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Abstract: Pipelines are integral components for storing and transporting liquid and gaseous petroleum
products. Despite being durable structures, ruptures can still occur, resulting not only in financial
losses and energy waste but, most importantly, in immeasurable environmental disasters and pos-
sibly in human casualties. The objective of the ESTHISIS project is the development of a low-cost
and efficient wireless sensor system for the instantaneous detection of leaks in metallic pipeline
networks transporting liquid and gaseous petroleum products in a noisy industrial environment. The
implemented methodology is based on processing the spectrum of vibration signals appearing in the
pipeline walls due to a leakage effect and aims to minimize interference in the piping system. It is
intended to use low frequencies to detect and characterize leakage to increase the range of sensors
and thus reduce cost. In the current work, the smart sensor system developed for signal acquisition
and data analysis is briefly described. For this matter, two leakage detection methodologies are imple-
mented. A 2D-Convolutional Neural Network (CNN) model undertakes supervised classification in
spectrograms extracted by the signals acquired by the accelerometers mounted on the pipeline wall.
This approach allows us to supplant large-signal datasets with a more memory-efficient alternative
to storing static images. Second, Long Short-Term Memory Autoencoders (LSTM AE) are employed,
receiving signals from the accelerometers, and providing an unsupervised leakage detection solution.

Keywords: leakage detection; oil pipeline; deep learning; CNN classifier; LSTM autoencoders;
edge computing

1. Introduction

During recent decades, pipeline networks have been considered among the safest and
most economical methods for transporting and storing oil and gas products [1]. In fact,
pipeline infrastructure is critical for worldwide economic growth. Multiple investments in
hydrocarbons and petrochemical facilities are materialized thanks to the steady and reliable
supply of feedstocks provided by pipeline infrastructure [2]. For example, it has been esti-
mated that, in 2015, crude oil pipelines generated approximately 200,000 jobs, accumulating
over $21.8 billion in Gross Domestic Product [3]. Consequently, oil piping installations
worldwide have been rapidly expanding to satisfy the ever-increasing energy needs of the
population, intricating the topological complexity of the pipeline network, perplexing its
supervision and assessment of its safety [4]. Additionally, this breadth of pipeline usage in-
herently aggrandizes the probability of structural defects due to erosion over time, fracture
propagation, human factors, environmental factors, and other causes [5–7]. Leak detection
in pipelines has been a prevalent issue for several decades. Pipeline leaks from sources
such as small cracks and pinholes are termed chronic leaks, as they have the potential of
going unnoticed for a long period of time, causing irreversible damage [8]. Even seemingly
small defects scale up fast to unfathomable magnitude. For instance, on 2 March 2006, a
spill of about 1 million liters of oil occurred over around five days in the area known as
Alaska’s North Slope because a quarter-inch hole corroded in a pipeline [9]. Therefore,
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ensuring the apt functioning of these pipelines is imperative to avert excessive financial
losses due to the interruption of oil and gas supply and, most importantly, to eliminate any
potential threat to human lives and the ensuing detrimental aftermath on the environment.

Several conventional approaches undertake the recognition of defects on pipelines
by analyzing their vibration response characteristics, using digital signal processing tech-
niques, such as fast Fourier transform [10] and the wavelet transforms [11]. More recently,
following the fourth Industrial revolution, Machine Learning data-driven approaches have
gained popularity due to their high accuracy compared to other conventional methods and
their efficient implementation due to recent advancements in tensor multiplication dedi-
cated GPUs. In this vein, Deep Learning is widely employed to perform leakage detection
in pipeline systems, aiming to leverage their efficacy in identifying even relatively small
leakage diameters [12], processing data either in the time domain [13,14] or in the frequency
domain [15]. Autoencoders are also a class of neural networks whose attribute of being
trained on unlabeled data and distinguishing potential digression from the nominal state
becomes very beneficial for detecting faulty conditions in the pipelines [16,17]. Convolu-
tional Neural Networks (CNN) are utilized to perform feature extraction and learn through
a series of filters to identify salient features in the data. Subsequently, these feature maps
are fed to Multi-Layer Perceptrons (MLPs) [18–20] or Support Vector Machines (SVM) [21]
to determine the operational state reflected by the initial signal. Although feature extraction
is integral for classification data-driven methods [22], their main limitation is that they
require a high computational cost. Post-processing analysis is performed on historical data
in the cloud, and a need for the storage of a high volume of data makes both the training
and execution time of the models inefficient.

To address these issues, the “ESTHISIS” project [23] aims to employ edge computing
to apply DL techniques in real-time and detect leakages in oil and gas pipelines. In this
framework, our novelty lies in the emphasis on providing Situational Awareness of the
oil and gas pipelines to stakeholders through the harmonious integration of our wireless
sensor networking to enhance the operational capacity of oil and gas pipelines. In our
previous study [24], two DL methodologies were presented in two different experimental
setups and compared with their efficiency in detecting leakages in pipelines. The first
method entails a supervised approach based on transforming the data to the time-frequency
domain, creating spectrograms from the acquired sensors data, and using a 2D-Convolution
Neural Network to characterize whether the pipeline is healthy or not. The second method
is an unsupervised approach employing Long Short-Term Memory Autoencoders (LSTM
AE) trained to reconstruct signals from healthy channels. The focal point of the current
work is to merge these techniques efficiently, leverage the benefits yielded by each method,
and present a comprehensive leakage detection scheme that can run on the edge to provide
efficiency and scalability.

The main innovation of our work is the development of an edge methodology capable
of running DL applications in a scalable manner for real-time analytics and providing
accurate estimations for leakage detection. Our modeling entails a hybrid approach where
the components of our previous analysis offer the capability of training the model simply
by utilizing signals to correspond to the nominal healthy state (LSTM AE) and also present
the benefit of converting long time series into low-resolution static images, which is a more
memory-efficient solution (2D-CNN). Emphasis has been placed on the methodology’s
validation through an experimental pipeline network during in-field testing. The dataset
acquired from these trials is utilized for training and optimizing an instance of our proposed
combined approach, which shall be stored on the edge. Subsequently, this instance shall
be evaluated by undertaking real-time analytics to detect leakages in actual operating
pipelines. In this context, parametric tests were performed to verify the model accuracy
and efficiency in the actual environment within oil premises.

The rest of the paper is structured as follows: In Section 2, a description of the
processing system responsible for the data acquisition is provided. In Section 3, the
methodology behind our detection scheme is delineated. Sections 4 and 5 present the
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results from the experimental field-testing phase and pilot testing. Finally, the conclusion
from the performance of each model is summarized.

2. Sensor Network and Data Acquisition
2.1. System Architecture

The general architecture of the ESTHISIS system [25] is presented in Figure 1. The
platform architecture is based on PrismaSense™ technology [26–28] which was further
enhanced with edge computing capacity. The ESTHISIS platform system serves two
operational modes: (a) leak detection and (b) leak localization mode. The leak detection
mode is the default mode of operation and is the focus of the current work.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 21 
 

 

The rest of the paper is structured as follows: In Section 2, a description of the pro-
cessing system responsible for the data acquisition is provided. In Section 3, the method-
ology behind our detection scheme is delineated. Sections 4 and 5 present the results from 
the experimental field-testing phase and pilot testing. Finally, the conclusion from the per-
formance of each model is summarized. 

2. Sensor Network and Data Acquisition 
2.1. System Architecture 

The general architecture of the ESTHISIS system [25] is presented in Figure 1. The 
platform architecture is based on PrismaSense™ technology [26–28] which was further 
enhanced with edge computing capacity. The ESTHISIS platform system serves two op-
erational modes: (a) leak detection and (b) leak localization mode. The leak detection 
mode is the default mode of operation and is the focus of the current work. 

 
Figure 1. Leak detection mode architecture. Systems mounted on the pipeline are depicted in green, 
while blue for cloud-based services. 

As shown, an intelligent node is placed along a pipeline and collects data from vibra-
tion sensors. While a series of similar nodes are mounted on the pipeline with a distance 
of up to 300 m between them, in this mode, each node acts as a stand-alone system that 
collects and processes the data to detect any leakage, based on the leak detection method 
mentioned in Section 3. Upon the detection of leakage, the node transmits a dedicated 
message to the cloud, using a Narrow Band IoT ((NB-IoT) communication link for visual-
ization, trigger, and further analysis. Different communication protocols (e.g., satellite 
communications) are considered for areas with no NB-IoT coverage. The mode is charac-
terized by running on-demand and at periodic intervals. This type of data acquisition with 
advanced signal processing algorithms enables the device to identify leakage in an oil and 
gas pipeline. The ability to operate the system on demand enables the user to inspect the 
system remotely and on-demand in real-time. 

2.2. Hardware 
Figure 2 illustrates the design architecture of the nodes. As shown, signals emitted 

from the pipeline are collected by the accelerometers at each node and are processed. 
These signals are amplified, filtered, and then digitized by an ADC. The data are collected 
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As shown, an intelligent node is placed along a pipeline and collects data from
vibration sensors. While a series of similar nodes are mounted on the pipeline with a
distance of up to 300 m between them, in this mode, each node acts as a stand-alone system
that collects and processes the data to detect any leakage, based on the leak detection
method mentioned in Section 3. Upon the detection of leakage, the node transmits a
dedicated message to the cloud, using a Narrow Band IoT ((NB-IoT) communication
link for visualization, trigger, and further analysis. Different communication protocols
(e.g., satellite communications) are considered for areas with no NB-IoT coverage. The
mode is characterized by running on-demand and at periodic intervals. This type of data
acquisition with advanced signal processing algorithms enables the device to identify
leakage in an oil and gas pipeline. The ability to operate the system on demand enables the
user to inspect the system remotely and on-demand in real-time.

2.2. Hardware

Figure 2 illustrates the design architecture of the nodes. As shown, signals emitted
from the pipeline are collected by the accelerometers at each node and are processed. These
signals are amplified, filtered, and then digitized by an ADC. The data are collected by the
Microcontroller and transferred to the Microprocessor until their processing. The data are
processed locally at each node level.



Sensors 2022, 22, 4105 4 of 20

Sensors 2022, 22, x FOR PEER REVIEW 4 of 21 
 

 

by the Microcontroller and transferred to the Microprocessor until their processing. The 
data are processed locally at each node level. 

 
Figure 2. Node design architecture. 

While the difference between the primary and the secondary node is that the latter 
sends its data to the former via the communication unit, the two nodes have the same 
architecture since each node can act both as primary and secondary. This architecture en-
ables the easy scalability of the system since the addition of more nodes is straightforward: 
each node acts as a primary to the node in its right and secondary for the node to its left. 
The node’s main hardware components are described in this section. Its technical charac-
teristics are presented in Table 1. 

Table 1. ESTHISIS Platform Technical Specifications. 

Frequency Range 0.5 to 25 kHz (User-Defined) 
Number of channels 4 

Resolution 16 bits 
GNSS BeiDou, Galileo, GLONASS, GPS/QZSS 

time pulse signal 30 nsec (RMS), 60 nsec (99%) 
MCU Operating frequency 250 Mhz 
MCU Integrated PSRAM 8 MB 

CPU 
Dual-core Cortex-A72 up to 1.8 GHz 
Quad-core Cortex-A53 up to 1.4 GHz 

CPU RAM 3 GB LPDRR3 (CPU 2 GB + NPU 1 GB) 
CPU Flash 16 GB eMMC 

The Sensor Data Receiving Interface (Figure 3, left) is a PCB designed to receive data 
from up to four accelerometers, synchronize them using a PPS (Pulse Per Second) signal, 
and transmit them to the Data Processing Interface. The main components are the Analog 
to Digital Converter (ADS8688 [29]) that receives the analog sensors’ data and converts 
them to digital data, the GPS Unit that produces the timestamp for each data measure-
ment, and the PPS signal for synchronization with great accuracy and the Microcontroller 
that sends the digitized data to the Data Processing Interface. The GPS Unit contributes 
so that the two nodes receive fully-synchronized data measurements. The suitable GPS 
Unit for the project is the NEO-M8N by Ublox [30]. Moreover, the Microcontroller selected 
is the ESP32 Wrover module by Espressif [31]. 

Figure 2. Node design architecture.

While the difference between the primary and the secondary node is that the latter
sends its data to the former via the communication unit, the two nodes have the same
architecture since each node can act both as primary and secondary. This architecture
enables the easy scalability of the system since the addition of more nodes is straightforward:
each node acts as a primary to the node in its right and secondary for the node to its left. The
node’s main hardware components are described in this section. Its technical characteristics
are presented in Table 1.

Table 1. ESTHISIS Platform Technical Specifications.

Frequency Range 0.5 to 25 kHz (User-Defined)

Number of channels 4

Resolution 16 bits

GNSS BeiDou, Galileo, GLONASS, GPS/QZSS

time pulse signal 30 nsec (RMS), 60 nsec (99%)

MCU Operating frequency 250 Mhz

MCU Integrated PSRAM 8 MB

CPU
Dual-core Cortex-A72 up to 1.8 GHz

Quad-core Cortex-A53 up to 1.4 GHz

CPU RAM 3 GB LPDRR3 (CPU 2 GB + NPU 1 GB)

CPU Flash 16 GB eMMC

The Sensor Data Receiving Interface (Figure 3, left) is a PCB designed to receive data
from up to four accelerometers, synchronize them using a PPS (Pulse Per Second) signal,
and transmit them to the Data Processing Interface. The main components are the Analog
to Digital Converter (ADS8688 [29]) that receives the analog sensors’ data and converts
them to digital data, the GPS Unit that produces the timestamp for each data measurement,
and the PPS signal for synchronization with great accuracy and the Microcontroller that
sends the digitized data to the Data Processing Interface. The GPS Unit contributes so that
the two nodes receive fully-synchronized data measurements. The suitable GPS Unit for
the project is the NEO-M8N by Ublox [30]. Moreover, the Microcontroller selected is the
ESP32 Wrover module by Espressif [31].

The Data Receiving Interface is connected via micro-B USB with the Data Processing
Interface (Figure 3, right) for power supply. Furthermore, there is the option of power
supply by a +12 V jack. Regarding the Data Processing Interface, a PCB was designed
and manufactured for processing the data received from the accelerometers. The main
component is the RK3399Pro System-On-Module, which consists of a dual-core ARM
Cortex-A72 and a quad-core ARM Cortex-A53 microprocessors. The Data Processing
Interface is supplied by +12 VDC/2 A.
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2.3. Software

The platform involves a series of embedded software procedures responsible for the
Data Acquisition (DA) to feed the embedded Artificial Intelligence algorithms through an
LTE-M cellular network. A web application is hosted on the Central Unit and displays
information about the location and the size of leakage to the users as soon as it occurs. The
web application also provides monitoring of the nodes’ operating conditions, as well as
statistical information related to their operation. The software procedures are summarized
in Figure 4 and are further described in the following sections.
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The web application developed for the ESTHISIS project aims to inform its users
about leakages along the pipelines on which nodes have been placed. It also allows the
monitoring of the pipeline network condition in sections, the monitoring of the condition
of the nodes, and the display of information about the whole system.

3. Method Description
3.1. Methodology Components

In our problem, the data consisted of a univariate time series, with only variables
stemming from the acoustic signals from the pipeline wall. We built an LSTM AE on this
univariate time series to perform rare-event recognition.

In our study cases, the LSTM autoencoders were trained only on healthy signals.
The objective of these networks was to reduce the divergence between the input and the
reconstructed input at the model’s output. In its attempt to satisfy this objective, the
model achieved great fidelity in the reconstruction of the input. After the training, the
model inferred the state of the validation set again, consisting of different healthy signals
from the training set. Subsequently, through an extensive trial and error approach, it
was concluded that the mean of the reconstruction error added to its standard deviation
multiplied by 6 approximately equates to the maximum reconstruction error observed in
the validation set multiplied by a safety factor of 1.2. These two almost equal values serve
as the leakage threshold. Lastly, a range of 1.1–1.5 times the maximum reconstruction error
was considered a reasonable range for the selection of the safety factor, depending on the
level of conservativeness in the generated estimations. In our approach, the latter value
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was selected due to its simpler implementation. In essence, since the autoencoders have
been trained to reproduce healthily, their reconstruction error was expected to be below
this threshold. Therefore, exceeding the leakage threshold signifies leakage in the pipeline.
Figure 5 illustrates a characteristic example.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

the training set. Subsequently, through an extensive trial and error approach, it was con-
cluded that the mean of the reconstruction error added to its standard deviation multi-
plied by 6 approximately equates to the maximum reconstruction error observed in the 
validation set multiplied by a safety factor of 1.2. These two almost equal values serve as 
the leakage threshold. Lastly, a range of 1.1–1.5 times the maximum reconstruction error 
was considered a reasonable range for the selection of the safety factor, depending on the 
level of conservativeness in the generated estimations. In our approach, the latter value 
was selected due to its simpler implementation. In essence, since the autoencoders have 
been trained to reproduce healthily, their reconstruction error was expected to be below 
this threshold. Therefore, exceeding the leakage threshold signifies leakage in the pipe-
line. Figure 5 illustrates a characteristic example. 

 
Figure 5. Example of leakage detection using LSTM AE. 

Subsequently, if leakage was detected, the generation of spectrograms ensued. The 
conversion of the signals to static images was considered. Due to the high-frequency da-
taset, we concluded to generate spectrograms to reflect the operational state of the moni-
tored pipelines. This method offered a more memory-efficient alternative to representing 
lengthy signals in static images. Explicitly, a file representing the time series of 10 s of the 
data occupied more than 10 MB of memory. Conversely, the spectrogram image of the 
same signal of resolution (256 × 256) occupied less than 300 KB. The classification of the 
spectrograms was undertaken through Convolutional Neural Networks (CNNs). Figure 
6 illustrates an example of a spectrogram received by the CNN classifiers. CNNs are neu-
ral networks that demonstrate excellent capabilities in pattern recognition. Their capacity 
to extract salient features without requiring prior domain expertise prompts researchers 
and developers to approach complex pattern recognition tasks. 

Figure 5. Example of leakage detection using LSTM AE.

Subsequently, if leakage was detected, the generation of spectrograms ensued. The
conversion of the signals to static images was considered. Due to the high-frequency
dataset, we concluded to generate spectrograms to reflect the operational state of the moni-
tored pipelines. This method offered a more memory-efficient alternative to representing
lengthy signals in static images. Explicitly, a file representing the time series of 10 s of the
data occupied more than 10 MB of memory. Conversely, the spectrogram image of the
same signal of resolution (256 × 256) occupied less than 300 KB. The classification of the
spectrograms was undertaken through Convolutional Neural Networks (CNNs). Figure 6
illustrates an example of a spectrogram received by the CNN classifiers. CNNs are neural
networks that demonstrate excellent capabilities in pattern recognition. Their capacity to
extract salient features without requiring prior domain expertise prompts researchers and
developers to approach complex pattern recognition tasks.
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Combined LSTM AE—2D CNN Approach

In our previous study, the LSTM AE and 2D-CNNs models were introduced and
verified as effective data-driven models potent at identifying patterns in the data signifying
leakage. It was evinced that LSTM AE models were capable of timely detecting leakage in
the pipelines; however, they displayed limitations in continuously labeling the operational
state of a defective pipeline as defective in small leakages. Additionally, the efficacy of
2D-CNNs was evaluated in classifying spectrograms derived from the signals acquired
from the pipeline walls. Given that the instantaneous detection was satisfactorily fulfilled
by the LSTM models, it was decided to omit the time points where efflux occurs from
these spectrograms to examine the efficacy of these classifiers to detect leakage in case the
occurrence of the rupture in the pipeline is not recorded; hence the spectrograms were
appropriately cropped. It was concluded that these two models could be complementary
components of one comprehensive methodology. The initial stage concerns the LSTM
AE monitoring the response from the spectrograms mounted on the pipeline wall. Subse-
quently, if an abnormality was detected following the mechanism that shall be described in
Section 3.3, the generation of the spectrograms was initiated for the continuous labeling of
the monitored pipeline’s state as defective and the storing of the operational information in
a more efficient image format.

3.2. Model Training
3.2.1. LSTM AE

In its simplest form, an autoencoder is a class of neural networks used for the efficient
reconstruction of unlabeled data. The autoencoder learns a representation for a given
dataset by training the network to ignore insignificant parts of the data, such as noise.
In anomaly detection, we learn the pattern of a normal process. Anything that does not
follow this pattern is classified as an anomaly. An autoencoder has two main parts, as
illustrated in Figure 7.

The first part is the encoder that maps the input into the latent representation h, and a
decoder that maps the information of the latent space to a reconstruction of the input.
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In the simplest case, given one hidden layer, the encoder stage of an autoencoder takes
the x ∈ Rd and maps it to h ∈ Rp. Utilizing this information, we can express latent space
h as follows:

h = σ(Wx + b) (1)
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This image h is often referred to as a latent representation or latent space. σ is an
activation function such as the sigmoid or the ReLU activation function. W is the weight
matrix, and b is the bias vector, usually initialized randomly, but as the training progresses,
they are updated incrementally through backpropagation. Subsequently, the decoder
receives the latent representation h and ultimately tries to reconstruct the encoder’s input.
In other words, the decoder attempts to map the latent representation h to the reconstruction
x′. Under our previous notation, this operation was formulated as follows:

x′ = σ′
(
W′h + b′

)
(2)

where σ is again an activation function, and W and b are the weight matrix and the
bias vector, respectively. We underline that x′, σ′, b′ are disparate from their encoder
counterparts.

Ultimately, the autoencoders were trained to minimize the loss function, also referred
to as reconstruction errors. For instance, an example of a reconstruction loss may be the
Mean Square Error:

L
(

x, x′
)
=

1
n

n

∑
i=1

(
x− x′

)2
=

1
n

n

∑
i=1

(
x− σ′

(
W′(σ(Wx + b))

)
+ b′

)2 (3)

In our study case, due to the sequential trait of the signals, we developed LSTM
AE, which were suitable to process the time series thanks to their feedback connections,
as illustrated in Figure 8. An LSTM AE was developed on this univariate time series to
perform rare-event classification. Given a lookback window dictating the extent of the
time series patch received by the network, the information flow is visualized in Figure 8. It
was observed that the LSTM network received a 2D array with dimensions n × f as input
at each timestep. The dimensions of this array corresponded to the n prior timesteps the
network considered at each input and the f features comprising the dataset. The LSTM
layers consisted of as many cells as the number of time points the network looks back at
each time t. In a sequence of LSTM layers, every cell of the preceding layer generates an
output to construct the 2D array the following layer requires.

To generate the reconstructed input, the output of the last LSTM layer must be mul-
tiplied by a 2D array. Essentially, this array is a vector of length equal to the number of
units in each cell of the last LSTM layer, repeated f times, namely as many times as the
number of features in the input. Ultimately, the goal of these networks was to minimize the
divergence between the input and the reconstruction at the model’s output by minimizing
the reconstruction error as defined in (3). The satisfaction of this stipulation ensured the
fidelity of the reconstruction to the ground truth data.

The advantage of this method was that there was no need to label the samples before
training. More specifically, LSTM AE provided an unsupervised inspection. Our developed
model was trained based on the signals from the experimental setup in Kalochori, where
no leakages were induced. The objective during the training phase was to minimize the
reconstruction error. Therefore, it ensured that at the end of the training, the autoencoder
was capable of reconstructing healthy signals with excellent fidelity. After the model’s
training, another set of signals separated from the training set, likewise consisting of only
healthy time series stemming from the Kalochori setup, was passed through the autoen-
coder to audit the model’s performance. The maximum reconstruction error observed in
the validation set multiplied by a safety factor served as the leakage threshold.

In essence, since the autoencoders regenerated the healthy signals with great precision,
their reconstruction error was less than the threshold. Contrarily, if the reconstruction error
was significantly augmented, exceeding this threshold during the testing phase, this event
signified leakage in the pipeline. In this manner, the LSTM model was trained from the
experimental setup to monitor the pipelines in the actual working environment.
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3.2.2. Convolutional Neural Networks

The next component of our leakage detection pipeline was the CNN classifier. This
model undertook the supervised classification of the generated spectrograms. This network
was trained based on the spectrograms generated from the validation dataset stemming
from the validation trials run in the experimental pipeline setup in Kalochori. This dataset
consisted of equally healthy and defective samples to train the classifier adequately to
identify these states.

The operation of convolution enabled these networks to learn efficiently and auto-
matically detect significant features in the images without requiring human intervention.
This implied that CNNs independently performed the arduous task of feature engineering,
relieving engineers and researchers of that burden. Explicitly, the developed classifier was
trained to identify features in the input images and determine the state of the pipeline.
This operation was essentially a linear element-wise multiplication (dot product) between
the small array called the kernel of dimensions Na × Nb gliding through the input tensor
of the layer and the elements of this tensor. This process with multiple kernels allowed
the networks to recognize diverse patterns in the input images. Summing the fragments
generated by the dot product between the filter and the corresponding portion of the
input tensor, its auditing yielded the value of the output tensor in the respective position.
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Convolution on the image, namely on a 2D plane, with a resolution of H ×W and Nc color
channels, takes place as follows:

F(x, y, k) = K◦S(x, y, k) =
Na

∑
i=1

Nb

∑
j=1

Nc

∑
k=1

K(i, j, k)S(x + i− 1, y + j− 1, k ) (4)

The conclusion of this pattern of alternating convolutional and pooling layers leads
to the flattening of the final output tensor into a vector, which constitutes the input of a
traditional FC Network succeeding the configuration of convolution and pooling layers.
The output of a node j at the `th layer of the Fully Connected Network can be expressed
as follows:

z[l]j = W[l]T ·a[L−1] + b =
n[l−1]

∑
k=1

w[l]
jk a[l−1]

k + b[l−1]
j (5)

→ a[l]j = f
(

z[l]j

)
(6)

where f (x) = ReLU(x) = max(0, x) and n[l−1]: the number of nodes at the previous layer.
Based on the feature extraction by the convolution layer and the forward propagation

of the information in the FC layers, the nodes of the last layer of the FC Network and,
by extension, of the whole CNN, classify the state of the piping network reflected by the
sample image. The output of the last layer converts the estimations of the network into a
probability distribution over the predicted classes through the SoftMax activation function;
hence the summation of all outputs adds to 1.

a[L] = So f tmax
(

WT ·a[L−1] + b
)
=

ez[L]i

∑M
i=1 ez[L]i

(7)

Loss: In neural networks, the loss function quantifies the digression between the
predicted values and the ground truth labels assigned to the samples of the dataset. There-
fore, the minimization of the loss function constitutes the primary objective during the
training of the networks. The Categorical Cross-Entropy (CCE) loss function was employed
in our classification task. Assuming a dataset consisting of N observations, the vector
containing the ground truth labels of the samples was denoted as y = [y1, y2, . . . , yn],
each assigned to 1 of a total of M labels. Additionally, following the notation previously
used, the predicted values are the output values of the last layer, thus being denoted as
a[L] =

[
a[L]1 , a[L]2 , . . . , a[L]n

]
. Therefore, the expression for the CCE loss function can be

written as demonstrated in Equation (2):

E = CCE(y, a[L]) = −
M

∑
i=1

yi log
(

a[L]i

)
(8)

Thus substituting (7) into (8), the following expression is obtained:

E = −
M

∑
i=1

yi log (
ez[L]i

∑M
i=1 ez[L]i

) (9)

Backpropagation: After the completion of the forward pass, the backpropagation
succeeds, in the context of which the learnable parameters of the network are updated,
attempting to accomplish convergence of the output predictions and the actual values of the
samples, hence minimizing the loss function. For this matter, the calculation of the gradient
of the loss function of each learnable parameter took place, and it was subsequently used
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to update the respective parameter by an arbitrary step, determined by the learning rate,
which is a hyperparameter. This process can be formulated as follows:

p = p− a
∂L
∂p

(10)

where p represents any learnable parameter of the model and α represents the selected
learning rate.

3.3. Detection Mechanism

The detection scheme began with the identification of the leakage through the LSTM
AE component. Our decision system for labeling a signal as defective was the following:
if out of the 25,000 measurements collected in 1 s, the number of observations above the
leakage threshold is larger than 10,000, the system was flagged as defective. The number
“10,000” was arbitrarily selected, and it manifests our emphasis on averting false negatives,
namely indications where the system does not identify potential system defectiveness,
preventing the occurrence of false positives in the event of erroneous measurement, which
would lead the autoencoder to exceed the reconstruction threshold. Denoting with 1 and 0
the Boolean variables True and False, respectively, we formulate our decision process in
Equation (15).

Possible Leakage =
{

1 i f Error > Threshold
0 i f Error < Threshold

(11)

Leakage =


1, i f

t+25,000
∑
i=t

Possible Leakagei > 10, 000

0, i f
t+25,000

∑
i=t

Possible Leakagei < 10, 000
(12)

Second, when the above decision requirement was satisfied and, thus, detected a
leakage, it initiated the CNN-2D classification. Where the signal from the pipeline wall
was converted into a spectrogram with a rolling 20-s window, namely at each time point,
the last 20 s of the signals were transferred into the time-frequency domain, generating a
spectrogram. The flowchart in Figure 9 illustrates the operations and controls taking place
in our models when monitoring a given signal.
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4. Method Validation

The first set of experiments was undertaken in an experimental setting, intending to
verify the applicability of the proposed methodology. For this matter, the experimental
setup pipeline network set up for the ESTHISIS project in Kalochori, Thessaloniki, Greece,
hosted this round of experiments. This dataset is utilized for the training and obtaining the
optimized instances of the network that shall be used to undertake leakage detection in
the subsequent phase of our methodology testing in an actual working environment, as
presented in Section 5.

For the initial setup and after any change that altered any significant geometrical
parameter of the format, such as the distance between the two sensors, the following
process was followed: The water pressure was set to a pre-defined value and remained
unaltered throughout the experiments, as it was regularly monitored, and water was added
when needed to maintain a steady water pressure inside the pipeline. The two nodes
are fully aligned on top of the pipeline wall in order to minimize uncertainties, and the
induced leakage is 90◦ perpendicular to their plane due to mounting limitations posed by
the environment. This configuration was selected in order to match the conditions that
shall be met in the oil refinery premises during our method verification phase. An initial
series of consecutive recordings without any leaks was taken to record a reference vibration
signal for the channel. These recordings had a 10-min duration in total. Subsequently, a
series of short tests of approximately 10 s each were carried out. During each trial, one of
the faucets was turned on to emulate a leakage of a specific diameter. While the sampling
rate can be defined by the user in our case, each node sampled the sensors’ analog signals
with a sampling frequency of 25 KHz. Each run produced a sample that shall be received
by the network and corresponds to 250,000-time steps, given the 10-s duration of each test
and the 25 KHz sampling rate.

During the first day of the field tests in Kalochori, the majority of the tests were carried
out without water flowing inside the pipeline, whereas most of the experiments carried out
during the second day involved water flowing inside the channel. The other parameters
that changed during the field tests were the distance between the sensors placed on the
pipeline, the distance between the leakage and the sensors, and the diameter of the leakage
ranging from 1 mm to 7 mm, i.e., the diameter of the faucet that was turned on each time.
According to the standard test practice, each testing procedure was repeated 12 times.
Table 2 presents the number of available signals along with their properties.

Table 2. Dataset properties.

Dataset Properties Value

No leak signals (train-validation-test) 120 (80-15-25)
Leak signals (train-validation-test) 120 (80-15-25)

Inspection time per signal 10 s
Sampling frequency (Hz) 25 kHz

Signal length 250,000-time steps
Leakage Diameter (mm) 1–7

Node Distance (cm) 1810, 2260, 3530

Additionally, Table 2 indicates the number of samples corresponding to each subset.
Lastly, Tables 3 and 4 tabulate the selected architecture and hyperparameter configuration
of the trained and optimized models that shall be employed for the anomaly detection tests
in the real environment.
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Table 3. Hyperparameter selection—Long Short-Term Memory AutoEncoder.

Leakage Diameter (mm) Value

LSTM layer 1 units (Encoding 1st—Decoding 2nd) 128
LSTM layer 2 units (Encoding 2nd—Decoding 1st) 64

Learning rate 2 × 10−4

““Lookback”” window 5
Epochs 200

Batch size 8

Table 4. Hyperparameter selection—Convolutional Neural Network.

Leakage Diameter (mm) Value

Convolutional Layer #1 256 × 256, Kernels: 3 × 3
Convolutional Layer #2 32 × 32, Kernels: 3 × 3
Max Pooling Layer #1 32 × 32, Kernels: 2 × 2

Convolutional Layer #3 32 × 32, Kernels: 3 × 3
Max Pooling Layer #2 32 × 32, Kernels: 2 × 2

FCN Layer #1 15 nodes, Dropout = 0.3
Output Layer 2 nodes
Learning Rate 5 × 10−4

Weight updates Epochs × BatchSize = 8 × 100 = 800

5. Verification in a Real Environment

The optimized model that occurred from the experimental tests in Kalochori was used
to monitor the pipelines in this setup and detect anomalies that imply leakage in the actual
operating environment in oil refinery premises. The pipeline network for the field tests
in a real environment was similar to the one described in Section 4 for the field tests in
Kalochori. The main difference between these two lies in the considerable ambient noise
extant in the measurements that stem from other ongoing procedures taking place at the
facilities, instigating external noise entering the monitored system. Additional differences
between the two setups were the pipeline diameter since the available valves generated
leakages of 5 mm and 13 mm.

The challenge of this analysis lies in the considerable ambient noise interfering with
the measurements from other procedures taking place at the facilities. Similarly, according
to the standard test practice, each testing procedure was repeated 12 times, and the results
demonstrated below refer to the mean over these runs. Table 5 summarizes the properties
of the signals acquired during the pilot trials, such as the number of available signals, how
these samples are distributed to each subset for the training, validation, and testing of our
methodology, and general properties characterizing each time series.

Table 5. Dataset properties.

Dataset Properties Value

No leak signals 103 (70-10-23)
Leak signals 97 (70-7-20)
Inspection time per signal 10 s
Sampling frequency (Hz) 25 kHz
Signal length 250,000-time steps
Leakage Diameter 5 mm, 13 mm
Node Distance 850, 1350, 2260, 2820,3350

The detection scheme follows the same pattern as described for the experimental
testing. First, the LSTM AE model is responsible for the identification of leakages by
detecting abnormalities in the signal. Second, after the LSTM AE has detected potential
failure, the procedure of creating spectrograms with a 20-s rolling window is initiated
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Figure 10). These spectrograms are then received by a 2D-CNN which undertakes the
classification of the operational state of the monitored pipeline. Table 5 lists the selected
architecture and hyperparameter configuration of the models composing the monitoring
scheme in the actual operating environment.
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Subsequently, the generation of the spectrograms begins. Indicatively, Figure 11
displays an example of such a spectrogram. The detection of the leakage is considered
successfully identified by our monitoring scheme when it is correctly and timely recognized
by the LSTM AE, and the 2D-CNN continues flagging the signal as defective. In case one
of these conditions is not satisfied, then the observation is deemed as misclassified.
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Figure 11. Example of a defective spectrogram extracted from Kalochori dataset.

Lastly, the efficacy of these models in detecting outflow is presented. Indicatively,
Figure 12 demonstrates the LSTM autoencoder while inspecting a healthy and defective
signal. Figure 12 (right) demonstrates the reconstruction error, and in Figure 12 (left), the
actual acoustic signal acquired from the monitored pipeline is represented. The red denotes
the outflow, as it can also be seen that no blue portion can be discerned because the outflow
began before the monitoring.
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The proposed methodology was again evaluated under diverse circumstances regard-
ing the distance of the leakage from the nodes, the circulation of the fluid, the leakage
diameter to determine the effect of the rupture’s size, and the distance from the nodes on
the efficacy of the models. In this round of experiments, due to limitations in varying the
leakage diameter, the effect of the distance from the node was further audited. Table 6
summarizes the performance of the model in terms of accuracy detection, for each of the
aforementioned instances, along with the results yielded by our previous studies concern-
ing the components of our combined approach to the task of anomaly detection in the
piping networks.

Table 6. Leakage detection performance from oil refinery trials of the (a) proposed combined model,
(b) LSTM AE, (c) CNN Classifier.

Leakage (mm) Node Distance (cm) Combined Accuracy (%) LSTM AE-Accuracy (%) CNN-Accuracy (%)
5 mm 850 100 93.0 96.1
13 mm 850 100 96.4 99.0
5 mm 1350 99.5 92.1 94.2
13 mm 1350 100 94.9 96.6
5 mm 2260 97.9 91.5 90.7
13 mm 2260 99.3 92.0 92.9
5 mm 2820 96.7 86.3 87.4
13 mm 2820 99.0 88.8 90.2
5 mm 3350 96.7 81.8 83.9
13 mm 3350 98.2 84.7 88.3

Leakage (mm) Node Distance (cm) Combined Precision (%) LSTM AE-Precision (%) CNN-Precision (%)
5 mm 850 100 92.0 91.3
13 mm 850 100 95.8 93.9
5 mm 1350 99.3 89.6 88.7
13 mm 1350 100 92.4 91.6
5 mm 2260 98.3 85.1 87.1
13 mm 2260 99.0 88.8 90.5
5 mm 2820 96.2 83.8 84.9
13 mm 2820 98.2 86.7 88.1
5 mm 3350 97.0 82.0 83.4
13 mm 3350 98.0 85.2 85.2
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Table 6. Cont.

Leakage (mm) Node Distance (cm) Combined Recall (%) LSTM AE-Recall (%) CNN-Recall (%)
5 mm 850 100 90.9 93.1
13 mm 850 100 92.0 95.9
5 mm 1350 99.2 88.0 90.7
13 mm 1350 100 90.3 93.4
5 mm 2260 97.1 84.3 90.1
13 mm 2260 99.3 87.1 92.4
5 mm 2820 96.5 82.9 88.3
13 mm 2820 98.0 85.6 90.6
5 mm 3350 96.4 78.2 87.2
13 mm 3350 98.4 81.5 89.5

Leakage (mm) Node Distance (cm) Combined Specificity (%) LSTM AE-Specificity (%) CNN-Specificity (%)
5 mm 850 100 93.5 93.0
13 mm 850 100 95.3 95.9
5 mm 1350 99.5 88.3 89.7
13 mm 1350 100 92.7 92.6
5 mm 2260 97.9 84.0 88.1
13 mm 2260 99.3 89.2 90.5
5 mm 2820 96.7 83.4 87.9
13 mm 2820 99.0 86.1 89.1
5 mm 3350 96.7 81.3 83.4
13 mm 3350 98.2 84.8 86.2

Furthermore, diverse metrics were used to obtain a more comprehensive understand-
ing of the different models’ performance and enabled us to define the deficiencies of the
model better and whether they are more susceptible to False Positives or False Negatives.
The metrics employed are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (13)

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

Speci f icity =
TN

TN + FP
, (16)

where TP, TN, FP, FN denotes the True Positive, True Negative, False Positive, and False
Negative, respectively.

As demonstrated in Table 6, solely regarding the proposed methodology, highly
accurate results were yielded even in an actual operating environment with substantial
external noise. It was observed that as the distance from the node increased, the accuracy
of our methodology decreased, maintaining very high accuracy yields across the numerous
trials. Most importantly, it was also evinced that the propounded combined method
presented in this study considerably improved the accuracy of detecting anomalies in the
signal of the pipelines. Additionally, it is presented that the individual components were
more susceptible to different types of errors. More specifically, the LSTM AEs were prone to
label a signal erroneously as healthy, as demonstrated by the relatively lower recall values.
This phenomenon is explained by the fact that it was commonly observed that, especially
on the occasion of leakages with a small diameter, the signal resembled the signal before
the occurrence of the leakage, thus misleading the LSTM AE model. Furthermore, the CNN
classifiers presented a more balanced performance while slightly tilted towards falsely
detecting leakages in healthy samples. Hence, it is further illustrated how the combined
approach is capable of merging the two components and yielding better performance.
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Lastly, despite having established the efficacy of the propounded methodology in the
experimental as well as in the actual pipeline setup, it is intrinsic to compare our recom-
mended models to other algorithms widely employed in pertinent literature for the task
of anomaly detection. From our previous study, it was deduced that the AutoRegressive
Moving Average for modeling univariate stationary time series performed best out of the
set of benchmark models. Therefore, it is selected to provide a benchmark for comparison
with the results obtained by the combined approach. The ARMA model is similarly trained
solely using the dataset from the experimental pipeline network in Kalochori. This method
is based on a regression model that is first fitted to the training data. Then the resulting
model is used to forecast test sequences, and the difference between the predicted and
real values is called residual. Suppose the orders p and q of the AR and MA models,
respectively, have been chosen appropriately to model the given time series. In that case,
it follows that the residuals are assumed to be distributed normally. Subsequently, these
residuals are utilized to calculate the rolling z-score of the prediction error. Assuming that
the fitted model is capable of satisfactorily predicting the healthy time series provided
in the training step, if the error continuously exceeded the 95% confidence interval, it
would serve as an anomaly indicator since the model would fail to predict the time series
accurately based on the system dynamics learned during training signifying a significant
change in the system. The input time series were ascertained to be stationary through the
Augmented Dickey–Fuller test for our problem. The AR and MA order found from the
training of the ARMA models to adequately capture the piping system’s dynamics were
p = 4 and q = 5.

As Table 7 reveals, there is a significant performance gap between the presented
approach and the ARMA models. More specifically, the ARMA model struggles to maintain
high levels of accuracy. This should likely be accredited to the fact that the ARMA model
was trained based on the dataset of the experimental setup and was then asked to generate
forecasts to the signals from the oil refinery. Conversely, it is evinced that the posed
combined methodology demonstrates significantly greater transferability, allowing the
model stored on the edge to perform real-time leakage detection, despite being trained on
the experimental pipeline setup.

Table 7. Leakage detection performance from oil refinery trials of the (a) proposed combined model,
(b) ARMA model.

Leakage (mm) Node Distance (cm) Combined Accuracy (%) ARMA Accuracy (%)
5 mm 850 100 88.3
13 mm 850 100 90.2
5 mm 1350 99.5 86.2
13 mm 1350 100 89.1
5 mm 2260 97.9 80.5
13 mm 2260 99.3 84.4
5 mm 2820 96.7 77.3
13 mm 2820 99.0 81.9
5 mm 3350 96.7 75.0
13 mm 3350 98.2 79.6

Leakage (mm) Node Distance (cm) Combined Precision (%) ARMA-Precision (%)
5 mm 850 100 85.2
13 mm 850 100 88.7
5 mm 1350 99.3 87.0
13 mm 1350 100 87.9
5 mm 2260 98.3 83.9
13 mm 2260 99.0 85.6
5 mm 2820 96.2 78.4
13 mm 2820 98.2 81.3
5 mm 3350 97.0 76.8
13 mm 3350 98.0 79.8
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Table 7. Cont.

Leakage (mm) Node Distance (cm) Combined Recall (%) ARMA-Recall (%)
5 mm 850 100 84.9
13 mm 850 100 87.3
5 mm 1350 99.2 84.2
13 mm 1350 100 85.8
5 mm 2260 97.1 81.9
13 mm 2260 99.3 84.4
5 mm 2820 96.5 79.5
13 mm 2820 98.0 80.9
5 mm 3350 96.4 74.9
13 mm 3350 98.4 78.7

Leakage (mm) Node Distance (cm) Combined Specificity (%) ARMA-Specificity (%)
5 mm 850 100 89.8
13 mm 850 100 90.3
5 mm 1350 99.5 86.2
13 mm 1350 100 87.8
5 mm 2260 97.9 82.9
13 mm 2260 99.3 84.4
5 mm 2820 96.7 79.5
13 mm 2820 99.0 80.9
5 mm 3350 96.7 74.3
13 mm 3350 98.2 79.8

6. Conclusions

During recent decades, the ever-growing oil industry has highlighted the importance
of supervising the integrity and efficient operation of piping systems worldwide. Monitor-
ing the pipeline network operational condition and the timely detection of malfunctions
of energy systems contribute to the minimization of environmental, economic, and social
consequences. The critical challenge is the timely and accurate data acquisition from sen-
sors integrated into pipelines set in industrial and harsh environments. The methodologies
are part of the ESTHISIS project, which aims to detect leakages in oil and gas pipelines by
gathering and processing data from accelerometers placed alongside the pipelines, forming
an edge computing system that can issue early warning notifications on leakages.

The focal point of the present study is to establish a new combined methodology
for leakage detection, and based on the data acquired from an intelligent wireless system
for leakage detection in pipelines for oil and gas transportation and storage has been
developed. More specifically, the signal from the pipelines is constantly fed to the LSTM
AE, which undertakes the task of detecting anomalies instantaneously. Subsequently, based
on our failure decision process, the operational state of the pipeline is either labeled as
healthy or defective. Lastly, on the occasion of a defective pipeline, the signals thereafter
are converted into spectrograms which are subsequently fed to CNN classifiers to achieve
continuous flagging of the state as defective. Two separate trials took place in two distinct
settings. First, the experimental setup in Kalochori was utilized for the training of the
models, which would be subsequently used in the testing environment. The second
implementation concerned an actual operating environment in an oil refinery. The main
challenge in this setup was the considerable ambient noise extant in the measurements,
instigating external noise entering the monitored system, which could potentially decrease
the detection accuracy of our models.

However, it was demonstrated that the combined methodology managed to bridge
the two components harmoniously and successfully conceal their respective weaknesses,
as these models achieved near-perfect or, on some occasions, even perfect classification
accuracy for the leakage detection task on the signals stemming from the oil refinery. More
specifically, the LSTM AE contributes to the instantaneous and timely detection of leakages
when they occur; nonetheless, in [EAAI], it was demonstrated that they were susceptible to
false negatives, as the signal from the pipeline wall resembled noise for small leakages. This
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deficiency is compensated with the 2D-CNN classifiers, which were employed in classifying
spectrograms in which the time point when the leakage occurred was purposefully omitted.
Additionally, this approach offers the alternative of storing lengthy signals to store static
low-resolution images that occupy considerably less memory.

The primary innovation of the presented integrated system concerns accurate and
timely leakage detection. The system can contribute to preventing possible environmental
disasters and incidents in the fuel industry and the future evolution of intelligent sensor
solutions for liquid and gas storing and transporting procedures. Additionally, to the best of
the authors’ knowledge, this is the first study implementing 2D-CNNs classifiers receiving
spectrograms for the detection of leakage. Moreover, not only did we demonstrate the
applicability of this combination of NN genres but also, we successfully demonstrated that
this monitoring scheme could identify changes in the vibrations in the pipeline system
different than the one that was used for its training. Furthermore, the neural networks
presented in this study were also compared with the individual network components from
our previous study, and ARMA models were used as a performance benchmark. The results
demonstrated that the combined model did outperform the benchmark model, being more
accurate overall, but it also outperformed its components.
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