1109/TNSRE.2007.891388
http://www.ncbi.nlm.nih.gov/pubmed/17436874
http://dx.doi.org/10.1080/17434440.2018.1425613
http://www.ncbi.nlm.nih.gov/pubmed/29313388
http://dx.doi.org/10.1155/2012/187965
http://www.ncbi.nlm.nih.gov/pubmed/23304640
http://dx.doi.org/10.2522/ptj.20130579
http://www.ncbi.nlm.nih.gov/pubmed/25212522
http://dx.doi.org/10.1186/1743-0003-1-12
http://dx.doi.org/10.1162/PRES_a_00078
http://dx.doi.org/10.3390/jcm9103369
http://dx.doi.org/10.1098/rstb.2009.0138
http://dx.doi.org/10.1109/SeGAH.2018.8401363
http://dx.doi.org/10.1109/SeGAH.2017.7939260
http://dx.doi.org/10.1177/2055668316643644
http://dx.doi.org/10.1080/17483107.2019.1688398
http://www.ncbi.nlm.nih.gov/pubmed/31726896
http://dx.doi.org/10.1007/s10055-022-00637-3
http://dx.doi.org/10.1109/TCIAIG.2011.2158434
http://dx.doi.org/10.1186/1743-0003-7-48
http://dx.doi.org/10.1109/CIG.2012.6374154
http://dx.doi.org/10.1109/SeGAH.2016.7586277
http://dx.doi.org/10.1145/3180657
http://dx.doi.org/10.1016/j.jbiomech.2020.109684
http://dx.doi.org/10.1145/3284869.3284920
http://dx.doi.org/10.1080/02687030444000048

Sensors 2022, 22, 4499 22 of 22

27. Sturm, W.; Willmes, K.; Orgass, B.; Hartje, W. Do Specific Attention Deficits Need Specific Training? Neuropsychol. Rehabil. 1997,
7, 81–103. [CrossRef]

28. Li, J.; Monroe, W.; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep Reinforcement Learning for Dialogue Generation. arXiv 2016,
arXiv:1606.01541.

29. Vatavu, R.D.; Anthony, L.; Wobbrock, J.O. Gestures as point clouds: A $P recognizer for user interface prototypes. In Proceedings
of the 14th ACM International Conference on Multimodal Interaction, ICMI’12, Santa Monica, CA, USA, 22–26 October 2012;
p. 273. [CrossRef]

30. Butt, A.H.; Rovini, E.; Esposito, D.; Rossi, G.; Maremmani, C.; Cavallo, F. Biomechanical parameter assessment for classification
of Parkinson’s disease on clinical scale. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717707417. [CrossRef]

31. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial Autoencoders. arXiv 2015, arXiv:1511.05644. [CrossRef]
32. Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908.
33. Loussaief, S.; Abdelkrim, A. Convolutional Neural Network Hyper-Parameters Optimization based on Genetic Algorithms. Int.

J. Adv. Comput. Sci. Appl. 2018, 9, 252–266. [CrossRef]
34. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.
35. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Adaptive Computation and Machine Learning Series;

MIT Press: Cambridge, MA, USA, 2018.
36. Slivkins, A. Introduction to Multi-Armed Bandits. arXiv 2022, arXiv:1904.07272.
37. Besbes, O.; Gur, Y.; Zeevi, A. Optimal Exploration–Exploitation in a Multi-armed Bandit Problem with Non-stationary Rewards.

Stoch. Syst. 2019, 9, 319–337. [CrossRef]
38. Burtini, G.; Loeppky, J.; Lawrence, R. A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit. arXiv

2015, arXiv:1510.00757.
39. Garivier, A.; Moulines, E. On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems. arXiv 2008, arXiv:0805.3415.
40. Speekenbrink, M.; Konstantinidis, E. Uncertainty and exploration in a restless bandit problem. Top. Cogn. Sci. 2015, 7, 351–367.

[CrossRef]
41. Granmo, O.C.; Berg, S. Solving Non-Stationary Bandit Problems by Random Sampling from Sibling Kalman Filters. In Proceedings

of the 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2010, Cordoba, Spain, 1–4 June 2010; pp. 199–208. [CrossRef]

42. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
43. Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [CrossRef]
44. Thompson, W.R. On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples.

Biometrika 1933, 25, 285–294. [CrossRef]
45. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
46. Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953–960. [CrossRef]

http://dx.doi.org/10.1080/713755526
http://dx.doi.org/10.1145/2388676.2388732
http://dx.doi.org/10.1177/1550147717707417
http://dx.doi.org/10.11609/JoTT.ZPJ.1574b.2454-8
http://dx.doi.org/10.14569/IJACSA.2018.091031
http://dx.doi.org/10.1287/stsy.2019.0033
http://dx.doi.org/10.1111/tops.12145
http://dx.doi.org/10.1007/978-3-642-13033-5_21
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.3978/j.issn.2072-1439.2015.04.61

	Introduction
	Related Work
	Materials and Methods
	Experiments
	Database
	Training, Validation, and Test Dataset
	Autoencoder
	Adversarial Autoencoder
	Adversarial Autoencoder Training
	Latent Space Evaluation
	Adversarial Autoencoder Hyperparameters
	Latent Space Distance
	Latent Space Accuracy

	Multi-Armed Bandit Problem
	Boltzmann
	Sibling Kalman Filter
	Innovative Upper Confidence Bound (IUCB)
	Thomson Sampling (TS)

	Agent Models
	Model Evaluation

	Results
	Latent Space
	Multi-Armed Bandit Problem

	Discussion
	Limitations
	Conclusions
	
	References

