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Abstract: We developed a path-planning system for radiation source identification devices using
4π gamma imaging. The estimated source location and activity were calculated by an integrated
simulation model by using 4π gamma images at multiple measurement positions. Using these calcu-
lated values, a prediction model to estimate the probability of identification at the next measurement
position was created by via random forest analysis. The path-planning system based on the prediction
model was verified by integrated simulation and experiment for a 137Cs point source. The results
showed that 137Cs point sources were identified using the few measurement positions suggested by
the path-planning system.

Keywords: path planning; radioisotope identification; 4π gamma imaging; random forest

1. Introduction

Radiation sources should be handled carefully and controlled strictly. However, in the
events of theft and loss of sources or undesired acts of terrorism using such sources, it is
necessary to identify multiple sources over a wide search area rapidly [1]. Several methods
for radiation source identification have been developed [2–7]. For example, Huo et al.
reported a method to estimate the location and intensity of radiation sources by using a
mobile robot equipped with a Geiger–Müller (GM) counter and laser range sensor [4]. They
investigated the selection of the measurement position by reinforcement learning for the
autonomous identification of the radiation sources. Besides this, methods to visualize the
gamma-ray intensity in an environmental three-dimensional map were developed. Vetter
et al. demonstrated radiation source detection using both simultaneous localization and
mapping (SLAM) based on a light detection and ranging (LiDAR) system and gamma-ray
images obtained using gamma imaging methods such as coded-aperture and Compton
imaging [5]. Sato et al. applied this method to visualize the gamma-ray intensity at the site
of Fukushima Daiichi Nuclear Power Plant [6,7].
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The typical field of view of conventional gamma imaging is less than 180◦, whereas
4π Compton imaging is sensitive to gamma rays incident on a detector from all directions.
Hence, 4π Compton imaging can allow more rapid identification of radiation sources
than that possible by methods based on conventional gamma imaging. In this regard, we
developed a 4π gamma-ray imaging system using gadolinium aluminum gallium garnet
(GAGG) scintillators [8,9] and CdTe detectors [10,11]. Previous studies demonstrated that
the location and activity of hidden gamma-ray sources can be estimated by combining
gamma-ray images measured at multiple positions [11,12]. In autonomous source identifi-
cation by a 4π Compton imager mounted on a robotic vehicle, it is necessary to optimize
the measurement procedure, i.e., the measurement positions around the target sources. For
this purpose, we proposed a detector movement algorithm for a single source [13,14]. In
this study, we developed a path-planning system for radioisotope identification devices by
using 4π gamma imaging based on random forest (RF) analysis.

2. Investigation of Path-Planning System Using an Integrated Simulation Model

In the source identification method based on 4π gamma imaging [12], a point source
is assumed to exist in a certain voxel in a three-dimensional (3D) voxel space, and the
source intensity at the pixel in the direction estimated from the gamma image is calculated
from the intensity of the gamma image. This calculation is performed for 4π gamma
images obtained at several positions around a source, and finally, the source is identified as
being present at that intensity at a position for which the results are consistent. For rapidly
identifying radiation sources using 4π gamma imaging, the images should be obtained from
multiple positions that are suitable for obtaining the intensity and position information of
the sources. In a previous study, we developed a detector movement algorithm for a single
radiation source [13]. The first priority in the algorithm is that the detector is moved to
the direction with the highest intensity in the 4π gamma image, and the second one is that
the detector is moved away from the direction with the highest intensity in the image and
toward the direction with the next-higher intensity in the image.

In this study, we investigated a path-planning system for detector movement. An
integrated simulation model [13] that estimates the location and intensity of a single gamma
source from gamma images at arbitrary positions around the source was used to develop
the path-planning system. To obtain gamma images in the simulation, a 3D multipixel
array CdTe detector was assumed as a 4π gamma imager. The basic detector response
with sufficiently small counting statistics was obtained by measuring 137Cs (2 MBq) placed
at 100 cm from the center of the detector for 20 min. For any measurement point in the
simulation, the gamma image was calculated by rotating the basic response to the direction
of a target source and transforming the intensity of the basic response to follow the inverse
square law. Therefore, the background variation and uncertainty caused by the counting
statistics in calculated gamma images were not considered in the following discussion.

To extract appropriate features in RF analysis even when there are two sources and
create a prediction model to estimate the probability of identification at the next measure-
ment position, simulations were performed for two sources. Figure 1 shows the locations
of two 137Cs point sources and the possible measurement positions around the sources
on the search area in the integrated simulation model. The point sources and the possi-
ble measurement positions were assumed to be on the same plane. The search area was
8 ≤ X ≤ 8 m and −8 ≤ Y ≤ 0 m. Measurement points A and B were selected from S0 to
S44 positions on a 2 m grid in the search area, excluding the two source positions S20 and
S24. The intensity ratio of the two sources ranged from 0.1 to 4.9.
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Simulation of source identification in a 3D voxel space (41× 41× 41 voxel, 0.4 m3/voxel)
was performed under all possible conditions of source intensity ratio and for two measure-
ment positions A and B. The output data were analyzed using RF, a machine learning model.
First, to find the features in this RF analysis, the features in the decision tree analysis that
were examined in our previous study [13] were selected as the candidates. Figure 2 shows
the definitions of the eight candidate features listed below:

Line segment between points C and Gest

∣∣∣∣−−−−→CGest

∣∣∣∣
Line segment between points Gpos and Gest

∣∣∣∣−−−−−→GposGest

∣∣∣∣
Line segment between points A and B

∣∣∣∣−−−→AB
∣∣∣∣

Line segment between points A and Gest

∣∣∣∣−−−−→AGest

∣∣∣∣
Line segment between points B and Gest

∣∣∣∣−−−→BGest

∣∣∣∣
Ratio of

∣∣∣∣−−−→AGest

∣∣∣∣ and
∣∣∣∣−−−→BGest

∣∣∣∣
∣∣∣∣−−−→AGest

∣∣∣∣∣∣∣∣−−−→BGest

∣∣∣∣
Parallax angle ∠AGestB

Absolute value of inner product
−−−→

CB and
−−−→
CGest

∣∣∣∣−−−→CB ·
−−−→
CGest

∣∣∣∣
where A and B are the first and second measurement points, respectively, C is the midpoint
of line segment AB, Gest is the point closer to point C between the weighted centers of the
estimated areas of sources #1 and #2, and Gpos is the weighted center of the three points A,
B, and Gest.

Assuming that the source is identified when Gest is estimated within ±1 m of the true
source location and the estimated source intensity is estimated within ±75% of the true
source intensity, the objective function in the RF analysis was set as “detected” (i.e., “1”) or
“not detected” (i.e., “0”).
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Highly correlated variables, i.e., strong multicollinearity, should be avoided for achiev-
ing better accuracy and feature selection in the RF analysis. The variance inflation factor
(VIF) of the jth variable Xj, defined by Equation (1), represents the degree to which one
variable is related to other variables, and multicollinearity is suspected if VIF is greater
than 10.

VIFj =
1

1− R2
j

(1)

with

R2
j = 1−

∑n
i=1

(
Xji − f ji

)2

∑n
i=1

(
Xji − Xj

)2 (2)

Here, R2
j is the coefficient of determination of the regression equation with Xj on all

other remaining variables, f ji is the ordinary least square regression of Xj on the ith data, Xji

is the Xj value of the ith data, Xj is the mean of Xj, and n is the number of data obtained by

the simulation. Among the eight variables,
∣∣∣∣−−−→CGest

∣∣∣∣, ∣∣∣∣−−−→BGest

∣∣∣∣, and
∣∣∣∣−−−−−→GposGest

∣∣∣∣ had very large

calculated VIFs; hence, these three variables were removed. The results of recalculation
of the VIFs for five variables are listed in Table 1. The VIF of each feature became smaller
(weaker correlation). Since Gest is derived from the estimated source identification result, its
uncertainty is likely to be larger than the uncertainties of A and B, which can be measured.

Therefore, we selected
∣∣∣∣−−−→AB

∣∣∣∣ and
∣∣∣∣−−−→CB ·

−−−→
CGest

∣∣∣∣ as the features, and calculated the VIFs

using each of
∣∣∣∣−−−→AGest

∣∣∣∣,
∣∣∣∣∣−−−→AGest

∣∣∣∣∣∣∣∣∣∣−−−→BGest

∣∣∣∣∣
, and ∠AGestB as an additional variable. The VIF was the

lowest when

∣∣∣∣∣−−−→AGest

∣∣∣∣∣∣∣∣∣∣−−−→BGest

∣∣∣∣∣
was included as a feature (see Table 2).

Table 1. Variance inflation factors (VIFs) for five candidate features for radiation source identification.

|
−−−→

AB | |
−−−→
AGest | |

−−−→
AGest |

|
−−−→

BGest |

∠AGestB |
−−−→

CB ·
−−−→
CGest |

16 14 15 7.9 3.9
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Table 2. VIFs for the selected features in the random forest analysis.

|
−−−→

AB | |
−−−→
AGest |

|
−−−→

BGest |

|
−−−→

CB ·
−−−→
CGest |

5.3 2.8 2.7

Parameters in the RF analysis were tuned based on grid search and cross-validation.
In this analysis, the number of trees was fixed at 50, and the optimal combinations of two
parameters, namely, tree depth and the minimum number of data for nodes, were searched
for with tree depth set to 1, 2, 3, and 4, and the minimum number of data for nodes set to 1,
3, 5, 7, and 10. After tuning, a model was created with the tree depth and minimum number
of data in a node set to 4 and 10, respectively. Finally, a prediction model accuracy of 86%
was built. The importance of the features of the extracted decision trees is summarized in
Table 3.

Table 3. Importance of the features in the model created by the RF analysis.

|
−−−→

AB | |
−−−→
AGest |

|
−−−→

BGest |

|
−−−→

CB ·
−−−→
CGest |

Model based on all 50 trees 0.36 0.26 0.39
Decision tree extracted from

the model 0.35 0.27 0.38

To understand the created prediction model, we extracted typical decision trees with
feature importance similar to those of the whole model with 50 decision trees. The output of
RF was determined via ensemble learning using multiple decision trees. Here, the python
implementation of the CART (classification and regression trees) algorithm for decision
trees was used. The model was constructed by recursively partitioning the training data
through hierarchical conditional branching. The extracted decision trees are shown in
Figure 3. The pie charts in this figure show the percentages of data for which the source
was found at the node, and n represents the number of data in each node.
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On the left node (
∣∣∣∣−−−→CB ·

−−−→
CGest

∣∣∣∣ ≤ 4.0) in Figure 3, if

∣∣∣∣∣−−−→AGest

∣∣∣∣∣∣∣∣∣∣−−−→BGest

∣∣∣∣∣
≤ 0.79 and

∣∣∣∣−−−→CB ·
−−−→
CGest

∣∣∣∣ ≤ 3.1, the possibility of identifying the source is high. This indicates that
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both the measurement points where the contribution from one source is larger than that
from the other and considering the parallax for the source are preferred for selection. This

means it is better to find the sources one by one. On the right node (
∣∣∣∣−−→CB ·

−−→
CGest

∣∣∣∣ > 4.0),

the possibility is high for
∣∣∣∣−−−→CB ·

−−−→
CGest

∣∣∣∣ > 34,
∣∣∣∣−−→AB

∣∣∣∣ > 9.4. This is the case when one

measurement position is close to the source and the other position is far from the source
considering the parallax to the source. Therefore, the measurement positions suggested by
the prediction model are also consistent with ones preferred as per the detector movement
algorithm for a single source, as discussed in our previous study [13,14].

We used this prediction model to let the path-planning system decide the next mea-
surement position. Figure 4 shows the flowchart of the proposed path-planning approach
to move the detector for identifying radiation sources. After measurement at a certain
measurement point A, the location and intensity of the radiation source(s) are estimated
according to the identification principle. If the source is not identified with a sufficiently
small uncertainty, the path-planning system selects the next measurement point B from
eight candidate positions around A. The path-planning system employs the SLAM results
to determine whether the detector can move to one of the eight candidate positions. If
possible, the probability of identification is estimated by the prediction model using the
input features for all the candidates, and the candidate with the highest probability is
selected. Then, the detector is moved, and the 4π gamma image is measured. This process
is repeated until the source is identified. When measurement locations with the same
detection probability were identified by the path-planning system, the next measurement
position was selected based on the detector movement algorithm reported in our previous
study [13].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 12 
 

 

selected. Then, the detector is moved, and the 4π gamma image is measured. This process 

is repeated until the source is identified. When measurement locations with the same de-

tection probability were identified by the path-planning system, the next measurement 

position was selected based on the detector movement algorithm reported in our previous 

study [13]. 

 

Figure 4. Flowchart of detector movement based on the proposed path-planning system. 

3. Verification of the Path-Planning System 

3.1. Verification Based on the Integrated Simulation Model 

As a preparatory step to demonstrate the usefulness of the path-planning system for 

multiple sources, it was verified whether the system could efficiently identify a single 

source in this paper. The path-planning system was verified using the integrated simula-

tion model mentioned in Section 2. A 137Cs point source (activity: 1.8 MBq) was set within 

the search area (Figure 5). This search area was designed identically to that in the experi-

ment described in Section 3.2. The source location was at (2.5, 5.5, 0.0), and the initial 

measurement position was (0, 0, 0) in m. The acquisition time for 4π gamma imaging at 

each position was 10 min. The distance per step to the next measurement position was 1.5 

m. The detector could be moved up to 0.1 m close to the obstacles (i.e., walls) in the search 

area. The path-planning system was used for selecting the measurement positions. Two 

patterns of detector movement—Path I selected by the path-planning system, and Path II 

selected by tracing the edges of the walls in the search area—were investigated, as shown 

in Figure 5. 

 

Figure 5. Search area, measurement positions, and movement paths: (a) Path I and (b) Path II. 

Figure 4. Flowchart of detector movement based on the proposed path-planning system.

3. Verification of the Path-Planning System
3.1. Verification Based on the Integrated Simulation Model

As a preparatory step to demonstrate the usefulness of the path-planning system for
multiple sources, it was verified whether the system could efficiently identify a single source
in this paper. The path-planning system was verified using the integrated simulation model
mentioned in Section 2. A 137Cs point source (activity: 1.8 MBq) was set within the search
area (Figure 5). This search area was designed identically to that in the experiment described
in Section 3.2. The source location was at (2.5, 5.5, 0.0), and the initial measurement position
was (0, 0, 0) in m. The acquisition time for 4π gamma imaging at each position was
10 min. The distance per step to the next measurement position was 1.5 m. The detector
could be moved up to 0.1 m close to the obstacles (i.e., walls) in the search area. The
path-planning system was used for selecting the measurement positions. Two patterns of
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detector movement—Path I selected by the path-planning system, and Path II selected by
tracing the edges of the walls in the search area—were investigated, as shown in Figure 5.
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Figure 6a shows the estimated source intensities and locations obtained by Path I in
a 3D voxel space. The result is summarized in Table 4. In the table, the column “Area
where a source is located” indicates how small a source range can be estimated. The
column “Estimated source location” gives the weighted centers of the estimated voxels,
and “Error from true source position” gives the difference between the true source location
and the estimated location. Further, “Estimated source activity” lists the median of the
estimated source intensities of all the estimated voxels. As measurements progressed, the
estimated source area and the error from the true source location decreased, and in the
fourth measurement, the source location could be estimated with an error of less than 0.3 m.
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Figure 6. Estimated source intensities and locations in a three-dimensional (3D) voxel space obtained
by (a) Path I and (b) Path II.

Table 4. Summary of the estimated source intensities and locations obtained by Path I in the integrated
simulation model.

Movement
Sequence #1 #2 #3 #4

Area where a source
is located (voxels) 1208 796 154 22

Estimated source
location (m) (3.8, 5.8, 0.0) (4.1, 6.3, 0.0) (3.2, 6.3, 0.1) (2.8, 5.5, 0.0)

Error from true
source position (m) (1.3, 0.3, 0.0) (1.6, 0.8, 0.0) (0.7, 0.8, 0.1) (0.3, 0, 0)

Estimated source
activity (MBq) 3.2 ± 3.2 3.8 ± 3.0 3.5 ± 2.0 2.6 ± 0.9
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Next, we simulated the source identification using Path II. The results are provided
in Table 5 and Figure 6b. Five measurements were required to achieve a source identifi-
cation accuracy similar to that obtained using Path I. These results show that the detector
movement followed by the path-planning system was effective for source identification.

Table 5. Summary of the estimated source intensities and locations obtained by Path II in the
integrated simulation model.

Movement
Sequence #1 #2 #3 #4 #5

Area where a source
is located (voxels) 1208 1058 746 330 23

Estimated source
location (m) (3.8, 5.8, 0.0) (3.8, 6.0, 0.0) (3.1, 6.1, 0.0) (3.1, 6.5, 0.0) (2.6, 5.9, 0.0)

Error from true
source position (m) (1.3, 0.3, 0.0) (1.3, 0.5, 0.0) (0.6, 0.6, 0.0) (0.6, 1.0, 0.0) (0.1, 0.4, 0.0)
Estimated source

activity (MBq) 3.2 ± 3.2 3.1 ± 2.6 2.8 ± 1.9 3.2 ± 1.6 2.8 ± 0.8

3.2. 137Cs Source Identification by a Prototype Device by 4π Gamma Imaging with the
Path-Planning System

In this study, a prototype 3D multipixel CdTe detector (Hitachi Consumer Electronics
Co., Ltd., Hitachi, Japan) was used as a 4π gamma imager. The size of a single CdTe
pixel was 8 × 12.5 × 2.2 mm3, and the total number of pixels were 8 × 12 × 15 = 1440.
These 1440 pixels were arranged in a three-dimensional structure. The energy deposited
on each pixel because of the incident gamma rays was recorded as listmode data. The
basic performance of the detector as the 4π gamma imager was reported in our previous
papers [10,11].

The detector, a 3D-LiDAR (Velodyne Lidar, Inc., San Jose, CA, USA, VLP-16), a
spherical camera (Richo, theta-V), a battery, and a laptop PC for acquiring and storing
data were mounted on a robotic vehicle (Vstone Co., Ltd., Osaka, Japan, Mecanum Rover
ver. 2.1). This device can move for about 4 h without an external power supply. The
robotic vehicle can be controlled by a wireless controller and can rotate and move in eight
directions. The data from the detector were acquired by the laptop PC and sent together
with the 3D-LiDAR data to a control PC for data processing via a wireless connection. In the
control PC, SLAM was performed using the 3D-LiDAR data for mapping the surrounding
environment and self-position estimation for the vehicle. In addition, the calculations for
source identification and decision-making regarding the next measurement position were
performed in the control PC.

This experiment was conducted in a room of the same size and under identical
conditions as in the simulation (Section 3.1). A top view of the room map with the locations
of the source and measurement points is shown in Figure 7. This map was obtained by
SLAM with the xy plane at z = 0.2 m. The 137Cs point source was placed at (1.7, 4.3, 0.2) m,
as shown in Figure 8.

Table 6 lists the source intensity and location results estimated in this experiment.
The top view of the search area is shown in the left column in Figure 9. The identification
results of the estimated source intensities and locations in the 3D voxel space and in the
xy plane at z = 0.2 obtained as the measurements proceed are also shown in Figure 9.
After measurement at the first measurement point (#1), the next measurement position
was selected by the path-planning system and the detector was moved. Measurements
were taken at the second point. Thus, measurements were taken at four points. After four
measurements, the error in the true source position was reduced to ±0.1 m relative to
the true source location. The source activity was estimated within a relative error of 40%.
Thus, we successfully demonstrated that measurement points #1 to #4 as determined by
the path-planning system lead to the estimated source direction autonomously and that the
system selects the best measurement positions for 137Cs single source identification.
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Table 6. Summary of the source intensities and locations estimated in the experiment.

Movement
Sequence #1 #2 #3 #4

Area where a source
is located (voxels) 29,551 13,348 592 58

Estimated source
location (m) (2.3, 5.8, 0.6) (2.2, 5.7, 0.3) (1.5, 4.1, 0.4) (2.0, 4.1, 0.4)

Error from true
source position (m) (0.5, 1.5, 0.4) (0.5, 1.4, 0.1) (−0.2, −0.2, 0.2) (0.3, −0.2, 0.2)

Estimated source
activity (MBq) 3.1 ± 3.1 3.4 ± 3.1 1.6 ± 1.0 2.1 ± 0.8
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4. Conclusions

We developed a path-planning system based on 4π gamma imaging for radiation
source identification devices to select measurement positions around locate potential
radiation sources. The prediction model was created by performing a RF analysis using the
results of an integrated simulation to calculate the estimated source location and activity
from 4π gamma images obtained at the measurement points. Using the prediction model,
the path-planning system decides the next measurement point. The performance of the
path-planning system was verified by a simulation and an experiment using a 4π gamma
imager for single 137Cs source identification. The simulation and experimental results
showed that the 137Cs point source was identified with fewer movement steps and high
accuracy by using the path-planning system.

Here, the prediction model was based on the results of a simulation model for two
sources. The effectiveness of this path-planning system for multiple sources needs to be
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verified experimentally. For further developing an automated source identification device
based on 4π gamma imaging, both the distance to the next measurement point and the
measurement time at that point should be optimized in the path-planning system. In
addition, the consideration of the effect of shielding surrounding the source is future work.
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