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Abstract: Electrostatic probe diagnosis is the main method of plasma diagnosis. However, the
traditional diagnosis theory is affected by many factors, and it is difficult to obtain accurate diagnosis
results. In this study, a long short-term memory (LSTM) approach is used for plasma probe diagnosis
to derive electron density (Ne) and temperature (Te) more accurately and quickly. The LSTM network
uses the data collected by Langmuir probes as input to eliminate the influence of the discharge
device on the diagnosis that can be applied to a variety of discharge environments and even space
ionospheric diagnosis. In the high-vacuum gas discharge environment, the Langmuir probe is used to
obtain current–voltage (I–V) characteristic curves under different Ne and Te. A part of the data input
network is selected for training, the other part of the data is used as the test set to test the network,
and the parameters are adjusted to make the network obtain better prediction results. Two indexes,
namely, mean squared error (MSE) and mean absolute percentage error (MAPE), are evaluated to
calculate the prediction accuracy. The results show that using LSTM to diagnose plasma can reduce
the impact of probe surface contamination on the traditional diagnosis methods and can accurately
diagnose the underdense plasma. In addition, compared with Te, the Ne diagnosis result output by
LSTM is more accurate.

Keywords: LSTM; machine learning; Langmuir probe; plasma diagnosis

1. Introduction

Plasma is a complex thermodynamic system composed of electrons, ions, and neutral
particles, which widely exists in cosmic space. Plasma is a conductive fluid as a whole,
showing electrical neutrality macroscopically, but under the action of an electromagnetic
field, energy transmission can occur. The measurement of the plasma state has always
been the focus of researchers. The state of plasma can be characterized by electron density
(Ne), electron temperature (Te), plasma space potential (Vp), and other parameters, among
which the most crucial are Ne and Te. Ne describes the number of electrons per unit volume,
while Te describes the kinetic energy possessed by electrons. Under thermal equilibrium
conditions, Te is equal to the ion temperature (Ti). Most diagnostic methods for plasma are
aimed at obtaining Ne and Te. The diagnosis methods of plasma are divided into telemetry
diagnosis and in situ diagnosis. Telemetry diagnosis includes microwave diagnosis and
spectral diagnosis. Langmuir probe diagnosis is the most common in situ diagnosis
technology, which has been widely used in laboratory and space plasma detection [1–7].
Compared with telemetry diagnosis, the Langmuir probe can obtain more reliable and
accurate diagnosis results.

However, the traditional diagnostic method of Langmuir probes highly depends on
the acquisition of the current–voltage (I–V) characteristic curve. The degree of deviation of
the collected I–V characteristic curve from the actual value directly affects the reliability
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of the diagnosed plasma parameters. The shape of the I–V characteristic curve is affected
by many factors, such as the contaminated layer on the probe surface, the sheath and the
Debye length of plasma, and even the driving circuit, which makes serious errors in the
diagnosis results. In addition, the excessive “human factors” in the traditional diagnosis
process also increase the randomness of the diagnosis results.

Since 1938, when using Langmuir probes to diagnose plasma [8,9], many researchers
have found the contaminated layer on the probe surface, which is mainly manifested
in the hysteresis of the I–V characteristic curve [10]. Two different distorted I–V curves
could be obtained by a Langmuir probe, when the applied voltage was swept upward and
then downward [2,11–14]. In order to eliminate the influence of the contaminated layer
on data, Oyama [15] applied a glass-sealed Langmuir probe to ionosphere exploration.
The reason for abandoning the traditional Langmuir probe is that it easily adsorbs water
molecules, nitrogen molecules, and oxygen molecules to form a contaminated layer on the
surface of the probe. Before sounding rockets or satellites are launched, Langmuir probes
that have been exposed to the atmosphere are easy to be contaminated. Subsequently,
in order to avoid the influence of contaminants on the diagnostic results of Langmuir
probes, Amatucci et al. [16] invented a spherical Langmuir probe that can remove surface
contaminants by internal heating; however, this structure cannot be applied to the most
widely used cylindrical probe now. Szuszczewicz and Holmes [17] invented a pulsed Lang-
muir probe (PLP), which employs a discontinuous modulated sweep of pulses following
a sawtooth envelope. They believe that this approach can obtain more accurate plasma
parameters than heating or ion bombardment. These new Langmuir probes can reduce the
contaminated layer’s influence to a certain extent. However, the structure of restraining
contamination increases the complexity of the probe and makes the design of the probe or
driving circuit more complex. On the other hand, for the data collected by the contaminated
Langmuir probe, Jiang et al. [10] proposed a new iterative algorithm by using a method of
establishing an equivalent circuit, but the operation is relatively tedious, and it is difficult
to expand the application due to the influence of plasma characteristics.

In the plasma field, researchers have begun to use neural networks to realize the
intelligent machine diagnosis of plasma. Kawaguchi et al. [18] utilized machine learning to
solve the Boltzmann equation of electrons to obtain an electron distribution function (EVDF)
in weakly ionized plasmas. Compared with plasma diagnosis, this network tends to solve
a mathematical problem. Churchill et al. [19] utilized convolutional neural networks for
tokamak disruption prediction, which is a popular problem in tokamak devices. In the
Tokamak, too, Guo et al. [20] realized a long short-term memory (LSTM) model on a large
disruption warning database to predict the disruption. To be exact, these two networks are
aimed at disruption prediction rather than plasma diagnosis, although the Tokamak device
is an application in the field of plasma. In the diagnosis of dusty plasma, Ding et al. [21,22]
used the multilayer perceptron (MLP), took the air pressure and voltage or air pressure
and current of the discharge device as the input of the perceptron, and trained the network
to predict Ne or Te. However, the network trained by the above method depends on the
device’s characteristics and is difficult to apply to other discharge devices or aerospace
environments. There are many ways of gas discharge that can produce plasma. What
we want to achieve is a more universal method to realize plasma diagnosis. Thus, it is
necessary to diagnose the plasma without the parameters of the discharge device, which
requires the data collected by Langmuir probes to construct the network. This method can
be applied to space plasma diagnosis in the future.

2. Traditional Diagnostic Theory and Problems

A Langmuir probe is a small electrode inserted into a plasma. When a scan voltage is
applied to it, with the change in voltage, the electrode will absorb electrons or ions, causing
current flow and forming an I–V curve [23].

In a nondrifting, collisionless, and nonmagnetized plasma, the representative I–V
characteristic curve of cylindrical probes is shown in Figure 1. The curve is divided into
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three regions: ion saturation, electron retardation, and electron saturation. The dividing
points are floating potential Vf and plasma potential Vp.

Figure 1. A representative I–V characteristic curve.

According to orbital-motion-limited (OML) theory [8], the electron current (Ie), ion
current (Ii), and Langmuir probe current (ILP) collected by cylindrical, planar, and spherical
probes are as follows:

Ie =
2√
π
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√
kBTe

2πme
exp(

eV
kBTe

), V = VB −Vp < 0; (1)
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), V = VB −Vp > 0; (3)
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π
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kBTi
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(1 +
eV

kBTi
)

β

, V = VB −Vp < 0; (4)

ILP = Ie + Ii; (5)

where Ni is the ion density, A is the surface area of the probe, e is the electron charge, kB
is Boltzmann’s constant, Ti is the ion temperature, me is the electron mass, mi is the ion
mass, and VB is the voltage applied by the probe. When the probe is planar, cylindrical, or
spherical, the corresponding β values are 0, 0.5, and 1.

The critical algorithm in Langmuir probe data processing is the fitting and inversion
calculation of the I–V characteristic curve. This method includes the determination of Vf
and Vp, obtains the ion saturation current and modifies Ie, the logarithmic fitting of the
electron retardation curve to derive Te, and obtains Ne according to the value of Ie at Vp.
The detailed process is as follows:

1. Determine Vf and Vp. Vf is the point where the current of the I–V characteristic curve
is 0. At this point, Ie is the same as Ii, and the direction is opposite. Vp is the potential
of the plasma relative to the environment, which is the inflexion point of the I–V
characteristic curve, that is, the dividing point between the electron retardation and
the electron saturation region.
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2. Obtain saturated ion current at VB < Vf − 4 kBTe
e . Theoretically, the impact of Ie on

ILP at this point is less than 1%, which can be ignored. Then, the Ie is derived by
subtracting the ion saturation current from ILP.

3. Te is derived by logarithmic fitting of a section in the electron retardation curve. It can
be seen from Equation (1) that there is an exponential relationship between Ie and VB
in the electron retardation region. Find the logarithm of Equation (1) and simplify it
to obtain the following equation.

ln(Ie) =
e

kBTe
V + ln(CIe0) (6)

where C = 2√
π

, Ie0 = Ne Ae
√

kBTe
2πme

. We can obtain Te from the slope of Equation (6).

4. Derive Ne from Equation (7). When VB = Vp, Ie = Ie0, bring in the calculated Te and
obtain Ne.

Ie0 =
2√
π

Ne Ae

√
kBTe

2πme
(7)

Unlike the representative I–V characteristic curve, the influence of the contaminated
layer on the probe surface and the edge effect or sheath of the low-density plasma will
make the collected I–V characteristic curve deviate from the standard form, resulting in
the failure of the traditional diagnosis method. The influence of the two factors on the
diagnosis method is discussed below.

2.1. Contaminated Layer on the Probe Surface

Previous studies have shown that the contaminated layer will change the uniform
potential distribution on the probe surface and skew the collected data, resulting in the
wrong plasma parameters [2,10,11,16]. In addition, the adsorption process of neutral gas
molecules to the probe in the atmosphere can be completed in as short as 1 s. Therefore,
the data collected by the probe are affected to varying degrees by the contaminated layer.
When the I–V characteristic curve is collected by the probe with serious contamination, the
upward curve and downward curve cannot coincide, as shown by the red line in Figure 2.

Figure 2. Comparison of I-V characteristic curves collected by contaminated probe and clean probe.
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Figure 2 shows the comparison of the curves collected by the clean probe (Pclean) and
the contaminated probe (Pcont) in the same ambient plasma. Pcont is a probe that has been
exposed to the atmosphere. Pclean is a probe that has been bombarded by ions with a
voltage of −200 V.

This set of data comes from our previous experiments and is collected by the B2912A
precision Source/Measure Unit (SMU) of KEYSIGHT [24]. The source and measurement
resolution of this SMU can be as low as 10 fA and 100 nV [24]. All experimental data in this
study come from this SMU.

In fact, because the experimental device cannot always maintain a high vacuum, there
are inevitably gas molecules and water molecules in the cabin. Therefore, before each
experiment, we need to clean the probe; otherwise, the curve is as shown in Figure 2.

We use the clean data and contaminated data shown in Figure 2 for plasma diagnosis,
and the comparison of plasma parameters is shown in Table 1.

Table 1. The comparison of plasma parameters from Pclean and Pcont.

Vp Ie0 Ne Te

Pclean-Upward 1.0 V 9.8014 × 10−7 A 2.1040 × 1012 m−3 0.7794 eV
Pclean-Downward 1.0 V 9.6144 × 10−7 A 2.0742 × 1012 m−3 0.7717 eV

Pcont-Upward 0 V 1.6280 × 10−7 A 5.1256 × 1011 m−3 0.3623 eV
Pcont-Downward 3.2 V 2.4366 × 10−7 A 5.7090 × 1011 m−3 0.6543 eV

The upward and downward curve of the Pclean basically coincide, and the calculated
Ne and Te errors are within 2%. However, the errors of Ne and Te obtained from the upward
and downward curves of Pcont are 11% and 80%, respectively. More importantly, in the
same ambient plasma, the Ne obtained by the clean probe and contaminated probe can be
as much as two times different, and the Te error is more than 15%, too.

When using the contaminated curve shown in Figure 2 for plasma diagnosis, it will
face the phenomenon that the inflexion points of the upward curve and the downward
curve are inconsistent. This situation is caused by the contaminants of the probe rather
than the change in the plasma, which makes the plasma parameters obtained by diagnosis
inevitably have errors.

2.2. Underdense Plasma Diagnosis

Due to the relatively small surface area of the cylindrical Langmuir probe, when the
density of the ambient plasma is low, the probe collects fewer electrons and ions, and the
probe current is very weak, resulting in a low signal-to-noise ratio (SNR) of the collected
signal, which increases the difficulty of the data fitting process.

In addition, the plasma with lower density has a larger Debye length and sheath width.
As the voltage increases, the electron sheath around the probe gradually expands. The OML
theory assumes that all electrons entering the probe sheath will be absorbed by the probe [8].
Due to the growth of the sheath, more electrons enter the sheath and the current collected
by the probe increases, and the I–V characteristic curve has no obvious saturation point;
that is, it is difficult to obtain the correct inflexion point from dILP/dVB data, as shown in
Figure 3. This I–V characteristic curve comes from the plasma of Ne = 2.38 × 1011 m−3 and
Te = 0.3 eV.

For this I–V characteristic curve, the computer program cannot be used for automatic
diagnosis, but experienced researchers are required to manually select the inflexion point
and the range of the electron retardation region to carry out the next diagnosis program.
However, this selection process has great randomness, resulting in significant errors in
the diagnosis results. All of these can lead to distortions of the probe’s I–V characteristic
due to spatial inhomogeneities in the probe’s contact potential with the plasma and in the
collected current.
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Figure 3. The I–V characteristic curve without obvious saturation region.

Aiming at the problems exposed by traditional diagnosis methods in plasma diagnosis,
we plan to implement the machine learning method to solve them.

In this paper, we first select a suitable network structure, then obtain a large amount
of data for model training, and preliminarily adjust the parameters of the model. Then, the
model is trained iteratively, and the accuracy of the network prediction results is continu-
ously tested. In order to make the network use the contaminated data to obtain relatively
accurate results, it is also necessary to optimize the network parameters. Eventually, the
network should have the following characteristics:

1. Ne and Te can be obtained by using the relatively rough I–V characteristic curve;
2. Plasma diagnosis can be realized by using the data collected by a certain degree of

contaminated Langmuir probe;
3. It can realize low temperature and low-density plasma diagnosis.

3. Machine Learning
3.1. Principle of LSTM

It is a standard regression problem to predict Ne and Te using I–V data collected by
Langmuir probes. Many neural networks can achieve this function. Ding et al. [21,22] built
an MLP network and predicted Ne or Te by using the state parameters of the discharge
device. MLP is a kind of lightweight neural network that is easy to use. However, con-
sidering that the data collected by the probe may be affected by the coupling of multiple
factors, for example, for the data affected by the contaminated layer on the probe’ surface
to varying degrees, the network should have the memory ability to correct the output value
well. At this time, MLP is not competent for such tasks, because of its internal structure
(one-way propagation from the input layer to multiple hidden layers to the output layer).
LSTM is a kind of recurrent neural network (RNN) with a special structure. Compared
with the traditional RNN, the hidden layer unit in LSTM is a linear self-cyclic memory
block, which contains three gate structures, which allows the gradient to pass through a
long sequence, solves the vanishing gradient problem, and overcomes the shortcomings of
the RNN model [25]. The basic structural unit of the LSTM network is shown in Figure 4.
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Figure 4. LSTM cell structure.

A cell of the LSTM network is mainly composed of three parts: forget gate, input gate,
and output gate. The input data of LSTM are xt, ht − 1, and Ct − 1, and the output data
are ht, yt and Ct, where ht = yt. The main function of the forget gate is to filter the data
of the previous state, which determines how much old state information is retained. The
calculation equation is shown as follows:

Ie0 =
2√
π

Ne Ae

√
kBTe

2πme
(8)

where ft denotes the forgetting threshold at time t, σ is the sigmoid activation function, Wf
is the weight, ht − 1 is the output value at time t − 1, xt is the input value, and bf is the bias
term.

The input gate is used to record the information to be saved in the current state. The
input gate consists of two parts: the sigmoid layer to update the value and the tanh layer
for generating a new state value Ct. The output of the two layers is as follows:

it = σ(Wi ∗ [ht−1, xt] + bi) (9)

Ct
′ = tanh(Wc ∗ [ht−1, xt] + bc) (10)

where it is the input threshold at time t, Wi and Wc are the weights, and bi and bc are bias
terms. To update the state at time t, the expression is as follows:

Ct = ft ∗ Ct−1 + it ∗ Ct
′ (11)

The main function of the output gate is to calculate the output value and make the
corresponding prediction results. The equation is described as follows:

ot = σ(Wh ∗ [ht−1, xt] + bh) (12)

yt = ht = ot ∗ tanh(Ct) (13)

where ot is the output threshold at time t, ht is the output value of the cell at time t, Wh is
the weight, and bh is the bias term.
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In this paper, LSTM is selected to predict Ne and Te. In order to better mine the
deep-seated internal relationship of the data, a two-layer LSTM network is used, but it is
easy for this to cause the over-fitting. To avoid over-fitting, a random deactivation layer
is added after each layer of the LSTM network. Finally, the full connection layer is added
to the network, and the linear activation function is adopted, making the network output
consistent with the label value. The output value of the network is compared with the
actual value, and the Adam optimizer is used to update the parameters. The full flowchart
of the LSTM model is illustrated in Figure 5.

Figure 5. The full flowchart of the LSTM model.

3.2. Evaluation Indicators

In the process of model training, the accuracy is measured by the loss function. The
loss function in this model adopts the mean square error (MSE) loss function, which is
often used in the regression prediction model to calculate the loss between the predicted
value and the actual value. The MSE loss can be calculated as follows:

Loss =
1
n

n

∑
i=1

(yi
′ − yi)

2 (14)

where yi
’ is the predicted value, yi is the actual value, and n is the number of samples.

After the model training, in order to better evaluate the performance of the model,
this paper mainly uses the mean absolute percentage error (MAPE) as the evaluation index,
which can be written as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi
′ − yi
yi

∣∣∣∣ (15)
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To more intuitively reflect the prediction effect of the validation set during model
training, the average accuracy Ac of a batch of data can be calculated based on MAPE. The
Acc can be expressed as:

Acc = 1−MAPE (16)

4. Experimental Setup and Results

The experimental preparation, data acquisition, and analysis of prediction results are
described in this section.

4.1. Experiment Setup and Steps

The experiment was carried out in a plasma vacuum chamber. The vacuum chamber is
a stainless-steel container with a length of 1 m and a diameter of 0.8 m, which can maintain
a vacuum of 10−5 Pa. The plasma source adopts the DC glow discharge. During discharge,
argon is charged to form an argon plasma environment with a gradient density distribution
in the cabin. The experimental setup is shown in Figure 6.

Figure 6. Experimental setup.

In order to obtain the probe acquisition data of the large-scale continuous distribution
of plasma density, the Langmuir probe is driven by the two-dimensional motor platform
installed in the cabin for omnidirectional acquisition. The motor control system controls
the probe to move in the X or Y direction, and the trigger source meter unit collects an I–V
characteristic curve every 10 mm forward.

Under the same discharge environment (the same filament current and pressure), the
plasma density in the cabin is roughly maintained at the same order of magnitude, but
it shows a different density distribution with different distances from the plasma source.
When it is necessary to greatly adjust the plasma density in the cabin, it is completed by
adjusting the current of the discharge filament.

In order to verify that the neural network can reduce the impact of probe surface
contamination on the diagnosis results to a certain extent, without changing the discharge
environment (pressure, filament current, etc.), we successively use the probe with the
contaminated layer (Pcont) and clean probe (Pclean) to collect the I–V characteristic curve
at the same position and use the traditional diagnosis method and LSTM network to
diagnose the two groups of data to compare the diagnosis results. The specific steps of the
comparative experiment are as follows:

1. Expose two identical materials and specifications of the Langmuir probe (Pcont and
Pclean) to the humid atmosphere for more than 24 h;
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2. Install Pcont and Pclean on the two-dimensional platform in the vacuum chamber and
mark the distance between them and the central position;

3. Heat the filament and charge argon to make the discharge process reach a steady state.
Apply −200 V to Pclean for ten minutes, and remove the contaminated layer on the
probe surface by heating and attracting electrons to bombard the probe surface;

4. Control the two-dimensional platform to move the two probes to the central position
to collect the I–V characteristic curve, and ensure that the time interval between the
two probe curves is within 1 min;

5. The two groups of collected data are diagnosed and analyzed by the traditional
diagnosis method and LSTM network, respectively, to compare the results.

4.2. Data Preprocessing

In order to obtain the data of the large distribution range of Ne and Te, the Langmuir
probe is driven by the two-dimensional motor platform to scan in the cabin under the
discharge of filament currents 70 A, 80 A, and 85 A, respectively. Under each discharge
condition, 2000 groups of I–V characteristic curves are collected. The scan voltage range
of each group of curves is −10 to 10 V, the sampling interval is 0.1 V, and a group of data
is the current value collected by the probe corresponding to 201 voltages. The whole set
of data (201 current values) is used for the traditional method diagnosis. However, only
21 values (interval 1 V) are input into the LSTM network for training or prediction. Note
that only the current value is fed into the network training, as the voltage value is fixed.
When the probe runs near the bulkhead of the vacuum chamber, it will enter the sheath,
resulting in the distortion of the data collected by the probe. Therefore, the dataset should
be screened. The total number of data sets available after filtering is 5186 groups.

In addition, due to the large dimension difference of each dimension of data, to
eliminate the difference in parameter dimension, data are normalized. The method adopted
is max-min normalization, and each group of data is linearly scaled to [0,1], as shown in
Equation (17).

x′ =
x−min(x)

max(x)−min(x)
(17)

where x’ is the normalized value, and max(x) or min(x) is the maximum or minimum of the
dimension where the data are located, respectively.

The dataset is divided into three parts: training set, verification set, and test set
according to the ratio of 3:1:1. The training set and verification set are used to train and
optimize the model to prevent overfitting, and the test set is used to test the generalization
ability of the model.

4.3. Results
4.3.1. Network Parameter Setting

There are many adjustable parameters in a neural network, such as the number
of neurons in each layer and the learning rate (η). By adjusting these parameters, the
prediction accuracy of the model can be effectively improved. In this paper, Ne is mainly
used to adjust the parameters and seek the optimal structure.

The number and proportion of neuron nodes in each layer and the full connection
layer of the LSTM network determine the structure of the network and the prediction
results. To determine the optimal number and proportion of nodes in each layer, we extract
1000 groups of data in proportion under the data of filament currents 70 A, 80 A, and
85 A for training iteration and we test the accuracy of network prediction of Ne, as shown
in Figure 7.
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Figure 7. Comparison results of different structures.

As shown in Figure 7, n0 is the node base, nl1, nl2, and nf are the number of nodes
in the first layer, the second layer, and the full connection layer of the LSTM network,
respectively, and the legend is n0Rnl1/nl2/nf. For example, 20R10/5/1 denotes n0 = 20,
nl1 = 10 × n0 = 200, nl2 = 5 × n0 = 100, and nf = n0 = 20. The neural networks of each
structure show great differences in the early stage. Among them, the network with the
50R4/4/1 structure can achieve a higher accuracy faster, so the final network structure is
nl1 = 200, nl2 = 200, and nf = 50.

Learning rate is an essential parameter in the Adam optimizer, which determines
whether and when the objective function converges to the minimum. Too large a learning
rate may lead to the oscillation of the objective function, which is difficult to converge,
and too small a learning rate will reduce the convergence speed. Therefore, choosing an
appropriate learning rate is also a crucial link to improving the model’s accuracy. The
learning rate is set to 0.0001, 0.00005, 0.00003, 0.00001, and 0.000005, and the corresponding
results are shown in Table 2.

Table 2. The influence of different learning rates on the model.

η 0.0001 0.00005 0.00003 0.00001 0.000005

RMSE 0.00507 0.00511 0.00511 0.00582 0.00610
MAPE 25.61891 23.37818 11.50008 10.64523 13.30315

As shown in Table 2, when the learning rate is 0.00001, the model shows high predic-
tion accuracy. When the learning rate increases or decreases, the model accuracy decreases,
and the learning rate is determined as 0.00001.

4.3.2. Test Results and Analysis

The whole dataset includes 5186 groups of experimental data, in which Ne ranges
from 1012 to 1014 m−3 and Te ranges from 19,000 to 60,000 K. It is divided into 4150 training
sets (including 1/4 verification sets) and 1036 test sets. The Ne and Te distribution of the
dataset are shown in Figure 8.
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Figure 8. The electron density (Ne) and electron temperature (Te) distribution of the data set.

When the filament current (Ifilament) is 80 A and 85 A, the maximum Ne is 1.75 × 1014

and 3.0 × 1014 m−3, respectively, and Te is mostly concentrated at 19,000 K–26,000 K. When
the Ifilament is 70 A, the data distribution is different from the other cases. There are two
main reasons for this: first, in order to make the Te distribution range more extensive, we
adjust the voltage of the accelerating grid when the Ifilament is 70 A, so that the electrons
emitted by the filament have a different kinetic energy and different Te. Compared with
the case of higher plasma density, it is easier to adjust Te at low density. Another reason
is that when the Ifilament is 70 A, the collected I–V characteristic curve is difficult to reach
saturation, so the results derived by traditional diagnosis methods are not accurate enough.
This reason is discussed in detail in the prediction result analysis of Te.

The test set is extracted proportionally from the Ifilament at 70 A, 80 A, and 85 A. The
training and prediction results of Ne are shown in Figure 9.
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Figure 9. The training and prediction results of the Ne. (a) The loss rate of the training set data;
(b) The accuracy and loss of the verification set data; (c) Comparison of prediction results.

The network learning situation for Ne is shown in Figure 9a. With the increase in the
number of iterations, the loss decreases rapidly and converges. Only about 50 iterations are
needed, and the loss value decreases to the order of 10−4. At this time, the model achieves a
good prediction effect. After each training iteration, the prediction ability of the verification
set is tested. As shown in Figure 9b, the Acc has a local maximum before the tenth iteration
and gradually rises and stabilizes after the tenth iteration. The networks reach the accuracy
rate of 95% after 50 iterations. After completing the training and verification process of
100 iterations, 1036 groups of data from three groups are used to test the model, as shown
in Figure 9c. Compared with the low-density plasma (1012 m−3), the network has more
minor prediction errors for Ne with large density. Of course, this is not entirely due to the
network. Due to the weak current collected by the probe at low-density (Ifilament = 70 A),
the SNR of the collected signal is reduced, and it is easy for the I–V characteristic curve
to be affected by the instrument, resulting in inaccurate collected data, and this error is
irregular, which makes it difficult for the network to converge when using these data for
training and to obtain accurate results when predicting. In addition, the data at low density
are more vulnerable to sheath and edge charge effects.

The training and prediction results of Te by the network are shown in Figure 10.
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Figure 10. The training and prediction results of the Te. (a) The loss rate of the training set data;
(b) The accuracy and loss rate of the verification set data; (c) Comparison of prediction results.

The training of Te in the LSTM network is more difficult than that of Ne. At 50 iterations,
the loss value reaches 0.01. After that, the loss decreases very slowly. After about
500 iterations, the loss can reach 0.005. For the verification set, such as the training process
of Ne, Acc reaches the maximum after experiencing a local maximum. At this time, the
number of iterations is about 25. After that, Acc gradually decreases and stabilizes to 0.9
after about 200 iterations.

Figure 10c shows that the adverse effects of instrument acquisition accuracy, and the
sheath and edge effect on the data are more significant at low density. However, the main
reason for the poor accuracy of network prediction in the underdense plasma environ-
ment is that the calculation results of Te by traditional diagnostic methods are relatively
inaccurate. In Section 2, there is a detailed Te calculation process in which obtaining Te
requires the logarithmic fitting of the electron retardation region of the I–V characteristic
curve. Theoretically, the relationship between the Ie in the electron retardation region
and the VB increases exponentially, and the logarithmic relationship is linear. However,
in the underdense plasma, the electron retardation region of the I–V characteristic curve
is relatively wide, and it is difficult to reach saturation. The I–V source data are more
linear than the exponential function in the retardation region (as shown in Figure 3). The
retardation curve presents a nonlinear shape (logarithmic function) after the logarithmic
operation, so its slope changes significantly. Which section is selected for linear fitting has a
large influence on Te, so the actual value curve of Te appears very unsmooth at low density.
Theoretically, because the probe is continuously collected in space, the value of Te will not
change suddenly, but the limitation of traditional diagnosis methods determines that the
calculation result of Te has a significant error. Therefore, it is difficult to use such data to
train and predict the network.
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4.3.3. Effect of Eliminating Contamination

We also test the prediction results of the network with the data collected by the
contaminated probe (Pcont) after the network training. A total of seven groups of I–V
characteristic curves collected by Pcont and Pclean are used as raw data to diagnose the
plasma by using traditional diagnosis methods and the LSTM network, respectively. The
comparison results and errors of Ne and Te are shown in Figure 11 and Table 3, respectively.

Figure 11. (a) The comparison results of the Ne; (b) The comparison results of the Te.

Table 3. Comparison of errors in predicting electron density (Ne) and electron temperature (Te) using
traditional diagnostic methods and LSTM.

1 2 3 4 5 6 7 |Mean|

Ne
Traditional −55.81% −14.28% −29.53% −56.03% −41.95% −41.98% −42.75% 40.33%

LSTM −8.67% −2.23% −3.42% −15.96% 14.46% −18.54% −11.57% 10.69%

Te
Traditional 8.78% 17.43% 5.70% 12.92% 4.87% 40.77% 13.20% 14.81%

LSTM 1.46% −7.20% −9.98% −1.80% −0.27% 14.54% 0.11% 5.05%

As shown in Figure 11a, for Ne, the data collected by Pcont or Pclean are collected as the
source data, and the results obtained by traditional diagnosis methods are significantly
different. Table 3 shows that the absolute average error of seven groups of data reaches
40.33%. The reason is obvious. The absorption capacity of the probe with a contaminated
layer for electrons is greatly weakened, resulting in the reduction in the collected electron
saturation current and the calculated Ne. The diagnosis results obtained using the LSTM
network as the diagnosis method and the data collected by Pcont as the input are shown
in the curve marked “LSTM” in Figure 11. It can be seen that using the machine learning
method for plasma diagnosis can still obtain more accurate results even when there is a
certain contaminated layer on the probe surface. The average absolute error of Ne obtained
by the LSTM network is reduced from 40.33% to 10.69%. In other words, the LSTM plasma
diagnosis network has the effect of partially compensating for the contamination on the
probe surface.

Figure 11b shows the diagnostic results of Te. Similar to Ne, the LSTM network has a
certain compensation effect for the probe surface’s contamination; it can reduce the absolute
average error from 14.81% to 5.05%. Unlike Ne, the data collected by Pcont are used as the
source data, and the results derived by traditional diagnostic methods are relatively large
compared with the actual value because the contaminated layer may change the work
function of the material of the probe itself. In addition, when using the traditional method
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for plasma diagnosis, we first calculate Te and then combine the electron saturation current
to derive Ne. From Equation (7), it can be seen that the small Ne is also partly due to the
sizeable diagnostic result of Te. Compared with Ne, the consistency of LSTM’s results of Te
is low. For example, in groups 1, 4, and 7, the LSTM network diagnosis results are close
to the actual value, but in group 6, although the error caused by the contaminated layer
can be partially compensated, there is still a 14.54% error with the actual value. The third
group of data is unusual. The LSTM prediction results do not only reduce the error, but
also increase the error from 5.70% to −9.98%. This problem seems to need more Te data
with a larger distribution range to train the network.

Another advantage of plasma diagnosis using the LSTM network is that there is no
coupling process in the diagnosis process of Ne and Te; that is, their acquisition is relatively
independent. In this way, it avoids the large influence on the result of Ne due to the
significant error of Te, which is common in traditional diagnosis methods.

5. Conclusions

In this paper, we use the machine learning method to train an LSTM network based on
Langmuir probe data to diagnose plasma. This network is separated from the gas discharge
device and has more robust applicability. Compared with the traditional diagnosis method
based on OML theory, the LSTM network only needs to input 1/10 data points, which
significantly reduces the error caused by “human factors” in the traditional diagnosis
method and has a certain compensation effect on the contamination of the probe surface.
The training and test data of the network are from the experimental data of the plasma
vacuum chamber. On the one hand, through the coverage experiment of an extensive
density range, it is proved that after about 50 to 200 iterations, the network can obtain
more than 95% prediction accuracy of Ne and more than 90% prediction accuracy of Te
respectively. On the other hand, through the contrast experiments designed separately,
compared with the traditional diagnosis method, the LSTM network can reduce the electron
density error caused by contamination from 40.33% to 10.69%, and the electron temperature
error from 14.81% to 5.05%. That is, the LSTM network can obtain relatively accurate results
even using the data obtained by the probe whose surface is partially contaminated.

This network is lightweight and requires less input data than traditional diagnosis
methods do. In the future, it can be applied to ionospheric plasma diagnosis by carrying
satellites, which can greatly save downlink data and improve the spatial resolution of
ionospheric detection.

Although there is little research on the application of the machine learning method to
plasma diagnosis, machine learning is a very flexible tool and is suitable for the diagnosis
of various plasmas. In our next research, we will further optimize the LSTM network
proposed in this paper to improve its prediction accuracy, especially for Te. In addition, we
are also ready to apply the machine learning method to other plasmas, such as magnetron
plasma or ionospheric plasma.
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