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Abstract: Infrared ocean ships detection still faces great challenges due to the low signal-to-noise
ratio and low spatial resolution resulting in a severe lack of texture details for small infrared targets,
as well as the distribution of the extremely multiscale ships. In this paper, we propose a CAA-YOLO
to alleviate the problems. In this study, to highlight and preserve features of small targets, we apply a
high-resolution feature layer (P2) to better use shallow details and the location information. In order
to suppress the shallow noise of the P2 layer and further enhance the feature extraction capability,
we introduce a TA module into the backbone. Moreover, we design a new feature fusion method to
capture the long-range contextual information of small targets and propose a combined attention
mechanism to enhance the ability of the feature fusion while suppressing the noise interference
caused by the shallow feature layers. We conduct a detailed study of the algorithm based on a
marine infrared dataset to verify the effectiveness of our algorithm, in which the AP and AR of small
targets increase by 5.63% and 9.01%, respectively, and the mAP increases by 3.4% compared to that
of YOLOv5.

Keywords: small targets detection; combined attention mechanism; multiscale feature fusion; infrared
image; multiscale objects

1. Introduction

Scene understanding based on machine vision is a key technology in the field of marine
transportation, and object detection has received extensive attention as an important part
of it. Infrared imaging has been widely used in marine ship detection because of its
outstanding characteristics of strong anti-interference ability and all-weather operation [1].
Different from other detection tasks, the ocean scene has its unique characteristics: (1) the
scenes including multiscale targets have a broader field of view; (2) the size of targets is
extremely distributed. At the same time, due to the low signal-to-noise ratio and poor
spatial resolution of infrared images, the visual effect is fuzzy and the target is seriously
lacking in texture details, especially for small objects, which bring great challenges to the
detection of marine targets based on infrared scenes.

Object detection methods based on deep learning have been shown to greatly improve
the performance of object detection. There exist a sea of detection frameworks such as two-
stage algorithms (R-CNN [2], fast R-CNN [3], faster R-CNN [4]) and one-stage algorithms
(YOLO [5–7], SSD [8]). However, it has always been a difficult point of research to improve
the detection of small targets while ensuring the detection of large and medium targets.
To solve this problem, a series of methods such as multiscale feature fusion strategies and
context learning have been proposed. Nayan et al. [9] proposed to use upsampling and
skip connections to extract the multiscale features of different network depths during the
training process. Deng et al. [10] proposed an extended feature pyramid network, which
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uses an additional high-resolution pyramid level specifically for small object detection.
Tan et al. [11] proposed a weighted bidirectional feature network named BiFPN for adap-
tively selecting the importance of different features in the fusion process. Lim et al. [12]
proposed a method using context to connect multiscale features, supplemented by an
attention mechanism to focus on the target in the image. Zhang [13] et al. proposed to use a
feature fusion network to comprehend different levels of convolutional features and better
utilize the fine-grained features and semantic features of targets.

In the infrared-based ocean scene, the difficulty of object detection is further aggra-
vated by the huge change of ship scale and the weak texture features of small targets.
Therefore, directly introducing an extra high-resolution pyramid level brings more noise in
the bottom of the feature fusion stage. The use of a traditional backbone network could
easily lead to feature degradation or even disappearance of extremely small targets in
the process of downsampling and the context feature fusion will be extracted deficiently
without guidance.

Based on the characteristics of infrared ocean ship scenes, we propose a CAA-YOLO
infrared ship detection algorithm based on one-stage detector YOLOv5. As a state-of-the-art
detector, YOLOv5 has the advantages of fast convergence, high accuracy and lightweight
model. It also has strong real-time image detection capabilities and low hardware com-
puting requirements, which means it is easy to be transplanted to mobile devices for
application in marine traffic scenarios. In the design of the CAA-YOLO network, to better
detect small and weak objects, we add the high-resolution feature layer P2 to obtain more
shallow details and location information. In order to suppress shallow noise caused by the
P2 layer and enhance the feature extraction ability, we introduce the attention module TA
into the backbone. In the feature fusion stage, we construct a new feature connection mode
to offer more contextual information for the shallow layer. Moreover, we design the com-
bined attention mechanism to achieve adaptive feature fusion, which not only enhances the
semantic information of targets but also suppresses the noise interference caused by the P2
layer. We use infrared ship dataset to evaluate the performance of our method. Compared
with the baseline network YOLOv5, CAA-YOLO improves the detection performance of
small targets in extreme multiscale scenes. Especially for scenes with small targets and
intensive and mutual occlusion, in which pixel areas are less than 32 × 32, its AP and AR
increase by 5.63% and 9.01%, respectively. In addition, the mAP of all ships increases by
3.4%. The main contributions of the research can be summarized as follows:

• Aiming at the problems existing in infrared ocean ship scenes, this paper proposes
a CAA-YOLO for infrared ocean ship detection based on YOLOv5. By introducing
an attention module in the stage of feature extraction and feature fusion to utilize
more shallow information, we improve the detection for small and weak targets.
Compared with some state-of-the-art algorithms, the proposed method achieves better
detection results.

• To reserve more shallow details and location information, we add the high-resolution
feature layer P2, which improves the detection accuracy of small objects.

• To suppress the background noise and allow the network to independently distin-
guish the correlation and effectiveness between different feature mapping channels,
we introduce a TA module into the backbone network.

• To capture the long-range contextual information of small objects, we design a novel
feature fusion method and use a combined attention mechanism to enhance the ability
of feature fusion and suppress the noise interference brought by shallow feature layers.

2. Related Work

Object detection technology has made remarkable progress due to the development of
deep learning technology in recent years. Currently, popular object detection algorithms can
be divided into two categories: two-stage algorithms represented by RCNN [2] and faster
RCNN [4], and one-stage algorithms represented by YOLO [5] and SSD [8]. They mainly
contain input, backbone, neck and head modules as shown in Figure 1. Small targets have
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fewer pixels than conventional objects, so it is difficult to extract better features in multiscale
object detection algorithms. Moreover, with the increasing depth of the convolutional
neural network, the details and location features of small targets are gradually lost. In this
section, firstly, we briefly review the major works of target detection when adding a high-
resolution feature layer, enhancing the feature extraction ability of the backbone network
and multiscale feature fusion. Secondly, we briefly introduce the development status of an
infrared small target detection.

Figure 1. Modern detection structures with the input, backbone, neck and head. (a) Input: data
preprocessing modules, such as data augmentation; (b) Backbone: feature extraction module; (c) Neck:
multiscale feature fusion module; (d) Head: object classification and localization module.

With higher resolution and more detailed information for localization, low-level fea-
tures maps are particularly important for small target detection. Adding the shallow
characteristics of the high-resolution layer has become one of the methods for small tar-
get detection. That is, the shallow feature map in the backbone module of Figure 1b is
integrated into the neck module of Figure 1c. Kim et al. [14] proposed the structure of
ECAP-YOLO to improve the detection performance of small targets in aerial photogra-
phy scenes. Shao et al. [15] proposed an adaptive spatial feature fusion network with a
high-resolution detection layer to enhance the effect of ship detection in night remote
sensing scenes.

As a shared structure of different neural networks, the backbone is the main element of
the model, which determines the basic performance. To extract the feature information more
effectively, an attention mechanism is widely used in convolution neural networks, which
is usually introduced into the modules of the backbone as shown in Figure 1b. Bi et al. [16]
embedded a visual attention enhancement network into the backbone network DSOD to
extract visual features, which improved the performance of ship detection. Cui et al. [17]
proposed a spatial mixing group enhancement (SSE) attention module into the backbone
network to suppress some noise while extracting stronger semantic features to reduce false
positives caused by inshore and inland interference. Chen et al. [18] designed a novel and
lightweight extended attention module (DAM) to extract the discriminant features of ship
targets. The integrated attention mechanism suppressed irrelevant regions and highlighted
salient features that were useful for ship detection tasks.

One of the main difficulties of object detection is the effectiveness of feature representa-
tion with multiscale information processing in the feature fusion stage shown in Figure 1c.
Some researchers tried to improve the multiscale feature expression ability. Dewi et al. [19]
applied SPP to collect the local region features at different scales in the same CNN layer
to learn multiscale object features more comprehensively. Liu et al. [20] proposed a novel
RF block (RFB) module, which took the relationship between the size and eccentricity of
RFs into account, to enhance the feature discriminability and robustness. Some researchers
studied the connection mode of the feature map for a better feature fusion. Liu et al. [21]
proposed the structure of FPN, introduced bottom-up and top-down network structure
and fused the features of adjacent layers to achieve feature enhancement. Liu et al. [22] pro-
posed PANet, which added an additional bottom-up path aggregation on the basis of FPN.
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Zhou et al. [23] proposed a scale transfer module to take advantage of cross-scale features.
YOLO-V4-lightship [24] has greatly reduced the number of convolutional layers in CSP-
Darknet53 and used a bottom-up information fusion to improve the precise positioning of
ship detection. In addition, an adaptive feature fusion method was also studied to improve
the expressive ability of multiscale features. Tan et al. [11] proposed a simple and efficient
bidirectional feature pyramid network named BiFPN, which introduced learnable weights
to learn the importance of different input features. Hu et al. proposed PAG-YOLO [25]
with attention mechanisms in spatial and channel dimensions to adaptively assign the
importance of features at different scales.

In addition to the above methods, some other improvement strategies have been put
forward in recent years. Researchers have successively proposed loss functions such as
GIoU-Loss [26], CIoU-Loss, DIoU-Loss [27] based on IoU to solve the target regression
problem. In order to solve the problem of target imbalance, Kisantal [28] et al. proposed
a replication enhancement method to increase the number of training samples for small
targets; Chen [29] et al. proposed an adaptive resampling strategy by considering target
context information to solve the target background mismatch caused by direct copy and
paste. In terms of training deep neural networks, the Harris hawks optimization (HHO) [30]
algorithm was proposed to tune the hyperparameters of a CNN, which attained 100%
accuracy for hand gesture classification. Ref. [31] proposed a simple warm restart technique
for stochastic gradient descent to improve its anytime performance.

With the rapid development of deep learning object detection research, some related
works based on deep learning have also appeared in the field of infrared small target
detection, as is shown in Table 1. In terms of optimizing the backbone network structure,
Lin et al. [32] proposed a seven-layer end-to-end convolutional neural network, in which
the network structure did not perform image downsampling operations to ensure the
accuracy of target localization. M. Li et al. [33] proposed SE-YOLO, a real-time pedes-
trian object detection algorithm for small objects in infrared images, which improves the
feature modeling ability of the network by introducing an SE block [34] into YOLOv3,
which improved the feature expression ability of the network combined with the SE block.
Li et al. [35] developed a detector, YOLO-ACN, by introducing an attention module and
a depth-wise separable convolution. Sun et al. [36] proposed I-YOLO, which modified
the backbone with EfficientNet and added a preposition network, DRUNet, to reduce the
noise of infrared images. Dai et al. [37] put forward a novel object detection approach,
termed TIRNet, where the residual branch was introduced to get robust and discriminating
features for accurate box regression and classification. Du et al. [38] proposed FA-YOLO
with a CBAM module in the backbone to enhance the performance of infrared occlusion
object detection under a confusing background. In terms of improving feature fusion
strategy, Dai et al. [39] proposed the asymmetric contextual modulation (ACM), which
explored the fusion method between deep and shallow features. Inspired by the improved
networks of UNet [40–43], a dense nested attention network (DNANet) [44] was proposed
to resolve the detection of infrared small targets with dense nested connection and a CSAM
attention mechanism. Cao et al. [45] presented ThermalDet, which included a dual-pass
fusion block (DFB) and a channel-wise enhancement module (CEM) to enhance the per-
formance in thermal imagery. In terms of adding a high-resolution small target detection
layer, Li et al. [1] proposed a region-free object detector named YOLO-FIRI for infrared
(IR) images by compressing channels and optimizing parameters. To maximize the use of
shallow features, the cross-stage-partial-connections (CSP) module in the shallow layer
was changed and an improved attention module was introduced into the residual blocks.
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Table 1. Some related works based on deep learning in the field of infrared small target detection.

Strategy Detection Algorithm Description of Methods

Backbone

Lin et al. [32]
A 7-layer CNN was designed to automatically extract
small target features and suppress clutters in an
end-to-end manner.

SE-YOLO [33]
An SE block was introduced into YOLOv3 to achieve
higher accuracy and lower false alarm rate in small
pedestrian detection task.

YOLO-ACN [35]
An attention mechanism was introduced in the channel
and spatial dimensions in each residual block
of YOLOv3 to focus on small targets.

I-YOLO [36] A dilated-residual U-Net was also introduced to reduce
the noise of infrared road images.

FA-YOLO [38] A dilated CBAM module was added to the CSPDarknet53
in the YOLOv4 backbone.

TIRNet [37]
A residual branch was added when training to force
the network to learn robust and
discriminating features.

Fusion strategy

ACM-U-Net [39]
An asymmetric contextual modulation module was
proposed for detecting infrared small targets based
on FPN and U-Net [46].

DNANet [44]
A DNIM module was designed to achieve progressive
interaction among high-level and low-level features
on a infrared small target dataset.

ThermalDet [45] A DFB block and CEM module were designed to directly
fuse features from all different levels based on RefineDet.

High-resolution
detection layer YOLO-FIRI [1] Multiscale detection was added to improve small object

detection accuracy.

These methods achieved a better performance for object detection in different fields,
such as pedestrian detection and autonomous driving, but they cannot be directly applied
to the detection of infrared ocean ships due to the severe distribution of target sizes in the
ocean scene, the weak characteristics of small targets and the interference of noise. There-
fore, this paper studied the state-of-the art detector YOLOv5; we applied a high-resolution
feature layer so that shallow details and location information can be better used. To sup-
press shallow noise, we introduced the TA module into the backbone. Besides, we utilized
a new feature fusion method to capture long-range contextual information for small targets
and designed a combined attention mechanism to enhance the ability of feature extrac-
tion and feature fusion while suppressing the noise interference caused by the shallow
feature layers.

3. Methodology

Aiming at the severe distribution of ocean ship size and weak small target features in
infrared scenes, we propose a combined-attention-augmented YOLO (CAA-YOLO) based
on YOLOv5. In this section, we describe the overall framework of the proposed method
and three specific improvement measures in detail. A shallow feature layer P2 is added
to the structure of FPN, then we build the backbone enhancement module TA and feature
fusion module CAA based on the P2 layer with multiple attention mechanisms.

3.1. Network Architecture

Figure 2 shows the overall framework of the proposed method. YOLOv5 consists
of four main modules. The first is the input module, in which data are preprocessed for
given input images. YOLOv5 uses mosaic data enhancement, automatic calculation of
anchor boxes and image scaling to process input images. The second is the backbone
module, where CSPDarknet53 is used as the backbone network to perform feature extrac-
tion on images. The third is the neck module, the path aggregation network [22] (PANet),



Sensors 2022, 22, 3782 6 of 23

a cyclic pyramid structure composed of convolution operations, upsampling operations
and CSP2_X, which performs feature fusion operations on multiscale feature maps from the
backbone network. The fourth is the head module, which mainly performs the operations
of target regression and localization.

Conv
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Figure 2. The framework of the CAA-YOLO.

CAA-YOLO is mainly improved for the backbone and neck modules: (1) To make full
use of the location and details information of small targets provided by the underlying
feature layer, the feature map P2 extracted by the backbone module is fused to the neck
module to make the network adaptable to infrared ship targets with extreme scale changes.
(2) To extract more effective feature information, we introduce the triplet attention [47]
mechanism into the residual block of the backbone to help the model better extract features
of interesting targets and suppress noise interference. (3) To prevent the noise brought
by the feature map P2 from affecting the entire feature fusion stage and provide more
contextual information for small targets, the feature connection method of the neck module
is modified. Besides, we use a hybrid attention module to guide the feature fusion process
to make the feature fusion more effective.

3.2. High-Resolution Feature Layer P2

As the pixel proportion of small targets is small, the feature information is generally
reduced after several downsampling layers in the process of feature extraction by the
convolutional neural network. For example, when the step size stride is 16, a target region
with 32 × 32 pixels is only 2 × 2 pixels in the feature map, and the effective regions for
detecting small objects cannot be discerned. In addition, with the deepening of the network
layers, the feature information and location information of small targets are gradually lost,
which is not conducive to the localization of the target [48,49]. In the convolutional neural
network, the high-level feature map has a large receptive field and rich semantic features,
but it loses a lot of spatial features. On the contrary, the shallow feature map has a small
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receptive field, but it has high spatial resolution and accurate target locations, which is
suitable for small object detection [50].

The backbone network is a convolutional neural network that extracts feature maps
of different sizes from input images through multiple convolution layers and pooling
layers. YOLOv5 uses 3 scales of output feature maps to detect objects of different sizes
and 8-time downsampled feature maps to detect small objects. However, there are a large
number of small targets in the datasets of the infrared ocean, and the area distribution
is shown in Table 2. For tiny targets with less than 10 × 10 pixels of the size, the target
features compressed by 8-time downsampling are extremely weak and may even disappear
completely, so we added a high-resolution feature map with a 4-time downsampling to
detect tiny targets, its structure is shown in Figure 3. First, the feature map P2 extracted
by the backbone network is fused with feature maps of other scales through FPN [21]
and PAN [22] structures. Then, a D2 detection head dedicated to tidying target detection
is constructed using the fused F2 features, so that the network can utilize more location
information and feature information of small objects provided by the high-resolution
feature layer P2. Mathematically, the D2 layer can be obtained by Formula (1):

D2 = Concat[P2, Upsampling(Conv(C3(F3)))] (1)

C3(I) represents the feature map I as the input data of the C3 module, Conv(I)) rep-
resents the convolution operation on the input I, Upsampling(I) represents the double
upsampling operation on input I, Concat(I1, I2) indicates that the input features I1 and I2
are stitched according to the channel.

Table 2. The distribution of small targets in the infrared ocean dataset.

Area (pix)

Type (Number) 610 × 10 616 × 16 632 × 32

Liner 0 29 258
Bulk carrier 0 17 175

Warship 23 139 625
Sailboat 3 76 560
Canoe 87 423 1239

Container ship 0 0 44
Fishing boat 229 1460 5765

3.3. Enhanced Backbone

Ocean targets based on infrared scenes contain a lot of noise. If the shallow feature
map is directly introduced into the neck network, a large amount of underlying noise will
also be diffused into the entire feature fusion module, which will directly affect the feature
fusion results of other detection layers. As a result, suppressing noise in the backbone
network is of great significance for subsequent feature fusion. In addition, the feature
extraction capability of the backbone network will also directly affect the final detection
effect. These reasons make small target detection more dependent on efficient feature
extraction networks. To suppress the background noise in the image, enhance the effective
feature information of the target and allow the network to independently distinguish
the correlation and effectiveness between different feature map channels to improve the
detection effect, the triplet attention (TA) [47] module was introduced in this paper.

Spatial attention tells us where in the channel we should focus and channel attention
tells us what channel we should focus on. Previously proposed attention mechanisms
calculated channel attention and spatial attention separately; D. Misra [47] proposed the
concept of cross-dimensional interaction, which emphasized the interaction between the
spatial and channel dimensions of the input tensor. Triplet attention establishes inter-
dimension dependencies through rotation and residual transformation, then re-encodes
interchannel and spatial feature information and calculates the attention weight through
the interdependence between the feature information dimensions, so that the network can
provide a richer feature representation.
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D4/16

D5/32
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F3/8
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Figure 3. Structure with high-resolution detection layer P2. Red lines represent the newly added
P2 layer.

Triplet attention consists of three parallel branches, two of which are used to capture
the interaction between channel dimension and spatial dimension, and the third branch
is used to calculate spatial attention; its structure is shown in Figure 4. Given an input
feature map x ∈ RC×H×W, branch (1) is used to compute the attention weights of channel
dimension C and spatial dimension H . Firstly, the input x is rotated 90◦ anticlockwise along
the W axis and then performed a Z-pool operation. Secondly, a convolution layer with a
kernel size of 7 × 7 and a batch normalization layer are used. Thirdly, it adopts a sigmoid
activation layer to generate the attention weights. Finally, the attention weights retain the
same input shape as x by rotation. Similarly, branch (2) computes the attention weight of
channel dimension C and spatial dimension W like branch (1). For branch (3), the channels
of x are reduced to two by the Z-pool layer, and then the space attention weights are
computed by operations similar to the other two branches. In the end, the refined feature
maps generated by the three branches are aggregated by simple averaging. The Z-pool
layer here is responsible for reducing the zeroth dimension of the input feature map to
two, by concatenating the average-pooled and max-pooled features across that dimension.
Mathematically, it can be represented by Formula (2):

Z− Pool(x) = [MaxPool(x), AvgPool(x)] (2)

YOLOv5 uses CSPDarknet53 as the backbone network for multiscale feature extraction,
which mainly consists of a convolution block with a convolution kernel of 6 × 6 and a stride
of 2, three groups of Conv+C3 combined operations and a spatial pyramid pooling SPPF
module, whose structure is shown in Figure 5a. The C3 module with residual block divides
the feature map of the base layer into two parts to make the gradient flow propagate in
different network paths by separating the gradient flow, and then the two parts are spliced
through the cross-stage hierarchy; the structure is shown in Figure 5b. We introduced the
TA attention mechanism into each C3 module in the backbone network by building a new
Bottleneck_TA structure based on the original Bottleneck, as shown in Figure 5d. The TA is
embedded in the backbone network, which can capture more effective feature information
through spatial attention and channel attention cross-channel interaction, weakening the
underlying noise interference brought by the P2 layer to a certain extent, which is beneficial
to ship detection in infrared scenarios.
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Figure 4. Illustration of the triplet attention, which has three branches. The first branch (1) is used to
compute attention weights across channel dimension C and spatial dimension W. Similarly, the second
branch (2) uses channel dimension C and spatial dimension H. The final branch (3) is used to capture
spatial dependencies (H and W). Finally, the weights are aggregated by simple averaging.
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Figure 5. Illustration of the backbone with triplet attention. (a) Structure of backbone; (b) C3
module with residual structure; (c) Detailed structure of residual blocks in YOLOv5; (d) Proposed
Bottleneck_TA module with triplet attention. * stands for repeating the module.

3.4. Feature Fusion

Four layers of feature maps are generated in the backbone network. Through these
feature maps of different sizes, the neck network fuses feature maps of different levels to
obtain more contextual information and reduce information loss. In the fusion process of
YOLOv5, the feature pyramid structure of FPN and PAN is used. The FPN [21] structure
transfers powerful semantic features from the top feature map to the lower one, as shown
in Figure 6a. At the same time, the PAN [22] structure transfers strong localization features
from the lower feature map to the higher ones, as shown in Figure 6b. To prevent the degra-
dation of features between the same layers, BiFPN [11] introduces cross-layer connections
to fuse more features without adding too much cost. Its structure is shown in Figure 6c.

Due to the weak features of infrared targets, especially small targets, the features
are prone to degradation in the process of a continuous deepening of the convolutional
network. Therefore, inspired by BiFPN, we introduced cross-layer connections between
the same feature layers in YOLOv5, aiming to provide more features for the feature fusion
stage. Furthermore, since the small target features in infrared ocean scenes are extremely
weak, contextual information becomes extremely important for their detection process.
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Therefore, we added the paths from the feature layers P4 and P5 of the backbone network
to the F2 and F3 layers based on YOLOv5, aiming to provide more contextual information
for small targets. The structure is shown in Figure 6d.

P5

P4

P3

F5

F4

F3

D5

D4

D3

P6 F6 D6

P5

P4

P3

F5

F4
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P6 D6

(a) FPN (b) PANet (c) BiFPN

P4

P3
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F3
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D3

D2

P5 D5F5

F2

(d) CAA-YOLO

P5

P4

P3

F5

F4

F3

P6 F6

Figure 6. Feature network design: (a) FPN introduces a top-down pathway to fuse multiscale features
from level 3 to 6 (P3–P6); (b) PANet adds an additional bottom-up pathway on top of FPN; (c) BiFPN
with cross-scale connections (d) is our CAA-YOLO with more context information.

The idea was as follows: On the one hand, because the target features smaller than
32 × 32 pixels of size have been highly compressed and even disappeared in the 32-time
downsampling of P5, we did not introduce it to the F2 layer. On the other hand, the feature
map P3, which was 8-time downsampled, was fused with F3 through horizontal connec-
tions and F3 was fused with F2 from top to bottom through the FPN network, so we also did
not introduce the feature map P3 into the F2 layer. In the same way, we did not introduce
the feature information of the P4 layer into the F3 layer.

Because the shallow feature map P2 is directly fused with other multiscale feature
layers, more noise will interfere with the feature fusion results. In addition, the feature
fusion strategy used by YOLOv5 is to concatenate in terms of channel dimension. Con-
catenating features based on the channel dimension cannot reflect the correlation and
importance of features between different channels. Without additional guidance, it is
difficult for the underlying fusion module to accurately capture the key features of the
target due to the interference of noise. Therefore, we needed to strengthen the feature
fusion capabilities of the P2 and P3 layers for small target detection and suppress a large
amount of noise interference at the bottom. The attention mechanism can flexibly capture
the global and local relations in the input image, which focus on looking for important
information related to the application task. We designed a hybrid attention module CAA,
as shown in Figure 7. By improving the ability of the global context modeling and local
feature extraction, the low-level small target detection layer can obtain more effective
feature information. The CAA module mainly includes the information fusion of three
feature maps, namely the high-level feature information Ph from the backbone network,
the same-layer feature information Ps of the backbone network and the top-down feature
information Ftd in the FPN network.

For the high-level feature Ph to fully utilize its contextual information, we adopted
the attention module in GCNet [51] to capture long-range dependencies, whose structure
is shown in Figure 7a. GCNet fully exploits the advantages and disadvantages of Non-
Local [52] and SE [34] modules, absorbs the strong global context modeling ability of
Non-Local Network (NLNet) and the low computational cost of SENet, and designs a more
effective global context module to capture remote dependencies. Given an input tensor
Ph ∈ RCh×Hh×Wh , first, it adjusts its channel to C × H × Wthrough a standard convolution
operation with the BN layer and a 4-time downsampling layer and then passes it through
the GC attention to capture more feature information.
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Figure 7. Illustration of the CAA module. (a) High-level feature maps use GC attention; (b) Low-level
feature maps use CBAM attention; (c) Top-down feature information Ftd.

For the low-level feature Ps to make full use of the rich location information of the
shallow feature map, the CBAM [53] attention module was used to selectively aggregate
the features of each location by weighting the key location features. CBAM generates the
attention map of the convolutional network feature map from two aspects of channel and
space and then multiplies the attention map with the input feature map for feature adaptive
learning. The network structure is shown in Figure 7b. The channel attention mechanism
enables the network model to effectively pay attention to important channels while ignoring
or even suppressing negative channels. The introduction of the spatial attention mechanism
can effectively focus on the ship target and suppress other nonimportant information in the
image, so as to further improve the detection accuracy.

After the high-level feature Ph and the low-level feature Ps were processed by the
attention module, respectively, the feature fusion was performed by pixel-by-pixel addition.
Then, it was combined with the top-down feature information Ftd according to the dimen-
sion information to get the final feature fusion result. Through this module, important
features can be enhanced and unimportant features can be weakened, so that the extracted
features are more directional. Mathematically, it can be represented by Equation (3):

Fout = Concat[fsum(fCBAM(Ps), fGC(Ph)), f(Ftd)] (3)

Ps is the underlying feature map in the backbone network, Ph is the high-level feature
map in the backbone network, Ftd is the feature map in the top-down path, Concat[,]
represents features that are spliced by channel, fsums represent features that are pixel-by-
pixel additively fused and fCBAM and fGC represent the feature enhancement operation
before the feature layer fusion.

4. Experiments

In this section, we first introduce the experimental dataset, implementation details
and related evaluation metrics. Furthermore, extensive experiments are also conducted to
demonstrate the effectiveness and robustness of the proposed method.

4.1. Data Set

This paper used the infrared ship images provided by the organizers of the 2021
Ocean Target IntelliSense International Challenge as the data set, which contains a total of
9402 infrared images, including seven types of detection targets: warship, liner, container
ship, bulk carrier, sailboat, canoe and fishing boat. We performed a preliminary manual
screening of the dataset, removed some problematic images and readjusted the labels of
some images to ensure the validity of the dataset.
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The distribution of each category of targets in the infrared ship data set is shown in
Figure 8. The number of images and targets of fishing boats is approximately 1:5, which is
more densely distributed than the other ships. After normalizing the size of the dataset
to 640 × 640 pixels, the distribution of size and aspect ratio within the dataset are shown
in Table 3 and Table 4, respectively. Table 3 shows the extreme difference in the size
distribution of the datasets, with the smallest object being only 4 pixels and the largest
reaching 408,960 pixels. Table 4 shows the variation between the target aspect ratios within
the class. In total, 42% of the targets in the infrared ship dataset are small targets, whose
size is less than 32 × 32 pixels, and are mainly distributed in fishing boat and canoe targets.
Because small targets have few features and even present a dense distribution state, these
problems further aggravate the difficulty of infrared small target detection.

Figure 8. Data set distribution: The gray bar chart represents the number distribution of images for
each type of ship; The blue bar chart represents the number distribution of each type of ship.

Table 3. The size distribution of the targets. The max, min, mean variance and S/M/L, respectively,
represent the maximum area, the minimum area, the mean value of the area, the variance of the area
and the number of small, medium and large targets in one class of ships.

Ship Type Max Min Mean Variance S/M/L

Liner 306,600 36 21,817 1,330,938,169 602/266/741
Bulk carrier 408,960 40 36,785 2,703,590,022 164/562/1460

Warship 308,016 195 16,758 672,915,660 278/1191/1389
Sailboat 384,678 20 19,207 1,197,080,051 1800/2044/2488
Canoe 279,000 6 7567 421,559,886 2020/2354/1059

Container ship 122,808 216 14,565 210,081,332 115/284/364
Fishing boat 408,321 4 2278 190,665,384 8249/1020/888

Table 4. The aspect ratio distribution of the target. The max, min, mean and variance, respectively,
represent the maximum, minimum, mean and variance of the target aspect ratio in one class of ships.

Area (pix)

Ship Type Max Min Mean Variance

Liner 6.73 0.23 1.76 0.72
Bulk carrier 14.7 0.19 2.43 1.57

Warship 4.28 0.24 2.16 0.56
Sailboat 3.82 0.05 0.43 0.04
Canoe 7.48 0.18 1.59 0.53

Container ship 5.62 0.35 2.87 1.47
Fishing boat 15.5 0.11 2.06 0.79

4.2. Experimental Settings
4.2.1. Implementation Details

The experiment environment was performed on a PC with Intel core i9-10900KF CPU,
GeForce RTX 3090 (24 GB storage), CUDA 11.1 and the operating system was Ubuntu
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18.04 LTS. The deep learning framework was Pytorch 1.9. Considering the equipment
performance, the batch size was 24, and a total of 150 training epochs were selected with
an initial learning rate of 0.01. The optimizer used stochastic gradient descent (SGD) and
the cosine learning rate decay strategy to train the network. In our experiment, the images
were resized to 640 × 640 uniformly. The dataset was split into approximately 80% training
and 20% validation sets.

We used the mosaic data augmentation method provided in Yolov5 to increase the
number of small objects and increase the speed of training by stitching four images together,
as shown in Figure 9.

Figure 9. Mosaic data augmentation method. 0–6 denotes Liner, Bulk carrier, Warship, Sailboat,
Canoe, Container ship, and Fishing boat, respectively.

4.2.2. Evaluation Metrics

To evaluate the performance of the proposed algorithm, the classic detection metrics
average precision (AP) , average recall and mean average precision (mAP) were used. We
calculated the AP and AR in two settings: AP@0.5/AR@0.5, AP@0.75/MR@0.75, APs/ARs,
APm/ARm and APl/ARl. AP@0.5/AR@0.5 means the value of AP or AR when IoU = 0.5,
AP@0.75/AR@0.75 means the value of AP or AR when IoU = 0.75, APs/ARs means the
average value of AP or AR when the size of the target is smaller than 32 × 32 pixels,
APm/ARm means the average value of AP or AR when the size of target is between 32 × 32
and 96 × 96 pixels, APl/ARl means the average value of AP or AR when the size of target
is bigger than 96 × 96 pixels. Precision (P) and recall (R) were calculated by Formulas (4)
and (5),

P =
#TP

#TP + #FP
× 100% (4)

P =
#TP

#TP + #FN
× 100% (5)

where # denotes the number, TP denotes the situation where the prediction and label are
both ships, FP denotes the situation where the prediction is a ship but the label is the
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background, FN denotes the situation where the prediction is the background but the label
is a ship. The average precision (AP) was calculated by Formula (6).

AP =
∫ 1

0
P(r)dr (6)

where P denotes the precision, and r denotes the recall.

4.2.3. Results

This section first introduces the experimental dataset, implementation details and
related evaluation metrics. Furthermore, extensive experiments were also conducted to
demonstrate the effectiveness and robustness of the proposed method.

(1) Influence of the P2 layer

Because of a large number of small targets in the marine ship dataset, we aimed to use
the feature information of small targets provided by the shallow layer P2 for classification
and localization. We extracted the feature map downsampled four times from the backbone
network as the P2 layer. It first performed feature fusion with the FPN, which transmitted
high-level feature information from top to bottom, and then transferred the fused low-level
features to the high-level detection layer through the PAN network. We set three anchor
boxes of different scales on the high-resolution feature layer and obtained 12 sets of anchor
boxes for the detection target by using the K-means algorithm, as shown in Table 5.

Table 5. Anchor of each detect head.

Detection Layer Anchor

D2 (10,5), (15,22), (21,7)
D3 (28,14), (37,57), (53,23)
D4 (49,130), (99,39), (188,54)
D5 (106,202), (189,273), (300,97)

As shown in Figure 10, YOLOv5 missed the detection of targets with area smaller than
20 × 16 pixels, while adding the P2 layer could detect all small targets. Therefore, more
low-level detailed information and positioning information can be extracted by adding the
high-resolution feature layer P2, which is helpful to alleviate the phenomenon of missed
detection of targets, especially for small targets. As shown in Figure 11a–c, our algorithm
was able to detect small objects with extremely small size and weak features located on
the sea line. In terms of the objects with indistinct features due to motion blur, such as
Figure 11b,c, adding the P2 layer can achieve more accurate detection with more low-level
details. In Figure 11d, ships occluding each other might compress the features due to
downsampling, which often led to missed detection. However, adding the P2 layer also
brought some noise interference. For example, Figure 11f showed error detection results.
In Table 6, we find that the AP1 after adding P2 is lower than that of YOLOv5; the reason
may be that the increase of the P2 layer at the bottom brings more noise to interfere with
the result of the feature fusion at the top layers.

Table 6. Average precision of experimental results when IoU = 0.6 and confidence = 0.3.

Model AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%)

YOLOv5 73.79 91.61 81.83 44.96 74.07 85.54
YOLOv5+P2 74.3 93.37 83.46 45.94 75.59 83.96
YOLOv5+P2+TA 74.37 93.83 83.87 46.12 75.28 85.56
YOLOv5+P2+CAA 74.79 93.84 84.14 48.35 75.63 85.83
CAA-YOLO 75.35 94.25 83.98 50.59 76.16 87.31
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Figure 10. The detection results of small targets with different methods. GT represents the ground
truth box, YOLOv5 represents the original baseline network model and YOLOv5+P2 represents
the addition of high resolution feature layer P2 based on YOLOv5; (a,b) represent the 2 groups of
detection results, respectively.

Figure 11. The infrared ship detection results of different methods. GT represents the ground
truth box, YOLOv5 represents the original baseline network model and YOLOv5+P2 represents
the addition of high resolution feature layer P2 based on YOLOv5; (a–f) represents the 6 groups of
detection results obtained by using different models.

In conclusion, the addition of the P2 layer extracted more details of the targets, alle-
viated the missed detection of small targets and improved the detection rate of densely
distributed targets. However, the detection of large targets was affected because the PAN
network transmitted more noise introduced by P2 to the higher levels, so we had to
suppress the shallow noise.

(2) Influence of the backbone

By adding the P2 detection layer, we found that using the shallow feature could detect
targets with weak features and small sizes, but it also brought more noise information to
other detection layers. By introducing the TA attention network into the residual module of
C3 in the backbone, we found that the noise increase could be alleviated to a certain extent,
so that effective features could be assigned more weights to continue to propagate to the
lower layers of the network and the propagation of invalid features could be suppressed.
In Table 7, we find that the APl is improved relative to the model with the addition of P2
layers, which proves that the TA module can make the network pay more attention to the
target area, thus reducing the influence of background on the result.
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Table 7. Average recall of experimental results when IoU = 0.6 and confidence = 0.3.

Model AR (%) AR50 (%) AR75 (%) ARs (%) ARm (%) ARl (%)

YOLOv5 55.45 76.06 76.92 50.06 77.84 87.26
YOLOv5+P2 55.76 77.29 78.38 51.72 79.95 88.32
YOLOv5+P2+TA 55.93 77.47 78.84 56.73 79.96 88.33
YOLOv5+P2+CAA 55.97 77.81 78.84 56.73 79.96 88.33
CAA-YOLO 56.98 78.22 79.31 59.07 80.33 89.78

(3) Influence of the feature fusion

The high-level feature layers P4 and P5 were used as context layers, respectively,
and provided more contextual information for small objects through the proposed new
feature fusion method. We applied an attention CAA module on the lower two layers to
guide the fusion process of features and suppress noisy information. Figure 12a shows that
the CAA module can detect more small targets. In Figure 12b–e, the addition of the P2
layer introduces more noise, which leads to the wrong detection of the target. The CAA
module improves the detection. The group of images (Figure 12f) in the densely distributed
scene reflect a better detection effectiveness of the CAA module. It can be seen from Table 5
and Table 7 that the average detection accuracy and recall rate of small targets improved,
which were 3.39% and 6.67% higher than YOLOv5, and 2.41% and 5.01% higher than when
only adding P2 layer. At the same time, the detection accuracy of large targets was also
increased by 1.87% compared with the direct increase of the P2 layer, which solved the
problem that the detection effectiveness of large targets decreased due to the addition of
the P2 layer.

In conclusion, more context information was helpful for the target detection. The CAA
fusion strategy improved the detection effectiveness of targets and suppressed the in-
fluence of the noise, which reduced false detection. Moreover, it also achieved a better
detection effectiveness in the densely distributed scene and further improved the detection
effectiveness of small targets, especially for targets below 10 × 10 pixels.

Figure 12. The infrared ship detection results of different methods. GT represents the ground truth
box, YOLOv5 represents the original baseline network model, YOLOv5+P2 represents the addition of
high resolution feature layer P2 based on YOLOv5, YOLOv5+P2+CAA represents the addition of P2
and the CAA feature fusion module based on YOLOv5 and (a–f) represents the 6 groups of detection
results obtained by using different models.
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(4) Overall Detection Results

The algorithm proposed in this paper improved the detection effectiveness of small
targets by constructing a high-resolution feature layer P2 and solved the noise interference
caused by adding the P2 layer by means of a combined attention mechanism. By verifying
the effectiveness of our algorithm in the infrared ocean dataset, it was found that CAA-
YOLO could achieve more prominent detection results than YOLOv5 when facing extremely
small targets. In addition, CAA-YOLO could also improve object detection in dense and
occluded scenes. As shown in Figure 13a, our algorithm can not only detect extremely small
targets on the water antenna, but also locate small targets in dense scenes. In Figure 13b,
for targets with weaker features, our algorithm can also successfully detect targets, and the
confidence of targets is improved by a combination of multiple strategies. In Figure 13c,
our algorithm is able to detect more objects for complex and dense scenes. In Figure 13d,
we are able to detect more small objects in the dense small object scene.

Compared with the YOLOv5 algorithm, the CAA-YOLO algorithm improved the
detection effectiveness of each category, especially for smaller fishing boats and canoes,
as shown in Figure 14. In general, our algorithm achieved better accuracy and recall rate,
as shown in Figure 15. Although the average recall rate and average detection accuracy of
the model improved less, the detection accuracy and recall rate of small targets were greatly
improved, by 5.63% and 9.01%, respectively, as shown in Table 5 and Table 7. Compared
with YOLOv5, our model had a 3.4% increase of mAP, a 5.81% increase in the number of
parameters, and an increase in FLOPs from 108 to 131.9, as shown in Table 8.

Table 8. Experimental results of different optimization strategies.

Model mAP@0.5:0.95 (%) GFLOPs Params (MB)

YOLOv5 79.4 108 92.9
YOLOv5+P2 79.8 127.5 95.5

YOLOv5+P2+TA 80.1 129.2 95.8
YOLOv5+P2+CAA 81.5 130.1 98

CAA-YOLO 82.8 131.9 98.3

Figure 13. The infrared ship detection results of different methods. GT represents the ground truth
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box, YOLOv5 represents the original baseline network model, YOLOv5+P2 represents the addition of
high resolution feature layer P2 based on YOLOv5, YOLOv5+P2+TA represents the addition of P2
layer and triple attention in backbone based on YOLOv5, YOLOv5+P2+CAA represents the addition
of P2 and the CAA feature fusion module based on YOLOv5, CAA-YOLO represents the additions
of all modules based on YOLOv5 and (a–d) represents the 4 groups of detection results obtained by
using different models.

As a result, our method could extract more target details without increasing compu-
tation too much, which is very important for occlusion scene and small target detection.
In terms of time complexity, our GFLOPs increased by 23.9 and the increase in time com-
plexity was mainly caused by the addition of the P2 layer. The CAA module brought only
a small increase in floating point operations. In addition, our method hardly increased
the space complexity of the model. For targets with drastic scale changes, CCA-YOLO
could improve the recall rate and detection accuracy of small targets without reducing the
detection effect of large targets.

Figure 14. Confusion matrices. (a) YOLOv5; (b) CAA-YOLO.

Figure 15. PR curve. (a) YOLOv5; (b) CAA-YOLO.
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(5) Comparison to State-of-the-Art Approaches

To evaluate the effectiveness and timeliness of the proposed CAA-YOLO algorithm,
we compared several state-of-the-art methods with our model, including faster R-CNN [4],
SSD [8], RetinaNet [54] and EfficientDet [11]. For a fair comparison, all the compared
methods adopted the same training and test sets and kept the same epoch of training. We
tested the speed of image processing on a PC with Intel Xeon(R) CPU E5-2683 v3 CPU and
GeForce GTX 1080 (12 GB storage).

Table 9 summarizes the detection results when IoU = 0.5 and confidence = 0.05 in
terms of model volume, the mean average precision (mAP) and speed. mAPcoco and
mAPvoc represent the results of detection using COCO and Pascal VOC evaluation methods,
respectively. FPS (frame per second) is the detection speed, which is the number of
images that the algorithm can detect per second. It can be seen that the proposed CAA-
YOLO exhibits the best performance with the highest mAP values, which demonstrates
its effectiveness compared with other models. Other algorithms show lower values in
mAPcoco, but better performance in mAPvoc, indicating that their target positioning ability
is weaker than that of YOLO and CAA-YOLO. When IoU is greater than 0.5, other advanced
algorithms gradually show poor performance. Faster R-CNN can achieve better mAPvoc
compared with other compared methods, but its processing speed is slow because it is a
two-stage algorithm. The SSD algorithm has the highest processing speed, but its detection
performance is poor, especially for small targets.

Table 9. Detection results of different algorithms on the infrared ship dataset.

Model Framework mAPcoco mAPvoc Params (MB) FPS

Faster-RCNN ResNet50+FPN 59.74 86.97 166 20
SSD ResNet50+FPN 48.21 74.47 55.8 100

RetinaNet ResNet50+FPN 46.82 79.19 146 22
EfficientDet-D3 EfficientNet+BiFPN 46.17 80.65 48.5 14

YOLOv5 CSPDarknet+PAN 79.40 90.09 92.9 53
CAA-YOLO CAA-YOLO 82.8 94.81 98.3 42

To further show the superior of CAA-YOLO visually, we present the detection results
of several typical scenes in Figure 16. In Figure 16a, all algorithms can identify large targets
correctly, but only faster R-CNN and CAA-YOLO algorithms can detect small targets with
blurry visual effects on the sea surface. In Figure 16b, the target located at the sea line is
small in size and weak in feature, the two-stage algorithm faster R-CNN can detect them
better than the one-stage SSD, RetinaNet and EfficientDet, but it still misses targets, while
CAA-YOLO can extract more target features to achieve a more accurate detection and
alleviate missed detection. In Figure 16c, the ships near the shore are densely distributed
and occluded from each other, and the detection effectiveness of faster R-CNN on canoes
in complex backgrounds is poor. RetinaNet and EfficientDet have weak postprocessing
capabilities for target occlusion scenes and fail to filter a large number of overlapping target
boxes. CAA-YOLO can not only detect canoes in complex backgrounds, but also better
detect densely distributed overlapping targets. In Figure 16d, other algorithms lead to error
detection and missed detection of small targets, while CAA-YOLO can correctly detect
more small targets. In these four examples, CAA-YOLO performs best, and the other four
algorithms have different degrees of missed detection, false alarm and incomplete detection.

In conclusion, compared with several state-of-the-art methods, our proposed method
obtained better target positioning ability and achieved real-time target detection perfor-
mance. Because small targets have higher requirements for localization, CAA-YOLO
showed better results in the detection of small targets.
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Figure 16. The infrared ship detection results of different methods. GT represents the ground
truth box, the second to sixth lines represent the detection results of faster R-CNN, SSD, RetinaNet,
EfficientDet-D3 and CAA-YOLO, respectively. (a–d) represents the 4 groups of detection results.

5. Conclusions

In this paper, we proposed the CAA-YOLO network for infrared ocean ships detection
to alleviate the problem of extremely widely multiscale distribution in infrared scenes.
The network improved the detection effectiveness of small targets by adding a high-
resolution detection layer and increased the feature extraction capability of the backbone
by introducing an attention module. Furthermore, the combined attention mechanism used
in the feature fusion stage could achieve a more effective feature fusion while suppressing
infrared noise interference. We validated the effectiveness of the method using the infrared
ship dataset and experiments illustrated substantial improvements in the infrared small
target detection, in comparison with other state-of-the-art methods. The performance of
our proposed model could be attributed to the combination of learned shallower features
and attention features, which allowed our model to detect more infrared small targets
based on their low resolution and weak features, and improved the target recall rate in
dense and occluded scenes to a certain extent.

On the one hand, for dense and occluded objects, our algorithm could improve its
recall rate, but there were still missed targets, so we will focus on solving the detection
of dense and occluded targets in future work, for example, using better postprocessing
mechanisms. On the other hand, compared with SSD and YOLOv5, we achieved better
detection results, but the speed of detection was not the fastest, so we will further study
how to lighten our method and improve its real-time detection speed. For example, depth-
wise separable convolution and lighter backbones can be used to replace the backbone of
our method.
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