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Abstract: Modern wireless communication systems use various technological solutions to increase
the efficiency of created radio networks. This efficiency also applies to radio resources. Currently,
the utilization of a radio environment map (REM) is one of the directions allowing to improve radio
resource management. The REM is increasingly used in emerging mobile ad-hoc networks (MANETs),
in particular military tactical networks. In this case, the use of new technologies such as software-
defined radio and network, cognitive radio, radio sensing, and building electromagnetic situational
awareness made it possible to implement REM in tactical MANETs. Propagation attenuation maps
(PAMs) are crucial REM elements that allow for determining the ranges of radio network nodes.
In this paper, we present a novel algorithm for PAM based on a parabolic equation method (PEM).
The PEM allows determining the signal attenuation along the assumed propagation direction. In
this case, we consider terrain topography to obtain a more realistic analysis. Then, we average the
adjacent attenuation profiles defined for the selected directions in places where attenuation has not
been calculated. To this aim, linear regression is applied. Finally, we define several metrics that allow
for the accuracy assessment of determining the PAM as a function of its dimensions.

Keywords: wireless communications; mobile ad-hoc network (MANET); radio environment map
(REM); radio wave propagation; propagation attenuation map (PAM); parabolic equation method
(PEM); path loss; terrain topography; digital terrain elevation data (DTED)

1. Introduction

Currently, we are observing the development and implementation of the fifth-generation
(5G) mobile network, i.e., 5G New Radio (NR) [1,2]. At the same time, 5G standards are still
being developed for other types of communication systems than terrestrial-wireless, such
as satellite [3], wired, optical, hybrid [4], etc. This direction of development is so attractive
that attempts are also made to replicate it in military communication systems [5–8].

A few years ago, the first works and analyses began on the legitimacy of using 5G
technologies for defense. 5G technologies are a set of radio and network technologies, i.e.,
in relation to the physical and higher layers of the ISO open systems interconnection (OSI)
reference model, respectively. These technologies often also include technologies that were
developed earlier, e.g., with the Long Term Evolution (LTE), LTE-Advance (LTE-A), or
LTE-A Pro standards, and which are also implemented in the 5G NR. The most important
5G technologies include massive multiple-input-multiple-output (massive-MIMO), beam-
forming, millimeter waves, full-duplex communications, software-defined radio (SDR),
radio resource management (RRM), dynamic spectrum access (DSA), interference mitiga-
tion, energy harvesting communications, ultra-dense network, self-organizing network
(SON) [9–13].
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In the military sector, work is underway to use the civilian 5G standard for military
scenarios. On the other hand, selected 5G technologies are already implemented in the
upcoming military systems. While wired and satellite military communications are often
based on civilian solutions, wireless military communications, especially at the tactical level,
are governed by different rules. In this case, the direct implementation of civil solutions,
such as the LTE or 5G NR cellular telephony, is not possible. Tactical military networks
are usually classified as mobile ad-hoc networks (MANETs) [14,15]. In this case, there
are no fixed base stations, and all network nodes act as mobile stations (MSs). MSs can
move at different speeds and in any direction. Hence, the network organization and the
coordination of all its elements are challenging.

Some of the aforementioned 5G technologies, such as the RMM, DSA, or SON are
already used in military communication systems today, regardless of the used radio re-
sources. At the stage of planning, managing, and coordinating activities of military forces,
the so-called battlefield management system (BMS) is used [16,17]. In relation to communi-
cation systems, a radio environment map (REM) [18,19] is usually the element of such a
BMS. In this case, the REM is responsible for the planning, management, and coordination
of the MANET nodes. On the other hand, the REM ensures the implementation of the
RMM, DSA, and SON technologies.

Propagation attenuation maps (PAMs) are crucial REM elements that allow for deter-
mining the ranges of radio network nodes. The PAMs may base on different propagation
models. In this case, the use of statistical propagation models is usually insufficient [20].
Military operations can be conducted in various terrains. It requires that the PAM considers
the terrain topography and the different clutter types such as vegetation, buildings, and
the ground parameters (i.e., terrain type). In this case, the use of deterministic propagation
models is a better solution [20]. This paper focuses on a novel algorithm for determining
the PAM. The proposed solution is based on a parabolic equation method (PEM) and linear
interpolation. This algorithm is implemented in a REM in the new Polish tactical com-
munication system that used selected 5G technologies. In the next sections, we introduce
important aspects related to the military use of 5G technologies, REM, and PEM.

Full mobility of all MANET nodes and terrain variability, where the network oper-
ates, makes applying the ray-tracing method (RTM) [21] for its optimization and analysis
challenging. A good solution for REMs is using measurement methods [22,23]. Modern
transceivers are mainly based on SDR technology [24,25]. On the other hand, the possibility
of designing radio waveforms allows for the implementation of an additional sensing
(i.e., spectrum monitoring) process [26,27]. These relatively simple methods of empirical
measurements will enable the building of electromagnetic situation awareness [23,27,28].
However, the results obtained refer only to the area where MANET is currently operating.
Thus, these solutions are not sufficient to design the network in new terrain and assess the
range capabilities of its nodes. Hence, the search for new solutions of this type is significant,
especially in the military MANETs.

Different propagation models can be used to create REM. They can be classified into
two main groups, i.e., statistical models and deterministic models [20]. We propose using
PAMs, which can be the basis for determining coverage maps for network nodes. As shown
in [28–31], the determined PAM can also be used in the process of analyzing the location
of sensors to monitor the electromagnetic situation. The idea of the PAM was presented
in [32], but the mechanisms of their generation were not described. In this paper, we focus
on the detailed description of the novel PAM algorithm that was initially outlined in [33].
The proposed solution is based on three elements:

• determining the attenuation for given terrain profiles on specific azimuths outgoing
radially from the transmitter (TX);

• using the PEM [34–36] for attenuation calculation along with the profiles;
• using linear interpolation to determine the attenuation values between the profiles to

determine the entire PAM.
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According to the best knowledge of the authors, the proposed approach can be con-
sidered original. The choice of PEM and linear interpolation resulted from the limited
computing power of the devices on which REM will be implemented. In the general case,
these methods may also be replaced by others, which provide similar abilities.

The basic PEM approach allows considering the terrain topography (with or without
building heights), the electrical ground, and air-refraction parameters for determining
propagation attenuation (i.e., path loss). In this paper, we present the novel PAM creation
algorithm. To the best of the authors’ knowledge, it is an innovative and original solution.
Typically, the PEM is used to determine the attenuation along a given propagation direction
related to a specific terrain profile as a function of height above ground level. We show
how to use the PEM at a given height of the receiving antenna to determine the attenuation
on the surface.

The remainder of the paper is organized as follows. Section 2 provides a brief overview
of the REM. The idea, short description of PEM, and algorithm of the proposed PAM
approach with exemplary results are shown in Section 3. In Section 4, we analyze the
efficiency of creating the PAM as a function of its dimensions. Next, in Section 5, an
evaluation of the PAM accuracy versus angular resolution of terrain profiles is shown. A
summary of the paper is presented in Section 6.

2. Radio Environment Maps

The REMs are a way of representing complex and multi-domain information for
cognitive radio. By sharing and disseminating information contained in the REM, it
is possible to provide cognitive functionalities such as situational awareness, deducing,
learning, planning, and decision-making support. Consequently, the REM can be a database
distributed among secondary users, centralized, or in a hierarchical topology where the
central database interacts with local databases. REM are multi-domain databases containing
terrain information, sensor data, simulation results of propagation models, regulations,
and policies. PAMs are used in the planning of MANETs (also as cognitive radio networks)
to increase the efficiency of such a network [37]. Using the measurements anywhere in the
network area is impractical. Therefore, as part of the REM, spectrum measurements from
available radio network nodes are collected. Then, data fusion is performed, i.e., available
measurements are converted to estimate the level of interference in other, unexplored
locations. The REM contributes to the development of cognitive mechanisms and the
building of long-term knowledge. The REM introduces environmental awareness that
is more difficult to achieve by the individual capabilities of individual network nodes.
Therefore, the REM enables network nodes to be transformed into smart ones [22,23]. REM
facilitates the adaptation of the radio network to a new environment. Therefore, the REM is
a promising concept for the efficient operation of a cognitive network without overloading
the cognitive node and can be connected to a network-based cognitive engine. Due to the
REM dissemination, an individual secondary user can get to know the radio environment
much more than is the case with the limited sensing possibilities. In this case, it is possible to
use cooperative techniques to interact with primary users, avoid the hidden nodes problem,
and increase the entire system’s efficiency. Due to its architecture, the REM can be broadly
divided into global (G-REM) and local (L-REM). The REM complexity depends on the
number of nodes and channels, the network coverage area, and the information granularity.
REM synchronization is crucial for the accuracy and reliability of the information provided.
Data must be effectively disseminated to avoid information that is obsolete or out-of-date.

The basic functionality of the REM is to build a dynamic interference map for selected
frequencies in every interesting place. For this purpose, maps are used that represent
the coverage of a given area with a radio signal, called radio-frequency (RF) layers of the
REM, or shortly RF-REM [19]. For example, it is achieved by spectrum measurements
obtained from sensors (i.e., network nodes) at specific locations. Since it is impractical and
often impossible to perform measurements anywhere in the area of network operation, the
available measurements are used to estimate the level of disturbances in other locations.
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Another approach is to use propagation damping prediction methods. It is a universal
solution that does not depend on the current location of the sensor and allows you to
analyze the area in which the network did not work before. Hence, the use of different
propagation models for this purpose is common practice. The methods of creating the
RF-REM can be divided into three main categories [19]:

• direct methods based on the interpolation approach, using spatial statistics and mea-
surements of signal levels made in specific locations, make a direct estimation of the
missing data (e.g., nearest neighbor, inverse distance weighting (IDW), and kriging);

• indirect methods based on the use of the TX location and its parameters as well as
propagation models;

• hybrid methods combining both of the above approaches.

The above groups of methods have their advantages and disadvantages and are char-
acterized by different computational complexity. The selection of an appropriate method
is also dependent on the availability of specific data, e.g., the TX location and parameters,
measurement results of signal levels in selected locations, variability of parameters over
time, etc. Propagation methods allow for the creation of more accurate RF-REMs [38]. The
developed solution based on the PEM can be used in indirect methods of creating the
RF-REM.

3. Propagation Attenuation Map

PAMs show the path loss values relative to the defined point, usually located in the
center. This part presents the proposed algorithm for PAM creation. It includes the general
idea, algorithm view, and exemplary results.

3.1. Idea of PAM Algorithm

The main idea of the proposed PAM is based on the determination of a sparse matrix
for given terrain profiles on specific azimuths outgoing radially from the TX. In the next
step, the full PAM matrix is determined based on the interpolation method. We suggest
using PAM in the first stage and linear interpolation—in the second stage. However, it
should be emphasized that both the PEM and linear interpolation can be replaced by other
methods that will allow for determining the full PAM matrix. Our choice resulted from the
low computational expenditure of these methods.

The main idea of the PAM algorithm is presented in Figures 1 and 2. In this case, the
PAM is identified with the path loss matrix, PAM, whose center cell corresponds to the TX
location. In the first stage (see Figure 1), the so-called sparse PAM matrix is created based on
the PEM for the terrain profile along a specific azimuth. In the second stage (see Figure 2),
the sparse PAM matrix is completed based on interpolation of the non-zero values of the
matrix cells. In this way, the final PAM is obtained, represented by the so-called full PAM
matrix.
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3.2. Parabolic Equation Method

For modeling tropospheric ducting propagation (TDP), the mode theory, RTM, and
PEM are usually used. The first two methods require greater computational effort and have
significant problems with modeling radio wave propagation in the troposphere, analysis of
range-dependent environments, and higher frequency ranges. Moreover, the RTM does
not allow for precise estimating of the field strength [36]. Hence, the PEM is widely used as
an effective tool for modeling the TDP considering the terrain topography. Therefore, we
used the PEM in the proposed PAM algorithm.

The development of the PEM and its widespread use took place in the early 1980s.
However, the origins of the PEM as applied to the TDP modeling date back to 1946.
Then, Leontovich and Fock [39] presented an analysis of TDP based on a solution to the
parabolic equation. The first solutions were based on the first-order approximation of
Taylor expansion, considering only the first two terms. This resulted in a low accuracy that
allowed only analyzing a narrow beam in the elevation plane. This method was called
narrow-angle PEM [36].

In 1973, Hardin and Tappert [40] proposed using the split-step Fourier transform
(SSFT) algorithm to sequentially solve a parabolic equation along a given radius. This
approach is one of the commonly used methods alongside two other numerical methods
for solving a parabolic equation, i.e., a finite-difference method (FDM) and finite-element
method (FEM).

From the TDP viewpoint, the PEM allows considering the terrain irregularity, the
earth conductivity, and air refractivity for determining distributions of the electric field
strength or signal attenuation. The phenomenon of air refraction is considered by using
different refractivity profiles, which depend on changes in air parameters (i.e., temperature,
pressure, and humidity) at different altitudes. The earth’s surface is also an important
factor influencing the shape of these profiles, i.e., different nature of changes in the air
refractivity index is above the surface of a sea, forest, mountains, desert, etc. [41]. This factor
is also important in the analysis of the earth’s electrical parameters. These parameters are
considered in the lower impedance boundary conditions for the parabolic equation [42,43].
The lower boundary conditions are applied at the contact level of the air and soil layers. In
practice, when analyzing the TDP at greater distances, the earth’s curvature radius should
be additionally taken into account [41].

Generally, the PEM is based on a numerical solution of the 2D parabolic equation in
the Cartesian system:

∂2

∂z2 E(x, z)− 2ik0
∂

∂x
E(x, z) + k2

0

(
n2 − 1

)
E(x, z) = 0, (1)

where E(x, z) is electric field strength for the assumed radius—terrain profile (generalized
x coordinate) and for any height (z coordinate), i =

√
−1, k0 = 2π/λ is the wavenumber

in the vacuum, λ is the wavelength, n =
√

µrεr is the refractivity index of air, µr and εr are
the relative magnetic and electric permeability of air, respectively.

Equation (1) is a parabolic approximation of the Helmholtz wave equation, whose
full-wave solution is provided by the PEM [43]. This equation is solved numerically using
one of the three mentioned methods (i.e., SSFT, FDM, or FEM) in a sequential manner from
the TX along an analyzed terrain profile determined on a given azimuth direction of a
propagation radius. Detailed descriptions of the algorithms are presented in [34,35]. A free
FEM implementation in the MATLAB environment is also available [44,45].

We used the PEM implementation in MATLAB based on the SSFT approach, which
considers the refractivity profile, terrain topography, impedance boundary conditions, and
the earth curvature radius. In this case, we use the digital terrain elevation data (DTED) for
determining the terrain profiles [46,47]. From the viewpoint of the proposed PAM solution,
any PEM implementation can be used. Considering additional factors (e.g., the height of
buildings, and vegetation) only influences the accuracy of the estimation of field strength
or signal attenuation, but it does not matter for the implementation of our PAM algorithm.
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Analyzing the literature, we see some similarities of the PAM algorithm to the 3D PEM
approach presented in [48,49]. However, it should be highlighted that we do not determine
the field strength distribution in the 3D space, but only 2D attenuation distribution (i.e.,
PAM) at the specific height of the receiving antenna. Such PAM as a heat map allows
determining the radio coverage or the range of individual MANET nodes. In both cases,
i.e., in the PAM and 3D PEM, radial rays from the TX (i.e., terrain profiles for which field
distributions are determined) are applied. These rays are determined for specific azimuth
directions with a given step.

3.3. PAM Algorithm

The proposed approach allows determining path loss values in all discrete points
around a fixed TX position (marked in red in Figure 1). The indexes of individual pixels
are correlated with geographic coordinates, and the distance between them depends on
the available topography data, i.e., DTED resolution, ∆R. The analyzed area is contained
in a square with a side length of 2R0, where R0 means the radius of the analyzed terrain
area for which the PAM is determined. The size of the created PAM matrix is K× K, where
K = b2R0/∆Rc+ 1. Calculations according to the PEM method are performed on defined
directions around the TX depending on the angular resolution ∆α.

An example procedure for determining attenuation on a selected azimuth direction
αn = n∆α is depicted in Figure 1 (marked in green). The first step is to compute the
terrain profile along the αn direction. This profile contains the height of the terrain with
∆z resolution for discrete distance steps (∆x) along Rn = R0/AF(αn), where AF(αn) is the
following angular factor: AF(αn) = sin αn for 45◦ ≤ αn ≤ 135◦ or 225◦ ≤ αn ≤ 315◦,
and AF(αn) = cos αn for 0◦ ≤ αn < 45◦, 135◦ < αn < 225◦, or 315◦ < αn < 360◦.
PEM calculations based on the SSFT approach are performed in the next phase. Then, path
loss vectors for a given height of the receiving antenna, hR, are recorded into the PAM
matrix. The method of determining the final PAM is explained in detail by Algorithms
1 and 2 for the sparse and full PAM matrices, respectively.

Algorithm 1 shows a determination way of the sparse PAM matrix based on PEM
calculations. The procedure for determining the path loss values should be repeated for
every defined azimuth and the corresponding terrain profile. Depending on the selected
azimuth resolution, the number of loop executions (lines 4 to 10 in the algorithm) vary.

Algorithm 1 (Creating sparse PAM matrix based on PEM for selected terrain profiles)

Require: DTED, DTED resolution (∆R), radius of the analyzed area (R0), TX location, angular
resolution (∆α), receiving antenna height (hR).

1. Calculate K = [2R0/∆R] + 1, i.e., dimension of PAM matrix.
2. Create zero matrix for PAM with dimension K × K.
3. Set n = 0.

repeat

4. Set αn = n∆α.
5. Calculate Rn = R0/AF(αn).
6. Determine terrain profile TP(x), vector of length Rn, for TX location and azimuth αn

based on DTED.
7. Calculate PEM matrix, PEM(x,z), for terrain profile TP(x), e.g., using SSFT method.
8. Read path loss profile L(D) = PEM(x = D, z = hR) from determined PEM matrix for

receiving antenna height hR.
9. Save path loss profile L(D) to appropriate cells (green ones in Figure 1) of PAM matrix,

PAM(j, k) = PAM(αn) = L(D), corresponding to analyzed azimuth αn, where j, k = 1, 2,
. . . , K are indexes of PAM matrix and TX is located in central cell of PAM matrix (red
one in Figure 1).

10. Set n = n + 1.

until n∆α > 360◦.

11. Output PAM as sparse matrix based on PEM for selected terrain profiles.
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The full PAM matrix is obtained by launching Algorithm 2. The proposed approach
allows determining empty spaces (i.e., zero value cells) in the sparse PAM matrix (white
ones in Figure 1). For this aim, we use linear regression. The interpolation method for
creating the full PAM is explained in Figure 2. The input for this procedure is a partially
completed path loss matrix, i.e., the sparse PAM matrix. Attenuation values in gray-marked
points (see Figure 1 or Figure 2) are calculated according to Algorithm 1 described above.
Zero cells (white ones in Figure 1) of the sparse PAM matrix are calculated based on linear
regression and the two attenuation values located in the nearest non-zero cells. Depending
on the coordinates of the considered point, i.e., indexes of matrix cell, there are two possible
ways of linear interpolation:

• in a column—for the azimuth directions:

# 225◦ ≤ αn ≤ 315◦ (i.e., k ≤ j ≤ K− k + 1 for k = 1, 2, . . . , bK/2c+ 1),
# 45◦ ≤ αn ≤ 135◦ (i.e., K− k + 1 ≤ j ≤ k for k = bK/2c+ 2, bK/2c+ 3, . . . , K),

• or in a row—for the remaining azimuth directions:

# 315◦ < αn < 360◦ or 0◦ ≤ αn < 45◦ (i.e., j + 1 ≤ k ≤ K − 1 for j =
1, 2, . . . , bK/2c+ 1),

# 135◦ < αn < 225◦ (i.e., K − j + 2 ≤ k ≤ j − 1 for j = bK/2c + 2, bK/2c +
3, . . . , K).

In Figure 2, we showed these selected interpolation cases by colored cells of the PAM
matrix. For column interpolation, the blue-marked zero cell values are determined based
on two yellow non-zero PAM cell values of the sparse PAM matrix, i.e., PAM(g, k) and
PAM(h, k) obtained for the azimuths αn and αn+1, respectively. For row interpolation, the
purple-marked zero cell values are derived from the two orange non-zero cell values of the
sparse PAM matrix, i.e., PAM(j, p) and PAM(j, q) obtained for the azimuths αm+1 and αm,
respectively. In these cases, the linear regression is performed according to the following
formulas:

PAM(j, k) = PAM(h,k)−PAM(g,k)
h−g (j− g) + PAM(g, k) for g < j < h, (2)

PAM(j, k) = PAM(j,p)−PAM(j,q)
q−p (k− p) + PAM(j, p) for p < k < q. (3)

According to Algorithm 2 presented above, the interpolation procedure is repeated
column-by-column and then row-by-row so as to determine the path loss corresponding to
the receiving antenna height at all points (i.e., cells) of the PAM matrix.
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Algorithm 2 (Creating full PAM matrix based on interpolation)

Require: sparse PAM matrix (PAM).
Interpolation in columns:

1. Set k = 1.

repeat

2. Find gth row (g ≥ k) corresponding first non-zero cell in kth column (see one of yellow
cells in Figure 2).

repeat

3. Find hth row corresponding next non-zero cell in kth column (see one of yellow cells
in Figure 2).

4. Calculate all zero cells in kth column between gth and hth rows, i.e., PAM(j, k) for g <
j < h, based on Equation (2) (see blue cells in Figure 2).

5. Set g = h.

until h ≤ K–k + 1.

6. Set k = k + 1.

until k ≤ [K/2] + 1.
repeat

7. Find gth row (g ≥ K–k + 1) corresponding first non-zero cell in kth column (see one of
yellow cells in Figure 2).

repeat

8. Find hth row corresponding next non-zero cell in kth column (see one of yellow cells
in Figure 2).

9. Calculate all zero cells in kth column between gth and hth rows, i.e., PAM(j, k) for g <
j < h, based on Equation (2) (see blue cells in Figure 2).

10. Set g = h.

until h ≤ k.

11. Set k = k + 1.

until k ≤ K.
Interpolation in rows:

12. Set j = 1.

repeat

13. Find pth column (p ≥ j + 1) corresponding first non-zero cell in jth row (see one of
orange cells in Figure 2).

repeat

14. Find gth column corresponding next non-zero cell in jth row (see one of orange cells
in Figure 2).

15. Calculate all zero cells in jth row between pth and qth columns, i.e., PAM(j, k) for p < k
< q, based on Equation (3) (see purple cells in Figure 2).

16. Set p = q.

until q ≤ K–j.

17. Set j = j + 1.

until j ≤ [K/2] + 1.
repeat

18. Find pth column (p ≥ K–j + 2) corresponding first non-zero cell in jth row (see purple
cells in Figure 2).

repeat

19. Find qth column corresponding next non-zero cell in jth row (see purple cells in
Figure 2).

20. Calculate all zero cells in jth row between pth and qth columns, i.e., PAM(j, k) for p < k
< q, based on Equation (3) (see purple cells in Figure 2).

21. Set p = q.

until q ≤ j–1.

22. Set j = j + 1.

until j ≤ K.

23. Output PAM as full matrix (without zero cells) based on interpolation.
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3.4. Exemplary Results

To check the developed algorithms, two positions of the TX have been proposed
(see Figure 3). One of them is located in a lowland area (52.51 ◦N, 18.48 ◦E), the other–in
a hilly terrain (51.22 ◦N, 15.55 ◦E). For each transmitting point located in the center of
the map in Figure 3, terrain profiles are determined for the propagation directions (i.e.,
azimuths), which are shown by rays marked in red. In this case, the elevation maps obtained
based on DTED2 [46,47], i.e., with an average resolution ∆R = 30 m, are illustrated in the
background.
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lyzed areas. In this case, the terrain profiles are shown as white shapes below the field 
distributions. In Figure 5a, we depict the exemplary level equal to the receiving antenna 
height, = 2 m,Rh  above the analyzed lowland terrain profile ( )xTP  from Figure 4a. 
The path loss read from the determined field distributions at the receiving antenna height 
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Figure 3. DTED-based elevation maps for two selected TX locations in (a) lowland and (b) hilly areas
for which terrain profiles are calculated.

Figure 4 presents PEM-based electromagnetic field distributions obtained for yellow
rays (see Figure 3) representing the terrain profiles at the azimuth α0 = 0◦ in two analyzed
areas. In this case, the terrain profiles are shown as white shapes below the field distribu-
tions. In Figure 5a, we depict the exemplary level equal to the receiving antenna height,
hR = 2 m, above the analyzed lowland terrain profile TP(x) from Figure 4a. The path
loss read from the determined field distributions at the receiving antenna height above
the terrain profile is the basis of the created PAM matrix. Figure 5b presents exemplary
path losses versus terrain profile radius (i.e., length) for the two analyzed profiles and field
distributions from Figure 4.
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Figure 5. (a) Level of receiving antenna height marked above exemplary lowland terrain profile and
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distributions from Figure 4.

The path loss values versus terrain profile radius, L(D), for analyzed receiving antenna
height, hR, and calculated field distributions (e.g., see Figure 5b) are written into the PAM
matrix in the cells corresponding to the analyzed azimuth, αn. In this way, the sparse
PAM matrix, PAM(j, k), is created. It is the basis for determining the full PAM matrix
by applying the interpolation process described in Algorithm 2. The final result of the
developed algorithms is illustrated in Figure 6. In this case, we show PAMs (i.e., full
matrices) for two selected TX locations (see Figure 3) in lowland and hilly areas, respectively.
These PAMs were obtained based on 360 terrain profiles with a step ∆α = 1◦. The PAM
quality depends on the density of profiles on the basis of which it is generated. On the
other hand, we may see the differentiation of the obtained PAMs depending on the terrain
and TX position for which they are determined.
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4. Efficiency of Creating PAM versus Its Dimensions

This part of the paper is devoted to studying the effectiveness of creating PAMs
according to the previously presented algorithms. First, the metrics are defined, and then
the research results are presented.



Sensors 2022, 22, 4063 12 of 20

4.1. Metrics

As seen in the analyzed areas, there are points (i.e., sparse PAM matrix cells) for which
calculations have not been made. Path loss values in these locations must be interpolated
according to Algorithm 2. On the other hand, there are points (i.e., PAM cells), where
calculations were performed repeatedly (more than once). This is due to the high density
of the profiles near the TX. Let us introduce the redundancy parameter r as the number of
path loss value calculations at a given point. As a consequence, it is possible to define the
calculated points ratio CPR for the analyzed area

CPR(%) =
CP
TP
·100, (4)

where CP and TP are the number of calculated points (with r ≥ 1) and total number of
points at the analyzed area, respectively.

To determine the number of all calculations performed, the redundancy values for all
points in the analyzed area should be summed up

CN =
TP

∑
s=1

rs, (5)

where s is the point index and rs is the redundancy value for a specified point s.
The CP measure introduced earlier considers the number of points, where the cal-

culations were made at least once (i.e., r ≥ 1). By correlating this parameter with the
redundancy r, it is possible to define a new CPr measure meaning the number of points
where the calculations were made exactly r times. Therefore, the previously introduced
CN metric can also be expressed as

CN =
rmax

∑
r=1

r·CPr, (6)

where rmax is the maximum value of r for the analyzed area.
The normalized number of points where the calculations were made exactly r times

can be defined as follows:
NCPr(%) =

CPr

CP
·100. (7)

Additionally, for evaluating the PAM creation efficiency, we use a computation time
CT expressed in seconds. The measure considers the execution of all algorithm steps
presented in Section 4.2, excluding the calculation of terrain profiles. The absolute values
of this measure depend on the processing power of the used computer. Therefore, this
parameter is used to compare different variants, e.g., different sizes of the analyzed area.

4.2. Result Analysis

The results presented in this part of the paper relate to studies carried out for various
sizes of the analyzed area (square with a side length of 2R0). The angular resolution ∆α
for all tests are equal to 1◦. Figure 7 shows the effect of increasing the radius R0 on the
calculated points ratio (i.e., CPR) values (blue color) and the calculation time (i.e., CT)
needed to obtain the results (orange color).

As mentioned in the previous section, the CT metric depends on the processing power
and is used for comparison purposes. The greater the value of the radius R0, the longer the
time needed to perform the calculations. For example, in the case of a tenfold increase in
R0 (from 2 to 20 km), the CT increases about six times. In the case of analyzing small areas,
the vast majority of points on the PAM are calculated based on PEM (some points even
multiple times, as shown in the following figures–see Figure 8). The larger the area of the
analysis, the CPR value significantly decreases, and more points must be determined using
the interpolation method presented in Figure 2. In the case of the radius R0 equal to 1 km,
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about 90% of the points on the PAM are determined based on calculations. Increasing R0
to 10 km results in a decrease in CPR to the level of only about 21%. In this case, 79% of
points must be interpolated.
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Figure 8. Redundancy r for points on sparse PAM matrix illustrated for (a) whole map area and
(b) area with highest number of calculations.

Figure 8 depicts the effect of duplicate calculation of points in generating the final PAM.
In particular, the greatest redundancy of calculation is for the area next to the TX. Therefore,
the increase in the number of calculations (i.e., CN) does not translate proportionally to the
increase in CPR.

Another metric, independent of the processing power of the used computer, is the total
number of calculations (i.e., CN). The absolute value of this measure for three distances R0
is presented in Figure 9a. The normalized values of the calculations for these three cases
are shown in Figure 9b.
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Figure 9. (a) Absolute and (b) normalized number of all calculations CN for different distances
between TX and RX.

Figure 10 shows the normalized number of points on the map for which the attenuation
calculations are repetitive. In this case, the parameters NCP2 and NCP3 mean that 37% and
14% of points are calculated two or three times, respectively. On the other hand, NCP>5
means the sum of points on the map is calculated 6 or more times. For PAM with a larger
radius, i.e., R0 = 5 km, the number of points without redundancy (NCP1) is 92% and and
the number of points without redundancy (NCP1) is 97%.
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5. PAM Accuracy Evaluation versus Angular Resolution of Terrain Profiles

In this section, we present a preliminary assessment of the accuracy of the proposed
algorithm versus the angular resolution of the terrain profiles. This assessment was made
for the selected TX location with the coordinates (49.28◦N, 19.96◦E) and R0 = 1 km. The
terrain around TX is shown in Figure 11a, while Figure 11b illustrates the PAM obtained
for the angular resolution of the terrain profiles equal to ∆α = 1◦. In our analysis, this PAM
is used as a reference to determine the algorithm errors at another angular resolution of the
terrain profiles. Figure 12 shows exemplary PAMs for the analyzed area and two different
angular resolutions equal to 2◦ and 10◦.
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In the following, for every map point, PAM(j, k), we calculate the attenuation error

∆L(j, k) = PAM∆α(j, k)− PAM∆α=1◦(j, k), (8)

where PAM∆α(j, k) and PAM∆α=1◦(j, k) are the PAM values (i.e., attenuations) obtained for
the analyzed ∆α and reference ∆α = 1◦ angular resolutions of terrain profiles. In this way,
the error maps, i.e., attenuation error matrices, are determined. Figure 13 shows sample
error maps that were obtained for the two PAMs illustrated in Figure 12.

These error maps are the basis for determining the empirical cumulative distribution
function (CDF), CDF(∆L), and root-mean-square error (RMSE), RMSE(∆L), of the attenua-
tion error. Exemplary CDFs for the two analyzed error maps (see Figure 13) are presented
in Figure 14a. Generally, we can judge that the obtained functions are symmetrical about
the sign of ∆L. This means that the attenuation errors in the PAM with ∆α oscillate around
the attenuations for the reference PAM. Hence, we also computed the CDFs for the module
of the attenuation error, CDF(|∆L|), which are depicted in Figure 14b.
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Figure 14. CDFs of (a) attenuation error and (b) attenuation error module for selected angular
resolution of terrain profiles.

The CDFs analysis shows that increasing ∆α causes a significant increase in the atten-
uation errors in determined PAMs. This is due to the smaller number of terrain profiles
included in the calculations. For ∆α = 2◦, 80% of the absolute attenuation errors are
less than 3 dB, while for ∆α = 10◦, it is 7 dB. For CDF(|∆L|) = 0.9, |∆L| = 5 dB and
|∆L| = 10 dB for the angular resolutions equal to 2◦ and 10◦, respectively.

Therefore, we may assume that for small Da, the number and time of calculations can
be reduced at the expense of the accuracy of the PAMs obtained. This approach can be used
in the preliminary stage of PAM determination, which requires initial visualization of the
results. In the next step, with the platform computing resources available, the exact PAMs
can be determined for the lower angular resolution of terrain profiles.

Similar conclusions might be drawn by analyzing the RMSE scalar measure. Figure 15
shows the RMSE of attenuation error for selected angular resolution.
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For the angular resolutions equal to 2◦ and 10◦, we obtained RMSE(∆L) = 4 dB and
RMSE(∆L) = 7 dB, respectively. Moreover, the graph shows that the error difference for
∆α = 5◦ and ∆α = 10◦ is small. In this case, we can obtain almost unchanged PAM accuracy
with a two-fold reduction in the number of terrain profiles and a two-fold reduction in
computation time.

The accuracy of PAM generation depends not only on the angular resolution of the
profiles but also on their length (i.e., R0), i.e., the PAM matrix dimension. A more detailed
analysis of the PAM accuracy will be presented in our next work.

6. Conclusions

This paper focuses on a novel method of creating PAM as a crucial REM element,
which allows for determining the ranges of radio network nodes. Our solution is based
on the PAM determination in two stages. In the first stage, we determined the so-called
sparse matrix for profiles outcoming radially from the TX. In the second stage, we used the
interpolation method to calculate the full PAM matrix. The proposed approach is based
on the DTED-based terrain profiles, PEM, and linear interpolation algorithm. Thereby, the
developed solution considers the influence of topography on path loss calculation. The
proposed algorithm was implemented in the REM for determining the radio ranges of
tactical MANET nodes in the emerging military communication system. On the other hand,
the proposed two-step approach to the PAM can be considered universal. This means that
DTED, PEM, and linear interpolation can be replaced by others, which provide calculating
the full matrix.

In this paper, we have presented a detailed description of the PAM generation al-
gorithm based on the PEM for a given terrain topography. Metrics for evaluating the
algorithm effectiveness depending on the PAM size have been defined. They were the
basis for the assessment of the proposed solution for various PAM. Analyzing the results
presented in the paper, it can be concluded that in the R0 range up to about 3 km, over 50%
of points in the PAM are calculated according to PEM. In the case of larger areas, it should
be remembered that most of the points are interpolated, which affects the accuracy of
determining the path loss values. These errors will get bigger with increasing distance from
the TX. On the other hand, we presented a preliminary analysis of the PAM accuracy versus
the angular resolution of the terrain profiles. The obtained results show that increasing ∆α
reduces the accuracy of determining the attenuation. However, with a two-fold increase in
∆α, the computation time decreases twice, and the mean estimation error is equal to 4 dB.
The obtained results also showed that increasing ∆α from 5◦ to 10◦ only slightly increases
the deviation of ∆L. The utilization of larger ∆α can be used in the initial stage of PAM
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determination for the preliminary visualization of the results. In the next step, the exact
PAMs may be determined for the lower angular resolution of terrain profiles.

Future work on PAM development will focus on assessing the impact of profile density
on the path loss estimation accuracy, PAM utilization to evaluate the radio range of nodes
(i.e., network coverage), comparison of the linear interpolation method with others (e.g.,
IDW or kriging), and PAM algorithm modification for the TX directional antennas.
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Abbreviations

2D two-dimensional
3D three-dimensional
5G fifth-generation
BMS battlefield management system
CDF cumulative distribution function
DSA dynamic spectrum access
DTED digital terrain elevation data
FDM finite-difference method
FEM finite-element method
G-REM global radio environment map
IDW inverse distance weighting
ISO International Organization for Standardization
L-REM local radio environment map
LTE Long Term Evolution
LTE-A Long Term Evolution Advance
MANET mobile ad-hoc network
MIMO multiple-input-multiple-output
NR New Radio
OSI open systems interconnection
PAM propagation attenuation map
PEM parabolic equation method
REM radio environment map
RF radio-frequency
RF-REM radio-frequency radio environment map
RRM radio resource management
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RTM ray-tracing method
RX receiver
SDR software-defined radio
SON self-organizing network
SSFT split-step Fourier transform
TX transmitter
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