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Abstract: This study proposed a noninvasive blood glucose estimation system based on dual-
wavelength photoplethysmography (PPG) and bioelectrical impedance measuring technology that
can avoid the discomfort created by conventional invasive blood glucose measurement methods
while accurately estimating blood glucose. The measured PPG signals are converted into mean,
variance, skewness, kurtosis, standard deviation, and information entropy. The data obtained by
bioelectrical impedance measuring consist of the real part, imaginary part, phase, and amplitude
size of 11 types of frequencies, which are converted into features through principal component
analyses. After combining the input of seven physiological features, the blood glucose value is finally
obtained as the input of the back-propagation neural network (BPNN). To confirm the robustness
of the system operation, this study collected data from 40 volunteers and established a database.
From the experimental results, the system has a mean squared error of 40.736, a root mean squared
error of 6.3824, a mean absolute error of 5.0896, a mean absolute relative difference of 4.4321%, and a
coefficient of determination (R Squared, R2) of 0.997, all of which fall within the clinically accurate
region A in the Clarke error grid analyses.

Keywords: blood glucose estimation; photoplethysmography (PPG); bioelectrical impedance; principal
component analysis (PCA); back-propagation neural network (BPNN)

1. Introduction

Diabetes is a chronic disease that occurs when a patient’s pancreas is no longer capable
of producing insulin or the patient’s body is unable to fully utilize the insulin it produces,
leaving the body incapable of regulating blood glucose levels. Symptoms of diabetes
include increased thirst, hunger, and urination frequency, and individuals with diabetes
are at increased risk of several severe complications including retinopathy, kidney diseases,
neuropathy, and cardiovascular diseases [1]. These complications can lead to reduced
quality of life and long-term disability; therefore, preventive medicine is crucial for the
early detection and treatment of diabetes. To facilitate early detection and treatment, regular
blood glucose monitoring should be performed, enabling people to seek more accurate
testing in hospitals in the early stages of diabetes.

Measurement of blood glucose generally requires patients to use a lancet and blood
sugar test strip to collect blood from their fingers [2], after which an electronic device
is used to measure and convert the data into a blood glucose value. However, frequent
pricking of the fingers can be painful if regular monitoring is required, rendering the
procedure unsuitable for repeated use. Finger pricking can also lead to infection, tissue
damage, or reduced patient compliance [3]. Despite these shortcomings, invasive glucose
monitoring is currently the most dominant means of measuring blood sugar due to a lack
of noninvasive blood glucose meters that are as reliable and inexpensive as invasive ones.
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Various studies are currently being conducted using different noninvasive continuous
blood glucose measurement methods that can be as accurate as invasive approaches at
relatively low cost [4,5]. Currently, noninvasive blood glucose measurements are primarily
conducted through four approaches: measurement of acoustic waves, microwaves, and
electrical and optical signals. This study used both electrical bioelectrical impedance values
and optical photoplethysmography (PPG) to obtain blood glucose-related parameters and
predict blood glucose values.

PPG is a noninvasive physiological sensing technology that detects blood volume
changes optically and can acquire signals from multiple body parts. The measurement
sites affect PPG signals, and not all body parts are suitable for measuring PPG signals,
which are best measured at the fingertips and earlobes [6]. Several studies have identified
the relevance of noninvasive blood glucose measuring technologies using PPG signals
for blood glucose analyses. Because blood glucose has different absorption rates for light
sources of different wavelengths, Sen et al. proposed a novel design to detect blood glucose
through three sensors using light sources with wavelengths of 940 nm, 660 nm, and 660
nm. They used two sensors (940 nm and 660 nm) to obtain the refraction signal and a
third sensor (660 nm) to acquire the reflection signal, after which they conducted data
analyses using analyses of variance [7]. Deepthi et al. used a 940 nm infrared light and
proposed a blood glucose monitoring method that outperformed the invasive measurement
approaches used by hospitals with a percentage error of ±2.5%, indicating that the model
can favorably predict blood glucose concentrations [8].

Following the rise of artificial intelligence, some researchers have focused on using
neural networks to evaluate PPG signal characteristics. Hamdi et al. used artificial neural
networks to predict blood glucose levels. They utilized tanh as the activation function and
achieved a mean square error of 6.43 mg/dL [9]. Prabhu et al. used classifiers such as deep
belief networks, feedforward neural networks, decision trees, logistic regression, random
forests, and support vector machines to compare predicted blood glucose values. They
used the diabetes data set of UCI and determined that the deep belief networks had higher
accuracy because they displayed the highest precision and recall rate [10]. Manurung et al.
used transmitted infrared light with a wavelength of 940 nm that was preprocessed using
high-pass and low-pass filters and used the maximum value, minimum value, sex, weight,
height, skin color index, and finger width of the patient as inputs. Through neural network
training, their model produced an absolute mean error of 5.855 mg/dL [11]. Hina et al.
introduced a wearable blood glucose monitoring system that used infrared light with a
single wavelength to collect PPG signals and incorporated machine learning regression
to address the problem of facial motion artifacts. The authors compared the methods of
Savitzky–Golay (SG) filtering, average filtering, and wavelet transform. Because all three
filtering methods could effectively remove noise, they selected smooth filtering because it
required less cost and computing time to complete signal preprocessing [12].

Bioelectrical impedance measuring technology involves using the electrical character-
istics (impedance, phase, and dielectric constant) of biological tissues and organs and their
changes to obtain information about the physiological and pathological status of the human
body including body composition. The use of different bioelectrical impedance measuring
technologies requires different excitation signal frequencies. In recent years, common
bioelectrical impedance research methods include single-frequency bioelectrical impedance
analyses, multifrequency bioelectrical impedance analyses, and bioelectrical impedance
frequency sweep analyses. Zeng et al. measured the deionized aqueous solutions and
saline solutions of glucose aqueous solutions in the frequency range of 500 kHz to 5 MHz
at 25 ◦C using an impedance analyzer, and established an e-Cole model for each type of
glucose. The resulting measurement coefficient of determination was 0.99, demonstrating
the practical potential of low-frequency noninvasive blood glucose measurements [13].
Li et al. obtained the conductivity and dielectric constant of aqueous solutions with dif-
ferent glucose concentrations through an impedance analyzer in the frequency range of
1 kHz to 1 MHz. The results indicated that the dielectric constant did not differ significantly
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between aqueous solutions of different glucose concentrations, and the conductivity of the
solutions varied with the increase in glucose concentration [14].

In addition, the combination of PPG signals and bioelectrical impedance has been
verified to yield accurate results. Fouad et al. proposed a low-cost, high-precision nonin-
vasive glucose monitoring system by combining multiwavelength infrared spectroscopy
and bioelectrical impedance frequency sweep. In their method, bioelectrical impedance
was primarily measured through frequency scanning from 10 to 100 kHz with an interval
of 10 kHz, whereas infrared spectroscopy used three wavelengths (850 nm, 880 nm, and
940 nm). The correlation coefficient of their system was 0.91805, which fell in region A of the
Clarke error grid analysis (EGA) [15]. Nanayakkara et al. measured bioelectrical impedance
through 940 nm infrared light and a frequency of 3 to 100 kHz and compared the obtained
features with least squares regression and neural network algorithms. The results revealed
that the least squares regression was the superior algorithm and that the combination
of infrared light and bioelectrical impedance yielded improved accuracy [16]. Pathirage
et al. obtained a multiwavelength near-infrared light spectrum from multi-wavelength
infrared light and extracted the features of bioelectrical impedance every 0.5 kHz from 50
to 100 kHz. Furthermore, they used a commercially available glucose meter to obtain the
blood glucose of research participants, which was used to train a random forest regression
model, obtaining an accuracy rate of 90.7% [17].

In the aforementioned studies, bioelectrical impedance was mostly analyzed in the
form of an impedance spectrum, which can provide sufficient information and features
and is thus conducive to the analyses of blood glucose through a back-propagation neu-
ral network (BPNN). In this study, statistical features were extracted from bioelectrical
impedance and PPG signals, and a BPNN, which has the advantages of weight modifica-
tion and wide application range, was used as the blood glucose prediction model. The
remainder of this paper is structured as follows. Section 2 describes the physiological
parameter feature extraction process. Section 3 describes analyses of measurement data
preprocessing technology used in this study. Section 4 presents the experimental method
and system configuration. Section 5 gives analyses and discussion of network experiment
results. Finally, Section 6 presents the conclusions of this study.

2. Physiological Parameter Feature Extraction

When red and near-infrared light are transmitted into human tissue, the glucose
contained in one’s blood absorbs the lights at exactly this wavelength, allowing the sensor
to transforms the absorbed light into an electrical current and, subsequently, into voltage
readings. Such voltage readings are referred to as the PPG signal. Protein in the human
body naturally contains net charge and dipoles. A dipole is formed by positive and negative
charges, while the net charge represents the excessive portion of positive or negative charges.
An increase in glucose concentration would impact the structure of the protein, and thereby
trigger a change in dipole, which can be captured by the bioelectrical impedance sensor.

In this study, the MAX86150 Evaluation System (Maxim Integrated, San Jose, CA,
USA) was used to measure PPG signals. The current adjustment range of the hardware
was 0–100 mA, and the current pulse width was 50–400 µs. It included two light sources,
one of red light at 670 nm and one of infrared light at 900 nm, enabling the simultaneous
measurement of different wavelengths of PPG signals. To obtain the bioelectrical impedance
values, an EVAL-AD5933EBZ Evaluation Board (Analog Devices, Wilmington, MA, USA)
was used. The board had a measurement frequency of 1–100 kHz, and the measurement
frequency range could be easily adjusted. The maximum sampling times reached 512 times
to yield bioelectrical impedance values at different frequencies.

To determine the stability and robustness of the proposed system, the blood glucose
values measured by the commercially available noninvasive glucose monitor ESER Gluco-
Genius (HK Eser Int’l Tech Development Co., Ltd., Hong Kong, China) were used as the
target network of network training. According to the Clarke EGA, the verification similarity
reached 87.56%. In the experiment, the dual PPG signals, bioelectrical impedance values,
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and blood glucose values were measured, and the signal processing method used in [18]
was referenced. The peaks of the PPG signals were used to calculate the statistical charac-
teristics of mean, variance, skewness, kurtosis, standard deviation, and message entropy.

These characteristics were defined as follows: The mean is a measurement value often
used in statistics. In this study, we acquired the values of the peaks of the PPG signals and
divided them by the number of peaks to obtain the mean value of the peaks. Variance is
the average distance of all values from the mean. In this study, the peaks were used to
calculate the variance. Skewness is the distribution of the samples used for judgment. In
this study, kurtosis was used to measure the peak value of the probability distribution of
the random variables of the data. Standard deviation is used to calculate the degree of
dispersion of a data set, with a high standard deviation indicating a large gap between
most values and the mean, a low standard deviation indicating that most values exhibited
little difference from the mean. Information entropy is expressed as the expected values
contained in all categories.

In [17], the measurement frequency of bioelectrical impedance ranged from 50 to
100 kHz, with an interval of 5 kHz. The present study used bioelectrical impedance data
measured by currents of 11 frequencies, with the bioelectrical impedance data of each
frequency involving a real part, imaginary part, phase, and amplitude values. This study
referenced [17,19–22] and used the patient characteristics of age, height, weight, heart
rate, blood flow velocity, hemoglobin, and blood oxygen saturation as the physiological
parameters for blood glucose estimation.

3. Analyses of Measurement Data Preprocessing Technology
3.1. Motion Artifact Suppression Technology

Interference by motion artifacts causes changes in the waveform shape of PPG signals,
which lead to corresponding changes in their statistical data. Therefore, we used SG
filtering to remove the offset value caused by motion artifacts and subtracted the offset
value from the measured PPG signal, thereby acquiring a PPG signal with reduced motion
artifact effects [23]. SG filtering is an efficient smoothing and denoising method that
performs a weighted moving average, with the weighting implemented as a higher level
of polynomial. One of the biggest advantages of this filter is that it preserves the salient
features of the maxima and minima that would normally be corrupted by other smoothing
filters. Figure 1a illustrates the PPG measurement waveforms at different wavelengths that
are affected by motion artifacts; Figure 1b displays PPG signals of different wavelengths
with the use of an SG filter that filters the motion artifacts.
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Sensors 2022, 22, 4452 5 of 13

3.2. Use of Principal Component Analyses to Reduce Dimensionality

To achieve a more efficient model training, principal component analyses were used
to reduce the dimensionality of the bioelectrical impedance dataset and thereby minimize
information loss and substantially decrease the amount of computation required [24]. The
processing method consisted of five steps.

(1) Normalize and subtract the mean value from the data;
(2) Calculate the covariance matrix through eigenvalue decomposition;
(3) Calculate the eigenvalues and eigenvectors of the covariate matrix;
(4) Select features and establish eigenvectors;
(5) Map the original data to the selected principal component space to obtain the data

after dimensionality reduction.

This reduced the amount of input data for computation and left useful measurement
signal characteristics for network use.

4. Experimental Method and System Configuration
4.1. Research Participants

This study was a collaboration between the authors of this paper and physicians
from National Taiwan University Hospital Yunlin Branch, Taiwan, and was approved for
a clinical trial by the Institutional Review Board. A total of 40 participants consisting of
volunteers from National Taiwan Ocean University were recruited. The inclusion criteria
were students with normal blood pressure and aged 18 years or older. Pregnant women,
minors (under the age of 18), and individuals with mental disabilities were excluded.

Table 1 presents the participants’ age, height, heart rate, blood flow velocity, hemoglobin,
blood oxygen saturation, and blood glucose range.

Table 1. Physiological characteristics of the participants.

Parameters Daily Activity

Age Range (years) 18–25
Height (cm) 165 ± 20
Weight (kg) 65 ± 30

Heart rate (bpm) 70 ± 28
Blood flow rate (mm/s) 280 ± 100

Hemoglobin (g/L) 160 ± 20
Pulse oximetry (%) 94 ± 5

blood glucose (mg/dL) 110 ± 15

The experiment location was the Smart IoT Laboratory of the Department of Electrical
Engineering, National Taiwan Ocean University. The experimental environment and
measuring instruments are presented in Figure 2. Before the experiment began, the detailed
process and experimental purpose were explained to the patients, and the experiment
commenced after the patients signed a consent form. During data collection, patients were
asked to sit in a comfortable chair and not talk to or make physical contact with anyone.

This study tested the noninvasive measurement methods developed, namely dual-
wavelength PPG measurement and bioelectrical impedance measurement, to obtain blood
glucose-related characteristics. The experimental flow chart is presented in Figure 3. The
participants’ data were collected using the following methods:

(1) Explain the research protocol and experimental method to each volunteer, and confirm
that they met the inclusion criteria, after which they are asked to sign a consent form.

(2) Participants placed their hands flat and at the same height as their hearts and sat
still quietly for 3 min while PPG waveforms and bioelectrical impedance values were
being collected.

(3) After the PPG waveform and bioelectrical impedance measurement, the commercially
available noninvasive glucose meter ESER GlucoGenius was used to conduct a 2 min
measurement to obtain participants’ blood glucose values.
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(4) After the experiment, the participants’ characteristics such as age, height, weight, heart
rate, blood flow velocity, hemoglobin, and blood oxygen saturation were obtained for
neural network use.
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4.2. Experimental System Architecture Diagram

The experimental system architecture presented in Figure 4 included a MAX86150 Eval-
uation System that uses 660 nm red light and 900 nm infrared light, an EVAL-AD5933EBZ
Evaluation Board bioelectrical impedance measuring device, and an ESER GlucoGenius
noninvasive glucose meter. This system obtained PPG signals by having the participants
place their left middle fingers on the sensor and attaching two electrode patches (10 cm
apart) under their left wrists, simultaneously obtaining the dual-wavelength PPG signals
and the bioelectrical impedance values. After the measurement was complete, the ESER
GlucoGenius noninvasive glucose meter was used to measure the participants’ blood glu-
cose levels using their right hands. The measured data were analyzed and calculated using
an algorithm, after which the mean, variance, skewness, kurtosis, standard deviation, and
information entropy were obtained, which were used by the BPNN to calculate the blood
glucose level.
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4.3. Back-Propagation Neural Network Design

The architecture of the BPNN is illustrated in Figure 5. Two PPG signals of different
wavelengths were used to calculate six types of statistical features. The characteristic quan-
tities of the six types of statistical features and bioelectrical impedance were 12 × 40 and
11 × 40, respectively, and the number of volunteer physiological features were 7 × 40. The
statistical features of the PPG data and bioelectrical impedance features were concatenated
to acquire 30 × 40 values, which were used as the input of the BPNN.

The features described in Table 2 are all input features of the BPNN. The input features
were first weighted and adjusted by 250 neurons through the hidden layer of the first layer
and were then weighted by 300 neurons in the second hidden layer. Because the output data
only contained blood glucose values, to avoid the network failing to converge or overfitting,
the number of iterations and learning rate were considered when designing the network.
Because an excessively low or high number of iterations would lead to incomplete network
training and overfitting, respectively, repeated tests revealed that setting the number of
iterations to 550 could produce more favorable network performance. The learning rate
was set to 0.01 in the beginning, producing a faster convergence for the initial network
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training and avoiding entering a locally optimal solution in the beginning. Furthermore, the
learning rate was set to decrease after every ten iterations, facilitating a stable convergence
when the BPNN performed the gradient descent due to errors and producing a higher
probability of obtaining the global optimal solution.
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Table 2. Input characteristic values used by the BPNN.

1 Infrared light
PPG mean 2 Red light PPG mean 3 Infrared light variance

4 Infrared light
PPG variance 5 Infrared light PPG skewness 6 Red light PPG skewness

7 Infrared light
PPG kurtosis 8 Red light PPG kurtosis 9 Infrared light PPG standard

deviation

10 Red light PPG
standard deviation 11 Infrared light PPG

Information Entropy 12 Red light PPG Information
Entropy

13 Age (years) 14 Height (cm) 15 Weight (kg)

16 Heart rate (bpm) 17 Blood flow rate (mm/s) 18 Hemoglobin (g/L)

19 Pulse oximetry (%) 20 Frequency 50k Bioelectrical
Impedance values 21 Frequency 55k Bioelectrical

Impedance values

22 Frequency 60k Bioelectrical
Impedance values 23 Frequency 65k Bioelectrical

Impedance values 24 Frequency 70k Bioelectrical
Impedance values

25 Frequency 75k Bioelectrical
Impedance values 26 Frequency 80k Bioelectrical

Impedance values 27 Frequency 85k Bioelectrical
Impedance values

28 Frequency 90k Bioelectrical
Impedance values 29 Frequency 95k Bioelectrical

Impedance values 30 Frequency 100k Bioelectrical
Impedance values
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4.4. Model Performance Evaluation

To evaluate the performance of the BPNN, we used the following quantitative evalua-
tion metrics:

(1) Mean squared error (MSE): The regression loss function used in machine learning,
also known as L2 loss. It can judge the degree of change in the data through the sum
of squares of the distance between the actual value and the predicted value. Therefore,
a smaller MSE indicates a more favorable accuracy of model prediction.

(2) Root mean squared error (RMSE): RMSE is used to measure the deviation between
the actual quality and the predicted value. By calculating the sum of squares of the
distance between the actual value and the predicted value, RMSE is equivalent to
the square root of MSE, and its effect is to produce a more favorable description of
the data.

(3) Mean absolute error (MAE), also known as L1 loss: After taking the absolute value of
all actual values and predicted values, the arithmetic mean is obtained. The presence
of positive and negative errors during error calculation provides opportunities for
the two types of errors to offset each other. Therefore, the absolute value is added
for evaluation.

(4) Mean absolute relative difference (MARD): MARD is an indicator used to assess con-
tinuous blood glucose monitoring. A lower value of the average difference between
the actual and predicted values signifies a higher accuracy of the designed instrument.

(5) Coefficient of determination (R2): The coefficient of determination is used to indicate
the similarity of the actual data to the predicted data. A value between 0 and 1 is
obtained by dividing the predicted variable by the target variable, with a value closer
to 1 representing higher similarity.

(6) Clarke EGA: Clarke EGA is the standard to determine the accuracy of blood glucose
meters, which is achieved by quantifying the blood glucose values obtained by the
glucose meter and comparing them with reference values. The grid consists of five
regions. The values in region A indicate that the blood glucose level can be determined
and used to enable the patient to receive the appropriate treatment. Region B indicates
that the values have a large deviation from the reference values but will not cause
adverse effects if they are used to determine treatments. Regions C, D, and E indicate
that the values have deviated to the extent that should treatment be based on the
values, the treatment will be unnecessary or harmful. Therefore, general precision
blood glucose meter measurements should fall in regions A or B of the Clarke EGA.

The aforementioned performance evaluation indicators were adopted to evaluate
whether the proposed blood glucose calculation system could obtain accurate measurements.

5. Analyses and Discussion of Network Experiment Results

A total of 40 participants were recruited in the experiment, and 3 min of data were
collected from each participant. PPG signals were measured continuously, and bioelectrical
impedance was measured once per minute. Twelve statistical features were calculated
from the measured PPG signals. The measured bioelectrical impedance data were from 11
frequency bands, and each frequency band had four features; principal component analyses
were then conducted to reduce their dimensionality to 11 features. The participants’
seven physiological state features were added to produce a total of 30 features, which
were used as the network rate training and verification. Figure 6 illustrates the training
and validation curves of the BPNN. The training loss curve was observed to decrease
rapidly before reaching 50 iterations, and the subsequent curve was more stable and
exhibited less fluctuation. Accordingly, the proposed BPNN model possessed stability
and robustness, and could stably converge data collected by the dual-wavelength PPG
sensor and bioelectrical impedance measurement. Furthermore, the early stopping method
avoided over-training of the model. In comparison with [12,13,15–17,21,25–27], which
served as the standard for predicting blood glucose, the proposed blood glucose estimation
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system had an MSE, RMSE, MAE, MARD, and R2 of 40.736, 6.3824, 5.0896, 4.4321, and
0.997, respectively, all of which fell within region A of the Clarke EGA.
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Figure 7 illustrates the Clarke grid analyses plotted using the network verification
of 30 features obtained from the dual-wavelength PPG measurement data, bioelectrical
impedance from 11 frequencies, and physiological features. The points predicted in the
figure were all located in region A, indicating that the model designed by this system had
an extremely high correlation with existing methods in blood glucose assessment.
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A comparison with the results of systems developed in other studies is presented
in Table 3. The results reveal that the performance obtained by the proposed method
was superior to those of the other systems, verifying the effectiveness of the proposed
architecture.
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Table 3. Comparison of noninvasive blood glucose assessment systems.

Reference Modality MSE RMSE MAE MARD R2 Clarke EGA

Hina et al. [12] NIRS N/A 11.20 N/A 7.62% 0.937 95% in the A area

Hina et al. [25] NIRS N/A 10.20 N/A 6.9% 0.955 N/A

Gupta et al. [21] NIRS N/A N/A N/A N/A 0.88 N/A

Guzman et al. [26] NIRS N/A 18.6621 16.4540 N/A N/A N/A

Zhu et al. [27] NIRS N/A N/A N/A 5.453% 0.936 98.413% in the A area

Zeng et al. [13] BIS N/A N/A N/A N/A 0.99 N/A

Nanayakkara et al. [16] BIS + NIRS N/A 10.24 N/A N/A 0.58 90% in the A area

Pathirage et al. [17] BIS + NIRS N/A N/A N/A 9.3% N/A 86.1% in the A area

Fouad et al. [15] BIS + NIRS N/A N/A N/A N/A 0.918 100% in the A area

This work BIS + NIRS 40.736 6.3824 5.0896 4.4321% 0.9970 100% in the A area

6. Conclusions

The proposed blood glucose detection method in this study involved the measurement
of dual-wavelength PPG and bioelectrical impedance. The dual-wavelength PPG sensor
was placed between the index and middle fingers of the participants’ left hands, and two
electrode patches were placed 10 cm apart under the participants’ left wrists to achieve the
goal of simultaneously capturing signals. The two patches separately recorded the complete
continuous waveforms of the two PPGs, which were then converted into statistical features
such as mean, variance, skewness, kurtosis, standard deviation, and message entropy,
totaling 12 features. In terms of the bioelectrical impedance, data in the frequency range of
50 and 100 kHz were recorded. Specifically, data on the real part, imaginary part, phase,
and amplitude of 11 frequencies were acquired by sampling every 5 kHz, resulting in a
total of 44 features. To enhance the robustness of the network model, SG filtering was used
in PPG processing during data preprocessing to improve baseline drift caused by motion
artifacts. For bioelectrical impedance processing, dimensionality reduction was achieved by
using PCA to retain crucial information and reduce the computational complexity. Finally,
the blood glucose values were calculated using the proposed BPNN algorithm.

The input network training database used in this paper had a total of 40 participants.
The evaluation indicators MSE, RMSE, MAE, MARD, and R2 of the blood glucose values
predicted by the proposed model were 40.736, 6.3824, 5.0896, 4.4321, and 0.997, respectively,
all of which fell within region A of the Clarke EGA. Regardless of whether the method
proposed in this study used solely PPG, solely bioelectrical impedance, or the combination
of both PPG and bioelectrical impedance, the results were more favorable compared with
the results obtained in other studies, verifying the measurement accuracy of the proposed
system. The selection and design of deep learning networks is one of the future work items.
While the group method of data handling (GMDH) neural network and our proposed
network are identical in terms of network structure, the GMDH neural network is equipped
with three additional functions, such as automatic check on neuron, hidden layer counts,
and automatic search of effective feature input. In particular, the function of automatic
search of effective feature input would be especially useful when training networks with
unidentified features, given the importance of effective feature value under the setting
of online training. These kinds of networks are one of the options that can be used in
our research.
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