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Abstract: This paper explores three groups of time–frequency distributions: the Cohen’s, affine, and
reassigned classes of time–frequency representations (TFRs). This study provides detailed insight
into the theory behind the selected TFRs belonging to these classes. Extensive numerical simulations
were performed with examples that illustrate the behavior of the analyzed TFR classes in the joint
time–frequency domain. The methods were applied both on synthetic and real-life non-stationary
signals. The obtained results were assessed with respect to time–frequency concentration (measured
by the Rényi entropy), instantaneous frequency (IF) estimation accuracy, cross-term presence in the
TFRs, and the computational cost of the TFRs. This study gives valuable insight into the advantages
and limitations of the analyzed TFRs and assists in selecting the proper distribution when analyzing
given non-stationary signals in the time–frequency domain.

Keywords: time–frequency representation; Cohen’s class; affine class; reassigned class; time–frequency
resolution; time–frequency concentration; Rényi entropy; instantaneous frequency

1. Introduction
1.1. Time–Frequency Analysis

The most common way to represent a signal is as a time-dependent function, which
can be viewed as a representation with perfect time resolution but no direct information
about the signal’s frequency content. The other standard signal representation is a fre-
quency spectrum, which is obtained by the Fourier transform of the signal and shows the
magnitudes of the individual frequencies that make up the original signal but does not
provide any information about the time instants when they occurred in the signal [1,2]. The
Fourier transform definition states that the entire signal should be known up to infinity;
furthermore, for their exhaustive representation, signals should be stationary, meaning that
the frequency content should not change over time.

The definitions of the Fourier transform and its inverse are, respectively:

X( f ) = F{x(t)} =
∫ ∞

−∞
x(t)e−j2π f tdt, (1a)

x(t) = F−1{X( f )} =
∫ ∞

−∞
X( f )ej2π f td f , (1b)

where x(t) is the original time signal, X( f ) is the Fourier transform of the original time-
domain signal, t is the time variable, f is the frequency variable, and F and F−1 are the
Fourier transform and its inverse, respectively.
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On the other hand, time–frequency (TF) analysis is an approach to signal analysis
that is used to simultaneously track the signal’s time and frequency changes. The problem
caused by finite signal duration and non-stationarity can be overcome by considering
the original signal inside finite time windows, i.e., calculating the basic time–frequency
representation known as the short-time Fourier transform (STFT). The time window acts
as a filter that gives, as a result, the Fourier transform for the signal centered around the
output time, which is the Fourier transform for that specific windowed data segment.
The signal in each time window is assumed to be stationary and of known duration. Thus,
the STFT may be defined as the Fourier transform of the original signal multiplied by a
sliding window:

Fx(t, f ) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2π f τdτ, (2)

where Fx(t, f ) is the STFT and h(t) is the moving time window.
Insight into both time and frequency domains is provided by TF signal analysis.

The original signal, acquired in the time domain, is now represented in order to show
time instants of frequency changes, allowing appropriate monitoring and tracking of non-
stationary signals. An example of a signal in the time, frequency, and TF domains is shown
in Figure 1.

Figure 1. Example of three elementary Gaussian atoms in time, frequency, and TF domains
(spectrogram).
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There are several groups of time–frequency representations or distributions (TFRs/TFDs)
to choose from, depending on the application. The three most important are the Cohen’s,
affine, and reassigned classes. Cohen’s class is covariant to time and frequency shifts
of the signal [3], while the affine class is covariant to time shifts or translations and the
scaling or, rather, the dilatations of the signal, also called timescale representations or
distributions. The most common example of the affine representation is the continuous
wavelet transform, which linearly expands the signal to a set of analysis functions called
wavelets that can be time-shifted or scaled appropriately to fit the original signal [4]. In
some cases, a TFR can belong to both the Cohen’s and affine classes, depending on the
properties it satisfies. Both contain bilinear or quadratic representations, and this non-
linearity results in the presence of interference terms, also called cross-terms, in the TF
plane [5]. These phenomena can complicate the interpretation of the representation by
overlapping the signal components or producing negative values. Nevertheless, bilinear
representations generally exhibit improved TF concentration and resolution, despite the
interference terms being introduced [6,7].

1.1.1. Analytic Form of a Signal

The first step in reducing the number of interferences in the TFR is using the analytic
form of the signal. The analytic form gives a complex signal containing only the positive
frequencies present in the original real-valued signal (the real part of the analytical signal
corresponds to the original signal, while the imaginary part corresponds to the Hilbert
transform of the original signal [8]). The spectrum of the analytic signal for f < 0 is zero,
while for f > 0, the spectrum coincides with that of the real-valued signal [9]. By using
an analytic function instead of a real-valued one, there is no loss of information caused
by the removal of negative frequencies, since the Fourier transform satisfies Hermitian
symmetry X∗( f ) = X(− f ). Hence, most TFRs should be used with analytic forms of
signals, constructed as in [10]:

xa(t) = x(t) + jH{x(t)}, (3a)

Xa( f ) = 2U( f )X( f ) = X( f ) + sgn( f )X( f ), (3b)

where xa(t) is the analytic form of the signal, x(t) is the real-valued signal,H is the Hilbert
transform, Xa( f ) is the spectrum of the analytic signal, X( f ) is the original spectrum of the
real-valued signal, and U( f ) is the unit step function.

1.1.2. Instantaneous Frequency

The purpose of the instantaneous frequency (IF) estimation is to capture and trace the
frequency content resulting from non-stationarities of the real-valued signal or its analytic
associate. It is defined as the derivative of the signal phase showing the time change in
the dominant frequency [10–12]. Thus, for mono-component signals, the IF describes the
behavior of the signal frequency over time [9,13].

For an analytic signal defined with time-varying amplitude a(t) and phase ϕ(t) de-
fined as xa(t) = a(t)ejϕ(t), the IF can then be calculated as follows:

fx(t) =
1

2π

dϕ(t)
dt

, (4)

where ϕ(t) is the phase of the signal and fx(t) is the IF of the signal.
This IF estimation approach is not suitable for multi-component signals, especially

when spectral components overlap in the TF plane.

1.1.3. Group Delay

The group delay is dual to the IF and is defined as the derivative of the phase spectrum
or frequency behavior as a function of time. It is also usually described as the time delay or
average arrival time for a given frequency [9,13].
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The Fourier transform for an analytic signal is defined with spectral amplitude B( f )
and spectral phase ψ( f ) as X( f ) = B( f )ejψ( f ), and the group delay can be defined as:

tx( f ) = − 1
2π

dψ( f )
d f

, (5)

where ψ( f ) is the spectral phase of the Fourier transform of the signal and tx( f ) is the
group delay (which is a function of frequency).

The IF and group delay can be approximated as inverse functions of each other for
signals with large time-bandwidth products (T × B) [1,9].

This paper aims to provide comprehensive insight, including a comparison between
TFRs from three classes: the Cohen’s, affine, and reassigned classes. We provide the
theoretical basis behind the analyzed TFRs and showcase their behavior in noisy envi-
ronments for different noise levels. We analyze TFRs’ performance for synthetic signals,
both mono-component and multi-component, as well as on real-life examples. To the
best of our knowledge, based on an extensive literature review, there exist no similar
studies investigating the given TFRs from these three classes based on the accuracy in IF
estimation, distribution concentration measured by entropy measures, and computational
cost. The study provides support in selecting the appropriate TFR for a signal of interest
being analyzed.

The rest of the paper is structured as follows. Section 2 provides insight into the theory
behind the TFRs, explains the different types of TFRs, and lists some of the previous work
in the field. Section 3 presents the application of TFRs to synthetic and real-life signals and
compares TFR performance, providing details on the computational cost of the tested TFRs.
Next, the obtained results are discussed and elaborated on in Section 4. Finally, the paper
closes with concluding remarks in Section 5.

2. Affine TFRs with Respect to Cohen’s and Reassigned TFRs

The affine class is a group of bilinear representations that are covariant to time shifts
and dilations of the signal [14] and it is the counterpart to Cohen’s class or the Weyl-
Heisenberg group [14–16]. The time shift is the same covariance as in Cohen’s class, and the
scale or dilation of the signal is defined as the reciprocal of the frequency [17,18]. Affine rep-
resentations are suited for applications such as radar, sonar, self-similar signal analysis,
multi-resolution signal analysis, and adaptive signal analysis [10,19,20]. Bilinearity results
from the way the observed signal is compared to a delayed copy of itself by multiplication
(autocorrelation) [9].

The general bilinear energy representation can be written as:

Ωx(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
K(t1, t2; t, f )x(t1)x∗(t2)dt1dt2, (6)

where Ωx is the TFR, ν is the frequency shift, also known as Doppler, τ is the time delay
or time shift, the product x(t1)x∗(t2) is the useful part of the signal, and K(t1, t2; t, f ) is
the arbitrarily parametrized 4-dimensional kernel characterizing the TFR properties. The
kernel K(t1, t2; t, f ) can also assume a different form, where t1 and t2 are replaced by f1 and
f2, respectively (the different form is obtained by applying a double Fourier transform to
the original kernel).

According to the energy conservation constraint, the parametrization kernel K must
satisfy the following condition:∫ ∞

−∞

∫ ∞

−∞
K(t1, t2; t, f )dtd f = δ(t1 − t2), (7)

where δ is the Dirac function.
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The general affine representation form, which can be adapted to several representa-
tions by changing the index k, is defined as follows:

Ω(k)
x (t, f ) = f

∫ ∞

−∞
µk(u)X(λk(u) f )X∗(λk(−u) f )ej2π f tζk(u)du, (8a)

λk(u) =
(

k
e−u − 1
e−ku − 1

) 1
k−1

, k 6= 0, 1, (8b)

λk=0(u) =
u

1− e−u , λk=1(u) = exp
(

1 +
ue−u

e−u − 1

)
, (8c)

ζk(u) = λk(u)− λk(−u), (8d)

where µk(u) is a continuous positive weighting function, the choice of which affects the
representation properties, and u is the dual variable of the product t× f .

Changing the value of the index k in λk(u) and ζk(u), we obtain various representa-
tions [19,20], including the following:

• k = 2—Affine Wigner representation (extended covariance along straight line paths);
• k = 1/2—D-Flandrin representation (extended covariance along square-root-hyperbolic

paths);
• k = 0—Bertrand representation (extended covariance along hyperbolic paths);
• k = −1—Unterberger representation;
• k = ±5—Approximate affine Wigner representations (unsmoothed);
• k = ±∞—Margenau–Hill representation.

Choosing different µk(u) functions for one specific value of k makes it possible to
obtain different variations of the selected distribution, one of the examples being the active
or passive Unterberger representation.

2.1. Kernels

Kernels result from arbitrary parametrizations that characterize the properties of the
representation. By restricting the structure of the parametrized kernel and specifying certain
analytic properties that the representations must satisfy, subclasses can be identified [17].

Kernels can be defined as:

φt− f (t, f ) = δ(t)δ( f − f0), (9a)

φd−D(τ, ν) =
∫ ∞

−∞
φt−d(t, τ)e−j2πνtdt =

∫ ∞

−∞

∫ ∞

−∞
φt− f (t, f )ej2π( f τ−νt)d f dt, (9b)

φ f−D( f , ν) =
∫ ∞

−∞
φt− f (t, f )e−j2πνtdt =

∫ ∞

−∞

∫ ∞

−∞
φt−d(t, τ)e−j2π(tν+τ f )dtdτ, (9c)

φt− f (t, f ) =
∫ ∞

−∞
φt−d(t, τ)e−j2π f τdτ =

∫ ∞

−∞
φ f−D( f , ν)ej2πνtdν, (9d)

where φt−d(t, τ) is the time–delay kernel, φd−D(τ, ν) is the delay–Doppler kernel, φ f−D( f , ν)
is the frequency–Doppler kernel, φt− f (t, f ) is the time–frequency kernel, δ is the Dirac delta
function, and f0 is the arbitrary non-zero frequency (usually set to 1 Hz).
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The different kernels, representing the various domains, and the Fourier transform
between them can be represented using a commutative diagram (10) that explains their
mutual relationships [9,21,22]:

Time–frequency
φt− f (t, f )

Time–delay
φt−d(t, τ)

Frequency–Doppler
φ f−D( f , ν)

Delay–Doppler
φd−D(τ, ν)

t→ν

F
τ→ f

F

t→ν

F
τ→ f

F

(10)

The time–delay kernel is mainly used to compute the representation from the time-
domain signal, while the delay–Doppler kernel allows a simpler analysis of the charac-
teristics of the representation. The time–frequency kernel can be interpreted as a two-
dimensional low-pass filter that smooths the signal in both the time and frequency do-
mains [8,23].

Depending on the number of variables, the kernel can be one-dimensional, two-
dimensional, or higher-dimensional. The kernel can be independent on a specific variable.
Separable kernels consist of the product of two windowing functions, each one for its
respective domain. These windowing functions can be set independently of each other,
offering the possibility of independent resolution tuning for each domain [9,10,21,24].

An example of a separable kernel consisting of two windowing functions may be
defined as follows:

φ(ν, τ) = G1(ν)g2(τ). (11)

This form of the kernel can be transferred to the time–frequency domain by applying
the inverse and forward Fourier transforms to the two windows, respectively Φ(t, f ) =
F−1{G1(ν)}F{g2(τ)} = g1(t)G2( f ).

The separable kernel ensures that the 2D convolution is replaced by two 1D convolu-
tions, and so the representation becomes:

ΩΦ
x (t, f ) = g1(t) ∗Ωx(t, f ) ∗ G2( f ). (12)

If G1(ν) = 1, then φ(ν, τ) = g2(τ), and the kernel becomes Doppler independent with
smoothing only in the frequency direction. In that case, the resulting representation is:

ΩΦ
x (t, f ) = Ωx(t, f ) ∗ G2( f ). (13)

If g2(τ) = 1, then φ(ν, τ) = G1(ν), and the kernel becomes delay independent with
smoothing only in the time direction, and the representation becomes:

ΩΦ
x (t, f ) = g1(t) ∗Ωx(t, f ). (14)

2.2. Energy

The signal energy is defined as the squared modulus of the signal in the time or
frequency domain, according to Parseval’s theorem [8,25]:

Ex =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X( f )|2d f , (15)

where the energy representations are the instantaneous power |x(t)|2 for the time domain
and the spectral energy density |X( f )|2 for the frequency domain.
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The bilinear TFRs are signal energy distributions defined as the combination of the
instantaneous power and the spectral energy density [17]:

Ex =
∫ ∞

−∞

∫ ∞

−∞
Ωx(t, f )dtd f . (16)

The representation Ωx satisfies the energy conservation property for the affine class
only if the kernel satisfies the following condition:

∫ ∞

−∞

φ f−D(0, ν)

|ν| dν = 1. (17)

By integrating the representation over the timescale plane, one obtains the signal
energy [17].

2.3. Covariance

The covariance of the affine class refers to time shifts and scale changes in the signal.
This property is based on the parameters of the affine group denoted by A(α, τ), where α
stands for the analyzing scale parameter and τ for the time shift. For the one-dimensional
affine group, the group operation is (A, B)(α, τ) = (Aα, B + Aτ), corresponding to a time
axis clock change with t→ αt + τ, where the scale parameter α is defined as α = f0

f , and
the arbitrary non-zero frequency is f0 = 1 Hz [17].

Thus, the affine group of transforms for a time signal and its frequency counterpart are:

x(t)→ xα,τ(t) =
1√
α

x
(

t− τ

α

)
, (18a)

X( f )→ Xα,τ( f ) =
√

αe−j2π f τX(α f ). (18b)

The covariance requirement for the representation can then be expressed as:

Ωxα,τ (t, f ) = Ωx

(
t− τ

α
, α f
)

. (19)

An example of an affine covariant representation is the convolution of the Wigner
representation, which is a member of the Cohen class, with a signal-independent kernel as:

Ωx(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
Π
(

t− τ

α
, α f
)

Wx(t, f )dtd f , (20)

where Wx(t, f ) is the Wigner representation and Π(t, f ) is the signal-independent kernel,
which can also be denoted as the time–frequency kernel φt− f (t, f ). The representation is
called the pseudo-affine Wigner representation.

2.4. Marginals

The marginal constraint states that the integral of the representation over one variable
gives the energy corresponding to the other variable [25,26].

The marginal properties are defined for both the time and frequency domains as follows:∫ ∞

−∞
Ωx(t, f )dt = |X( f )|2, (21a)

∫ ∞

−∞
Ωx(t, f )d f = |x(t)|2. (21b)

Satisfying the marginal conditions implies the conservation of the representation
energy [27,28]. Structural constraints on the kernel assure that the marginals are satis-
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fied [17]. These constraints refer to the marginal distribution in frequency (energy spectrum
density) and to the marginal distribution in time (instantaneous power), as follows:

φ f−D(0, ν) = δ(ν− 1), (22a)

∫ ∞

−∞
φd−D

(
f τ,

ν

f

)
d f = δ(τ). (22b)

2.5. Interference Terms

Due to the bilinear nature of the affine class, the interference terms (also known as
cross-terms) are generated at midway points between the original components (also called
auto-terms) or between other interference terms [29]. Thus, due to the bilinearity, the sum
of the representations of two signals is not equal to the representation of their sum [2,9,30].

Interference terms oscillate with a frequency that is proportional to the distance of the
auto-terms [13,21]. The direction of the oscillations is orthogonal to the line connecting
the auto-terms; the number of interference terms is n(n− 1)/2, where n is the number of
signal components.

For a two component signal, x(t) = x1(t) + x2(t), the bilinear representation is:

Ωx(t, f ) = Ωx1(t, f ) + Ωx2(t, f ) + 2<[Ωx1,2(t, f )], (23a)

2<[Ωx1,2(t, f )] = 2<[Ωx1,x2(t, f ) + Ωx2,x1(t, f )] = 2<[F (x1(t)x∗2(t))], (23b)

where Ωx1(t, f ) and Ωx2(t, f ) are the auto-terms, and 2<[Ωx1,2(t, f )] is the cross-term.
Figure 2 reports a TFR with cross-terms being generated between the three auto-terms.

The location of the cross-term for a two-component signal is defined at the midpoint
between the auto-terms, or at the midpoints of the two coordinates defined as the mean
values ti =

t1+t2
2 and fi =

f1+ f2
2 , for time and frequency coordinates, respectively [31].

2.6. Reassignment Method

This approach was first defined by Kodera et al. [32,33] under the name “Modified
Moving Window Method”. Although the method was defined only for spectrograms
and could not be applied to discrete signals because of the partial derivatives used in
the method’s definition, it was later extended by Auger and Flandrin [34,35], generalized
for any bilinear time–frequency or timescale representation, and called the “reassign-
ment method”.

The reassignment method is a local post-processing method for signal representations,
with the goal of improving the signal sharpness or concentration, and it refocuses the
energy distribution for better readability in the TF plane. It is applicable to the Cohen’s
and affine classes as well as any bilinear representation, improving the TF localization of
the signal and suppressing the interference of the cross-terms. This method is the second
of a two-step procedure in which a 2D low-pass filter smoothing kernel is first applied to
reduce the interfering components, which also leads to the smearing of the signal in the t– f
plane. The second step is squeezing, which refocuses the signal terms after the smoothing
procedure [36].

Different researchers introduced this method under different names, such as the
method of reassignment, remapping, t– f reassignment, and the modified moving window
method. Unlike other representations, this method requires the signal phase and not just
the magnitude. The phase is needed because the components that represent the maximum
contribution to the signal, also known as the center of gravity, have a slow phase variation
through time and can thus be detected by observing the rate of variation of the phase [37].
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Figure 2. Example of three elementary Gaussian atoms in the time, frequency, and TF domains
(Wigner-Ville) with interferences.

The reassignment is performed by mapping the computed data points from their
initial coordinates (t, f ) closer to the true region of the signal support [14,38], also known
as the centroid or center of gravity (t̂(t, f ), f̂ (t, f )). The center of gravity is calculated for
each windowed region of the t– f plane, and then the calculated energy values for that
region are placed at that point, rather than at the geometric center [13,39]. By averaging the
energy given by the windowed region and then assigning the value to the center of gravity
for that region, the energy is focused where it actually occurred [33].

The definitions of the center of gravity coordinates for time and frequency, respectively, are:

t̂(t, f ) = t− 1
2π

∂ϕ(t, f )
∂ f

= − 1
2π

∂ϕ(t, f )
∂ f

, (24a)

f̂ (t, f ) =
1

2π

∂ϕ(t, f )
∂t

= f +
1

2π

∂ϕ(t, f )
∂t

, (24b)
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where t̂(t, f ) and f̂ (t, f ) are the coordinates of the center of gravity and can also be referred
to as local group delay and local IF, respectively, while ϕ(t, f ) is the phase of the signal.
The generalized form for Cohen’s class is then defined as:

t̂(t, f ) = t−
∫ ∞
−∞

∫ ∞
−∞ τφ(τ, ν)Wx(t− τ, f − ν)dτdν∫ ∞

−∞

∫ ∞
−∞ φ(τ, ν)Wx(t− τ, f − ν)dτdν

, (25a)

f̂ (t, f ) = f −
∫ ∞
−∞

∫ ∞
−∞ νφ(τ, ν)Wx(t− τ, f − ν)dτdν∫ ∞

−∞

∫ ∞
−∞ φ(τ, ν)Wx(t− τ, f − ν)dτdν

, (25b)

RC(t′, f ′) =
∫ ∞

−∞

∫ ∞

−∞
TFR(t, f )δ[t′ − t̂(t, f )]δ[ f ′ − f̂ (t, f )]dtd f , (25c)

where φ(τ, ν) is the kernel, Wx is the Wigner–Ville representation, TFR(t, f ) is the rep-
resentation being reassigned, δ is the Dirac delta function, RC(t′, f ′) is the reassigned
representation, and t′ and f ′ are the coordinates of any point.

The generalized form for the affine class is then defined as:

t̂(t, α) = t−
∫ ∞
−∞

∫ ∞
−∞ τφ( τ

α , f0 − αν)Wx(t− τ, ν)dτdν∫ ∞
−∞

∫ ∞
−∞ φ( τ

α , f0 − αν)Wx(t− τ, ν)dτdν
, (26a)

f̂ (t, α) =
f0

α̂(t, α)
=

∫ ∞
−∞

∫ ∞
−∞ νφ( τ

α , f0 − αν)Wx(t− τ, ν)dτdν∫ ∞
−∞

∫ ∞
−∞ φ( τ

α , f0 − αν)Wx(t− τ, ν)dτdν
, (26b)

RA(t′, α′) =
∫ ∞

−∞

∫ ∞

−∞
(α
′
)2TSR(t, α)δ[t′ − t̂(t, α)]δ[α′ − α̂(t, α)]dt

dα

α2 , (26c)

where α = f0
f , f0 = 1 Hz, TSR(t, α) is any timescale representation, RA(t′, α′) is the

reassigned representation, and α′ is the scale coordinate for any point.
However, the reassignment method encounters performance difficulties for noisy

signals with a low signal-to-noise ratio (SNR), where the computed centers of gravity might
not actually be part of the signal due to the noise; they could instead be assigned to random
noise pattern locations [40]. In addition, representations resulting from the application of
the reassignment method may not satisfy some properties that the original representations
satisfied, e.g., energy preservation. The reassigned distribution is time and frequency shift
covariant, although it is no longer a bilinear representation [34,41].

2.7. Affine Class Distributions

Several TFR methods can be assigned to the affine class. In the following subsections,
we list some of them with their definitions and main characteristics.

2.7.1. Scalogram

The scalogram is obtained by squaring the continuous wavelet transform magni-
tudes or, rather, by frequency-dependent affine smoothing of the Wigner representation
with the analyzing wavelet. It provides the energy distribution of the signal in the TF
plane and represents the simplest affine TFR. Its main drawback is poor resolution due to
the proportional-bandwidth time–frequency trade-off that is controlled by the analyzing
wavelet. Thus, it is impossible to control the time and frequency resolutions independently.
However, it has fewer of the interference terms that disturb other affine class TFRs because
they are restricted only to those regions where the signal terms overlap [13,20].
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The scalogram can be defined as a 2D kernel windowing of the Wigner representa-
tion [16] or as the absolute square of the continuous wavelet transform:

Sx(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
Wx(τ, ν)φt− f

(
τ − t

α
, αν

)
dτdν (27)

= |CWTx(t, f )|2 =
1
|α|

∣∣∣∣∫ ∞

−∞
x(t)h

(
t− τ

α

)
dt
∣∣∣∣2, (28)

where Sx(t, f ) is the scalogram, Wx(t, f ) is the Wigner representation, φt− f (t, f ) is the

time–frequency kernel, CWTx(t, f ) is the continuous wavelet transform, α = f0
f , and h(t) is

the mother wavelet.

2.7.2. Smoothed Pseudo-Affine Wigner Distribution

The smoothed pseudo-affine Wigner distribution (SPAWD) shows similar properties
to the wavelet transform; however, it exhibits a higher time–frequency resolution. Its two
main drawbacks are the interference terms generated due to bilinearity and the difficult
application to long-duration time signals. The method uses a short-time window that con-
trols the trade-off between interference attenuation and resolution, making its computation
more efficient. A transition from the high-resolution affine Wigner representation with
interferences to the interference-free scalogram is possible. The SPAWD is defined as a
self-correlation of the wavelet transform across frequency; the time windowing suppresses
the interference components in the frequency direction, while the time direction smoothing
is implemented by convolving the time windowing with a low-pass function [42]. Win-
dowing must be frequency-dependent so that the resulting TFD remains affine covariant;
thus, the smoothing in the frequency direction exhibits proportional bandwidth rather than
constant bandwidth [13].

The enhancement in resolution is the result of the self-correlation that is applied to the
signal, behaving like match-filtering, rather than just squaring the signal as for the wavelet
transform [13,20]. The algorithm for the SPAWD is defined by computing the wavelet
transform of the signal and by performing the generalized frequency correlation for each
time point, which is efficiently implemented by the Mellin transform.

The general representation and the representation parameters (that for k = 2 result in
the affine smoothed pseudo-Wigner–Ville representation) are defined as follows:

P̃k
x(t, f ) = f

∫ ∞

−∞
µk(u)X( f λk(u))X∗( f λk(−u))ej2π f tζk(u)du (29a)

= f
∫ ∞

−∞
G(u)

µk(u)√
λk(u)λk(−u)

C̃WTψ
x (t, λk(u) f )[C̃WTψ

x (t, λk(−u) f )]∗du, (29b)

λk=2(u) = 1 + tanh
(u

2

)
, (29c)

µk=2(u) = 1− tanh2
(u

2

)
, (29d)

ζk=2(u) = 2 tanh
(u

2

)
, (29e)

where P̃k
x(t, f ) is the smoothed pseudo-affine Wigner representation, C̃WTψ

x (t, f ) is the time–
frequency version of the continuous wavelet transform with a band pass wavelet function
ψ(τ) = h(τ)ej2πτ , λk(u) as per Equation (8b), and G(u) is the dual variable window or
low-pass function that smooths the TFR by proportional-bandwidth time smoothing.

2.7.3. Unitary Bertrand Distribution

Also known as the P0 representation, obtained for k = 0, its role in the affine class
is comparable to the Wigner representation for the Cohen class. The unitary Bertrand
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representation localizes hyperbolas on the time–frequency plane, making it a hyperbolic
representation [17,22,31].

The Bertrand representation Bx(t, f ) and its parameters for k = 0 are defined as follows:

Bx(t, f ) = f
∫ ∞

−∞
µk(u)X( f λk(u))X∗( f λk(−u))ej2π f tudu, (30a)

λk=0(u) =
e

u
2 u

2
sinh ( u

2 )
, (30b)

µk=0(u) =
√

λk=0(u)λk=0(−u) =
u
2

sinh ( u
2 )

. (30c)

By using µk=0(u) = 1, we obtain the nonunitary Bertrand representation instead.

2.7.4. Unterberger Distribution

The Unterberger representation, preserving the scaling properties across frequency
while smoothing the interferences in the frequency direction, is defined for the value k = −1
in Equation (8). There are two forms of the representation: the active form that exhibits
the localization property and the passive form that does not [20]. The active Unterberger
representation localizes on squared hyperbolas.

The representation and its parameters are defined as follows:

Ua
x(t, f ) = f

∫ ∞

−∞
µk(u)X( f λk(u))X∗( f λk(−u))ej2π f tζk(u)du (31a)

= f
∫ ∞

−∞

(
1 +

1
γ2

)
X( f γ)X∗

(
f
γ

)
ej2π f t

(
γ− 1

γ

)
dγ, (31b)

µk=−1(u) = cosh
(u

2

)
, (31c)

Up
x (t, f ) = f

∫ ∞

−∞
µk(u)X( f λk(u))X∗( f λk(−u))ej2π f tζk(u)du (32a)

=
∫ ∞

−∞

2
γ

X( f γ)X∗
(

f
γ

)
ej2π f t

(
γ− 1

γ

)
dγ, (32b)

λk=−1(u) = γ(u) = e
u
2 , (32c)

ζk=−1(u) = 2 sinh
(u

2

)
, (32d)

where Ua
x(t, f ) is the active Unterberger representation and Up

x (t, f ) is the passive Unter-
berger representation, with their respective parameters. The active Unterberger repre-
sentation is achieved by using a specific µk=−1(u) function, as defined in Equation (31c),
opposed to the passive Unterberger representation.

2.7.5. D-Flandrin Distribution

The D-Flandrin representation perfectly localizes signals on square root hyperbo-
las [31], and it is obtained for the value k = 1

2 .
The D-Flandrin representation Dx(t, f ) and its parameters are defined as follows:

Dx(t, f ) = f
∫ ∞

−∞
µk(u)X( f λk(u))X∗( f λk(−u))ej2π f tζk(u)du (33a)

= f
∫ ∞

−∞

(
1−

(γ

4

)2
)

X
(

f
[
1 +

γ

4

]2
)

X∗
(

f
[
1− γ

4

]2
)

ej2π f tγdγ, (33b)

λk= 1
2
(u) =

[
1 + tanh

(u
4

)]2
, (33c)
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ζk= 1
2
(u) = γ(u) = 4 tanh

(u
4

)
, (33d)

µk= 1
2
(u) = 1− tanh2

(u
4

)
. (33e)

By using a function different from µk= 1
2
(u) as defined in Equation (33e), the D-Distribution

representation is obtained instead [20,31].

2.7.6. Other Affine Class Distributions

Affine time–frequency representations were first introduced in 1985 by Pierre Bertrand
and Jaqueline Bertrand [43,44] soon after the wavelet theory was developed by Grossmann
and Morlet [17]. The first affine representation was later referred to as the unitary affine
Bertrand representation. In 1990, Flandrin and Rioul applied affine smoothing on some
representations from Cohen’s class [45].

Flandrin and Rioul [45] provided a description of the affine smoothing of the Wigner–
Ville distribution that resulted in a new class of representations with scale-dependent
smoothing. The choices for the smoothing function and the properties were discussed. In
addition, smoothing using separable Gaussian kernels was discussed, with the possibility of
obtaining a continuous transition from spectrograms to scalograms, with the Wigner–Ville
distribution between them. It was shown that it was possible to set up a specific requirement
for a given application and then build a subset of timescale energy representations that
meet those requirements by setting the values of selected parameters.

In [46], Ovarlez et al. provided more efficient algorithms based on the fast discrete
Mellin transform for easier computation of the affine-group-affiliated TF distributions. Since
the affine distributions use stretched forms of signals, they are normally more challenging
to compute compared to standard techniques. Using only fast Fourier transform (FFT)
routines made the algorithm very fast, allowing it to be employed as a practical tool for
broad-band signal study.

Shenoy and Parks [47] proposed a symmetrized version of the wideband ambiguity
function; by taking its 2D Fourier transform, the resulting function had properties similar
to the Wigner distribution and was called the affine Wigner distribution. The introduced
affine Wigner distribution was compared to the Wigner and the Q-distributions, and its
properties were described. The method was based on group theory, and the results were
compared to those presented in previous research by Altes, Rioul, and Flandrin.

Flandrin and Gonçalvès considered the geometry of bilinear affine distributions in the
time–frequency plane [48]. The localization properties and generalized means of interfer-
ence terms, as well as the generalized construction means, were established. It was stated
that for frequency modulated (FM) signals, the defined general construction rules could be
refined using the study of a critical manifold and stationary phase-type approximation in
the case of point-wise application of those rules.

Flandrin and Gonçalvès [31] also considered the geometry of Bertrand’s bilinear affine
distributions in the time–frequency plane. The localization properties, symmetry, and gen-
eralized means of interference terms, as well as the generalized construction means, were
established. The reported theoretical results were corroborated by analytical and numerical
examples. The affine distributions were shown to obey most of the same construction rules
that the Wigner–Ville distribution obeys. A way of predicting interference diagrams was
given for the affine class distributions and compared to the real interference patterns, show-
ing good agreement between numerical computation and the real distribution generated
for the signal.

Gonçalvès and Baraniuk suggested a set of pseudo- and smoothed pseudo-affine
Wigner distributions [19]. When a short time window that controls the trade-off be-
tween localization and interference attenuation was applied to a pseudo-Wigner TFD, the
pseudo-affine Wigner distribution was obtained. The applied windowing was frequency-
dependent, so that the TFD remained affine, and as a result, the bandwidth was propor-
tional rather than constant as in the pseudo-Wigner distribution. The pseudo-affine Wigner
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distribution was defined as the convolution of the wavelet transform with itself. The
pseudo-affine version of the Wigner distribution can be interpreted as the sliding version
of the affine Wigner distribution, thus making it suitable for long-duration signals and
online real-time operation with the same computation cost as for the continuous wavelet
transform. The introduced time windowing acted like a proportional bandwidth filter
for the interference components oscillating in the frequency direction. A second window
was utilized for smoothing in the time direction and for the suppression of interference
components. This method provided continuous transition ability in smoothing from the
affine Wigner distribution to the scalogram.

In [49], Murray et al. proposed a new higher-order Bertram distribution (HO− P0D)
as an extension of the Bertram distribution (P0); it preserved scale changes as well as
constant and hyperbolic time shifts of the signal. A class of smoothed higher-order Bertram
distributions was also derived; a formulation was proposed for the higher-order extension
of the quadratic class that preserved scale changes and constant time shifts. A novel higher-
order distribution was proposed as an extension of the second-order Bertrand distribution,
and a high-order affine class for multidimensional smoothing of a higher-order Wigner
distribution was introduced.

In [20], Gonçalvès and Baraniuk introduced pseudo-affine Wigner distributions as
tools for time-varying spectral analysis. These new timescale distributions demanded
reduced computational power, allowing online operation with resource costs similar to
the continuous wavelet transform. The distributions offered the suppression of interfer-
ence terms because of proportional bandwidth smoothing due to the short-time window
that controls localization. The wavelet-based structure for these distributions allowed
continuous transition in smoothing from the scalogram to the affine Wigner distribution.
An alternative set of generators was introduced for this class that simplified the kernel
formulation and helped design new distributions for specific signal classes.

Iribarren et al. dealt in [50] with monitoring conditions and the prediction of faults on
rotating machines by implementing the processing of non-stationary vibrations using the
affine Wigner distribution. The synthesis of the technique was briefly explained. Tests were
performed on synthetic and real-life signals and showed promising results in detecting non-
stationary events. The diagnosed faults were characterized by complex spectrum changes,
and weak vibration non-stationarities were used for the condition monitoring of rotating
machines. The tested distributions were the STFT, the smoothed pseudo-Wigner–Ville
distribution, and the SPAWD. It was concluded that the affine distribution presented higher
resolution but often exhibited undesired interference. Nevertheless, the SPAWD presented
fewer interference cross-terms than the SPWVD.

Murray et al. proposed in [18] a new higher-order affine TF representation called
HO-TFR. The new class was of a higher order than quadratic TFRs (N > 2). Five alternative
formulations were provided that defined multidimensional smoothing kernels. The new
higher class preserved the time shift, frequency shift, and signal scale. Another subclass
was defined that crossed with Cohen’s class and satisfied three covariances with a higher-
order affine–Cohen intersection. Simplified formulations for each member of the new
higher-order affine–Cohen subclass were provided as one-dimensional functions.

Next, in [51], Gosme et al. proposed a method for adaptive and iterative smoothing of
bilinear affine representations while preserving the covariance properties with a diffusion-
based technique. This provided locally adapted smoothing to the representation with the
application of a conductance function that locally controls the amount of diffusion, thus
allowing the adaptation of the kernel’s width with regard to the analysis scale. Depending
on the area being processed, the technique was able to discriminate high-value structured
signal terms from lower-value weakly structured noise or likely interference term signals
(and thus could identify and protect the structured components while smoothing the
weakly structured ones, or rather, the interference terms). Thus, the readability of the
representations was improved while the interference terms were mostly removed.
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Gosme and Richard [40] proposed adaptive diffusion processes that locally controlled
the amount of smoothing and the orientation of the applied smoothing, while enhancing
localization and preserving covariance. This approach provided a framework not only for
the Cohen class but also for the affine class. Variable conductance, general scheme, local
smoothing strength, and orientation of the diffusion were suggested both for the Cohen
and affine classes. A selective forward-and-backward diffusion process was investigated
to prove its ability to remove cross-terms while reaching a high concentration for the
signal components.

Gang and Xiao-niu introduced the pseudo-affine spectral correlation analysis, an
alternative set of spectral correlation and class kernels [52]. The newly proposed pseudo-
affine spectral correlation functions overcame issues of interference terms; the flexibility of
the wavelet-based structure allowed continuous smoothing transition from the affine to
the wavelet spectral correlation functions. In addition, the proposed spectral correlation
functions were efficient for online computation and had the same resource requirements as
the continuous wavelet transform. They suppressed interference terms by using a sliding
structure that acted as proportional bandwidth smoothing. The introduced generators
simplified the kernel formulations and helped the design of new affine distributions.

Gonçalvès et al. discussed approaches for constructing the affine class and the tools
associated with it [17]. The advantages and shortcomings were discussed, different
covariant classes were compared, and their interference terms and kernels were elaborated.
In addition, new classes of time–frequency covariant distributions were introduced.

Gavrovska et al., in [53], proposed an algorithm for the detection of fundamental
heart sounds S1 and S2 from phonocardiograms without the use of an ECG as a reference
signal. The algorithm was based on a joint TFR from the pseudo-affine Wigner–Ville
distribution, the Haar wavelet lifting scheme, the normalized average Shannon energy, and
autocorrelation. The results were obtained using the algorithm on real-life healthy and
pathological pediatric phonocardiogram signals, achieving a relatively high success rate
without using a reference ECG signal.

Finally, Berge et al. [16] examined the Wigner distribution through a quantization
perspective emphasizing the group structure. One of the main results was to express the
scalogram as a convolution of affine distributions. In addition, the literature on affine
Wigner distributions was reviewed, and a connection was made to the Mellin transform,
with the affine ambiguity function presented; several applications were given.

Next, we provide a numerical analysis of the above-described TFRs in terms of their
t– f concentration and IF estimation.

3. Examples and Simulation Results

Here we present simulation results and a comparison of three classes of TFRs: Cohen’s
(classic), affine, and reassigned. The simulated examples were implemented in MATLAB
with the help of the TFTB toolbox [13]. We also point interested readers to other freely avail-
able time–frequency signal analysis and processing toolboxes, such as the TFSAP [54,55]
and the LTFAT [56]. The methods were tested on mono-component and multi-component
synthetic signals (having constant, linear, parabolic, and sinusoidal FM) with additive noise,
as well as on real-world signals. The evaluation Was performed in terms of IF estimation
accuracy and TFR concentration. The estimated IF was calculated as in [10–12,57]:

fe(t) = arg{max
f

TFR(t, f )}, (34)

where fe(t) is the estimated IF. Estimation of the IF from TFR maxima cannot be applied
directly in the case of multi-component signals with components being present instanta-
neously; hence, component extraction was the step performed preceding IF estimation.

The analyzed TFRs from Cohen’s class include the spectrogram (SP), smoothed pseudo-
Wigner–Ville (SPWV), and Wigner–Ville (WV) distributions. The tested affine class TFRs
include affine Morlet wavelet scalogram (AMWSC), affine smoothed pseudo-Wigner–Ville



Sensors 2022, 22, 3727 16 of 36

(ASPWV), affine unitary Bertrand (AUB), affine active Unterberger (AAU), and affine
D-Flandrin (ADF) representations, while from the reassigned class we considered the
reassigned spectrogram (RSP), reassigned Gabor spectrogram (RGSP), reassigned Morlet
scalogram (RMSC), reassigned pseudo-Wigner–Ville (RPWV), and reassigned smoothed
pseudo-Wigner–Ville (RSPWV). The IF accuracy was assessed in terms of mean squared
error (MSE), and the Rényi entropy was calculated for each TFR to evaluate the energy
distribution concentration [58] and signal complexity [57] in the time–frequency domain as:

Rα
x =

1
1− α

log2

( ∫ ∞

−∞

∫ ∞

−∞
TFRα

x(t, f )dtd f

)
, (35)

where Rα
x is the α order Rényi entropy for the normalized TFRx (in order to annul interfer-

ences contributions, we have set the Rényi entropy order to α = 3, as in [22,59]).

3.1. Examples of Synthetic Signals

The methods from the three considered classes of TFRs were tested on synthetic, noisy
(corrupted by additive white Gaussian noise with SNR ranging from 10 dB to −5 dB) signals
having constant FM, linear FM (chirp), parabolic FM, and sinusoidal FM. The TFR plots for
noisy signals are shown for a single noise realization, while the reported tables contain the
MSE values and the Rényi entropies averaged over 100 iterations of random noise applied
to the signal.

3.1.1. Examples of Mono-Component Noisy Signals

First, we compare the Cohen’s, affine, and reassigned classes of TFRs in the time–
frequency domain for a mono-component noisy chirp signal.

Figure 3 shows the TFRs and IFs for the noisy chirp signal for 5 dB SNR. When
considering classic TFRs, as expected, the best resolution was achieved by WV. On the
other hand, the TFR from Cohen’s class that provided a balance between cross-terms and
TF resolutions was SPWV. At the same time, SP resulted in the poorest TF resolution
and reduced cross-terms. Next, the affine class TFRs are given in the second column of
Figure 3, where AMWSC offered similar performance to the SP, achieving poorer resolution
with significantly reduced cross-terms. Visual inspection shows a similar performance
for AUB, AAU, and ADF, with numerous cross-terms and relatively good resolution.
ASPWV offered an acceptable trade-off between cross-terms and resolution compared to
the aforementioned affine TFRs for the noisy chirp signal. The reassigned TFRs are listed
in the third column of Figure 3. RSP, RGSP, and RMSC acted rather similarly, exhibiting
slightly poorer resolution with different levels of noise (while RPWV and RSPWV presented
better resolution with residual cross-terms, with the latter performing significantly better
with regard to cross-terms).

The IF estimation results, in terms of the MSE, for the noisy chirp signal are provided
in Table 1. In general, as shown in the provided numerical results, Cohen’s class offered the
most accurate IF estimation for the noisy, linear FM signal (with WV performing the best
for intensive noise of −5 dB SNR, and SPWV performing the best for other tested SNRs).
On the other hand, the worst performance for this type of signal for all SNRs was the affine
class (to be more specific, ASPWV, except for the noise case of −5 dB SNR where AAU
yielded the highest IF estimation MSE). From the reassigned class, RSPWV was the best for
all SNRs, except for −5 dB, where it was outperformed by RPWV. The classic and reassigned
TFRs exhibited better performance in comparison with affine TFRs for the tested signal.
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Table 1. Estimation of IF MSE for noisy mono-component linear FM signal for different SNR levels
(averaged over 100 noise realizations), cell colors range from green for the best result to red for the
worst result in each column respectively, 1× 10−5.

10 dB 5 dB 0 dB −5 dB
SP 1.58 2.39 111.24 1329.70

SPWV 1.46 2.08 98.58 1320.50
WV 1.64 34.19 231.40 918.89

AMWSC 4.61 9.40 326.76 2039.20
ASPWV 277.84 695.28 1789.10 2647.70

AUB 31.88 77.71 706.32 2093.80
AAU 75.61 280.15 1667.80 3137.30
ADF 66.84 181.90 1249.60 2381.20
RSP 11.88 35.94 497.45 1811.40

RGSP 13.09 37.51 683.30 2014.00
RMSC 22.85 88.66 609.31 1662.40
RPWV 42.16 100.22 521.22 1288.90

RSPWV 1.57 11.84 343.78 1645.20

In addition to the IF estimation accuracy, interesting conclusions can be drawn from
Table 2 showing the Rényi entropy values for each tested TFR of the noisy chirp signal. Here
we find that TFRs belonging to Cohen’s class resulted in the highest Rényi entropy values
compared to the affine and reassigned classes for all tested SNRs. The best-performing TFRs,
in terms of distribution concentrations, from the reassigned class were RSPWV for higher
SNRs (10 dB and 5 dB) and RMSC for lower SNRs (0 dB and −5 dB). Interestingly, RSPWV
reduced the Rényi entropy by 19.61% and 17.60% compared to the worst-performing TFRs
from Cohen’s class, respectively (SP for 10 dB, WV for 5 dB). On the other hand, RMSC
reduced the Rényi entropy by 17.09% and 15.43% compared to the worst-performing WV
for 0 dB and −5 dB, respectively. As another example of a mono-component signal, let us
consider a noisy, sinusoidal FM signal.

Table 2. TFR Rényi entropy for a noisy mono-component linear FM signal for different SNR levels
(averaged over 100 noise realizations), cell colors range from green for the best result to red for the
worst result in each column respectively.

10 dB 5 dB 0 dB −5 dB
SP 15.225 15.475 15.959 16.480

SPWV 14.905 15.293 15.898 16.437
WV 14.864 15.600 16.343 16.641

AMWSC 13.774 14.242 15.078 15.883
ASPWV 15.022 15.551 15.933 16.134

AUB 14.193 15.071 15.875 16.232
AAU 14.690 15.516 16.199 16.446
ADF 14.301 15.191 15.919 16.187
RSP 12.886 13.172 13.682 14.187

RGSP 12.972 13.272 13.742 14.174
RMSC 12.796 13.061 13.550 14.074
RPWV 13.107 14.018 14.800 15.104

RSPWV 12.240 12.854 13.684 14.349

TFRs from the Cohen’s, affine, and reassigned classes for the mono-component, noisy,
sinusoidal FM signal are found in Figure 4. Here, when considering the classic TFR
class, the WV showed severe cross-terms and better resolution than SP and SPWV (SPWV
outperformed SP in terms of resolution, having cross-terms suppressed). Next, considering
the affine TFRs, ADF, AAU, and AUB offered comparable performance, with relatively
poor resolution and partly reduced cross-terms. AMWSC visually performed similarly to
SP, with less resolution in the low-frequency range. ASPWV offered reduced cross-terms
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with rather reasonable resolution. Lastly, from the reassigned TFRs, RGSP, RSP, and RMSC
had slightly poorer resolutions (the last being the worst-performing).

On the other hand, the RPWV and RSPWV had better resolution, with the first having
faint cross-terms.

A quantitative comparison of the analyzed TFRs for this example is given in Table 3,
which presents the estimated IF MSE from each tested TFR for a noisy, mono-component
sinusoidal FM signal. Unlike in the case of the linear FM signal, here we find a signifi-
cant difference between low and intensive noise. Namely, for low noise, the reassigned
class significantly outperformed Cohen’s class, decreasing the MSE from 3.09× 10−4 and
6.05× 10−4 (achieved for the best-performing SPWV from Cohen’s class) to 1.06× 10−4

and 8.08× 10−4 (achieved for the best-performing RGSP and RSPWV from the reassigned
class) for SNRs of 10 dB and 5 dB, respectively. The affine class performed poorly, with
only WV providing a higher IF estimation MSE. On the other hand, in the case of intensive
noise (0 dB and −5 dB SNR), SP and SPWV from Cohen’s class performed better than the
reassigned and affine class TFRs (except for RPWV for −5 dB SNR, which decreased MSE in
comparison to SPWV from 1.51× 10−2 to 1.46× 10−2). Again, the affine class performed
poorly, with AAU resulting in the largest MSE.

Table 3. Estimation of IF MSE for a noisy mono-component sinusoidal FM signal for different SNR
levels (averaged over 100 noise realizations), cell colors range from green for the best result to red for
the worst result in each column respectively, 1× 10−4.

10 dB 5 dB 0 dB −5 dB
SP 6.88 10.28 36.54 153.62

SPWV 3.09 6.05 34.86 150.80
WV 187.12 153.31 135.68 150.92

AMWSC 17.83 26.08 73.08 197.99
ASPWV 11.58 60.63 150.89 217.60

AUB 92.30 97.53 134.96 185.98
AAU 99.05 127.31 187.59 245.58
ADF 100.06 109.18 152.09 200.02
RSP 1.79 8.54 72.52 197.80

RGSP 1.06 8.68 90.08 217.16
RMSC 7.93 24.19 89.60 197.35
RPWV 2.74 13.09 65.93 145.99

RSPWV 1.92 8.08 62.18 184.94

The consistency in terms of TFR entropy-based concentration for different SNRs for
this example can be observed in Table 4, which reports the Rényi entropy values for each
tested TFR. Simulation results show the reassigned TFRs achieved the lowest Rényi entropy
values (with negligible differences inside the class), and classic TFRs had the highest
entropy values (with WV yielding the highest entropy for all SNRs). For the 10 dB, 5 dB,
and 0 dB scenarios, the Rényi entropy ranged from 13.368, 13.587, and 13.923 (for RGSP) to
16.118, 16.355, and 16.569 (for WV). Finally, for −5 dB, the TFR entropy ranged from 14.207
for RMSC to 16.690 for WV. The affine TFRs demonstrated medium performance compared
to the other two classes. On average, the best-performing TFRs for each class, in the case of
the sinusoidal mono-component FM signal, were RGSP, AMWSC, and SPWV.
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Table 4. TFR Rényi entropy for a noisy mono-component sinusoidal FM signal for different SNR
levels (averaged over 100 noise realizations), cell colors range from green for the best result to red for
the worst result in each column respectively.

10 dB 5 dB 0 dB −5 dB
SP 15.947 16.111 16.381 16.654

SPWV 15.724 15.973 16.300 16.586
WV 16.118 16.355 16.569 16.690

AMWSC 15.170 15.402 15.788 16.227
ASPWV 15.416 15.871 16.080 16.240

AUB 15.482 15.765 16.070 16.340
AAU 15.615 15.956 16.269 16.518
ADF 15.499 15.783 16.058 16.278
RSP 13.579 13.720 13.998 14.301

RGSP 13.368 13.587 13.923 14.249
RMSC 13.522 13.689 13.991 14.207
RPWV 14.127 14.578 14.957 15.152

RSPWV 13.650 13.890 14.226 14.488

3.1.2. Example of a Multi-Component Noisy Successive Signal

We continue our analysis for multi-component noisy synthetic signals. The first
one to be analyzed is a signal consisting of multiple successive parabolic and linear FM
components corrupted by additive white Gaussian noise.

Examples of TFRs of a noisy multi-component signal with successive parabolic and
linear FM components for the SNR of 5 dB are given in Figure 5. Cohen’s class of TFRs
(the first column in Figure 5) varied from good resolution and numerous cross-terms for
WV to poor resolution with reduced cross-terms for SP, while SPWV provided a reasonable
trade-off between the two. Next, the second column of Figure 5 presents the TFRs from
the affine class, with AMWSC having similar performance to SP with visually somewhat
better resolution (with a loss of resolution for the lower frequencies). AUB, AAU, and ADF
visually performed similarly, with relatively good resolution, but they were also affected
by cross-terms. ASPWV had moderately poorer resolution with a decrease in cross-term
content. Lastly, from the reassigned TFRs, RSP, RGSP, and RMSC visually performed
similarly (having acceptable resolution). RPWV and RSPWV presented good resolution,
but both suffered from cross-terms.

MSEs of the estimated IF of a noisy multi-component signal with successive parabolic
and linear FM components are given in Table 5. In the case of higher SNRs (10 dB and 5 dB)
the IF MSE for Cohen’s class was minimal for SPWV (67.96× 10−5 and 136.99× 10−5, re-
spectively). From the affine class, AMWSC outperformed other TFRs achieving 76.27× 10−5

and 113.90× 10−5 for SNRs of 10 dB and 5 dB, respectively. From the reassigned class, for
SNRs of 10 dB and 5 dB, RGSP outperformed other reassigned TFRs, achieving MSEs of
9.39× 10−5 and 39.73× 10−5, respectively. When considering intensive noise scenarios, it
is interesting to note that SP offers the most accurate IF estimation for 0 dB (304.51× 10−5).
For comparison, the worst-performing was AAU from the affine class, resulting in an IF
estimation MSE of 1774.30× 10−5. Similar conclusions can be drawn for the case of an SNR
of −5 dB, where SP’s IF estimation MSE was 1125.70× 10−5 (negligibly outperformed by
RPWV with an MSE of 1082.20× 10−5). Again, as for 0 dB, AAU was the worst-performing
with 2321.90× 10−5. Thus, Cohen’s class resulted in the most accurate IF estimation for
intensive noise SNRs for the noisy multi-component signal with successive parabolic and
linear FM components, while the reassigned class of TFRs was the best-performing for
low-noise environments. In both cases, the affine class was outperformed by the other
two classes.
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Figure 3. TFRs of a noisy mono-component linear FM signal with estimated IFs for the SNR of 5 dB.
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Figure 4. TFRs of a noisy mono-component sinusoidal FM signal with estimated IFs for the SNR of 5 dB.
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Figure 5. TFRs of a noisy multi-component signal with successive parabolic and linear FM components for 5 dB SNR.
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Table 5. Estimation of IF MSE for a noisy multi-component signal with successive parabolic and
linear FM components for different SNR levels (averaged over 100 noise realizations), cell colors
range from green for the best result to red for the worst result in each column respectively, 1× 10−5.

10 dB 5 dB 0 dB −5 dB
SP 127.12 166.02 304.51 1125.70

SPWV 67.96 136.99 325.23 1160.50
WV 1046.80 1068.60 1061.80 1206.60

AMWSC 76.27 113.90 350.10 1501.40
ASPWV 148.89 480.46 1292.90 1816.10

AUB 684.84 783.60 1122.60 1546.40
AAU 848.84 1098.20 1774.30 2321.90
ADF 750.37 910.03 1337.60 1707.00
RSP 22.18 65.28 456.63 1509.00

RGSP 9.39 39.73 445.73 1513.40
RMSC 9.84 45.78 524.60 1540.00
RPWV 61.37 179.57 514.64 1082.20

RSPWV 42.95 107.03 475.40 1487.00

Unlike in the case of IF estimation, where the reassigned class was the best choice
for low-noise and Cohen’s class was best for high-noise scenarios, when considering the
Rényi entropy of TFRs of a signal with successive parabolic and linear FM components,
the best-performing class for all tested SNRs was the reassigned class. This is evident from
Table 6, where it can also be seen that Cohen’s class performs, in general, worse than the
affine class for this type of signal in terms of TFR concentration. The worst-performing of
all tested SNRs was WV, while the worst-performing affine class TFR, AAU, outperformed
WV by up to 2.76%, 1.99%, 1.27%, and 0.77% for SNRs 10, 5, 0, and −5 dB, respectively. On
the other hand, the best-performing reassigned TFR for all tested SNRs was RMSC, which
reduced the Rényi entropy by 19.86%, 18.77%, 16.55%, and 14.42% for SNRs 10, 5, 0, and
−5 dB, respectively, compared to WV.

Table 6. TFR Rényi entropy for a noisy multi-component signal with successive parabolic and linear
FM components for different SNR levels (averaged over 100 noise realizations), cell colors range from
green for the best result to red for the worst result in each column respectively.

10 dB 5 dB 0 dB −5 dB
SP 19.616 19.839 20.226 20.519

SPWV 19.379 19.696 20.148 20.449
WV 20.097 20.301 20.518 20.637

AMWSC 18.577 18.932 19.561 20.118
ASPWV 19.184 19.742 20.108 20.267

AUB 19.325 19.658 20.027 20.274
AAU 19.542 19.897 20.258 20.478
ADF 19.358 19.692 20.027 20.231
RSP 16.639 16.916 17.416 17.869

RGSP 16.288 16.642 17.217 17.733
RMSC 16.105 16.491 17.122 17.662
RPWV 17.575 18.256 18.858 19.097

RSPWV 16.837 17.244 17.753 18.032

3.1.3. Example of a Multi-Component Noisy Concurrent Signal

We conclude the simulation analysis of synthetic signals with another example of a
multi-component noisy signal consisting of concurrent constant and parabolic FM compo-
nents with additive Gaussian noise. For visual assessment, in Figure 6, we present TFRs
from the Cohen’s, affine, and reassigned classes for 5 dB SNR. Again, from the classic
TFRs, SP had poor resolution, SPWV achieved better resolution with some cross-terms, and
WV had even better resolution (however, with severe interference terms). From the affine
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class, AUB, AAU, and ADF visually had similar performance (balancing time–frequency
resolution and amount of cross-terms). ASPWV had poorer resolution; however, it also
had weaker cross-terms. AMWSC displayed a similar performance to the scalogram.
Lastly, from the reassigned TFRs, RSP, RGSP, and RMSC visually performed similarly with
somewhat poorer resolution.

RPWV and RSPWV presented satisfactory resolution, with the former exhibiting more
accentuated cross-terms.

MSE for the estimated IF for the noisy multi-component signal with concurrent con-
stant and parabolic FM components is given in Table 7. It can be seen that the affine class
AMWSC provided, in general, the lowest MSE for all tested SNRs. For the 10 dB SNR,
AMWSC reduced the MSE by 75.48 % and 29.84% compared to the second-best (SP) for
the first and second components, respectively. For 5 dB, AMWSC reduced MSE by 90.41%
compared to the second-best (SP) for the first component, while for the second component,
SP performed somewhat better, resulting in an MSE of 8.04× 10−6 (AMWSC obtained
8.81× 10−6). For 0 dB, AMWSC performed well, with MSE being reduced by 93.19% for
the first component compared to the second-best (SPWV), and MSE increased by 5.01%
compared to SPWV for the second component. Moreover, for an intensive noise environ-
ment (−5 dB SNR), AMWSC reduced the MSE by 61.68% and 0.32% (for the first and second
components, respectively) compared to the second-best from the affine class (AAU).

Table 7. Estimation of IF MSE for a noisy multi-component signal with concurrent constant and
parabolic FM components for different SNR levels (averaged over 100 noise realizations), cell colors
range from green for the best result to red for the worst result in each column respectively.

10 dB 5 dB 0 dB −5 dB
(a) First Component, 1× 10−6

SP 5.26 22.41 1032.10 3914.40
SPWV 7.60 38.28 1017.90 3877.20

WV 4375.40 6032.50 8521.80 9397.40
AMWSC 1.29 2.15 69.36 1446.50
ASPWV 3384.30 3910.00 4724.80 5443.90

AUB 4108.60 4593.10 5160.00 5430.20
AAU 3774.00 3900.40 4066.40 3775.90
ADF 4872.90 5352.50 5718.60 5528.00
RSP 227.92 404.64 1942.20 4245.50

RGSP 168.09 487.04 2243.00 4406.40
RMSC 508.97 930.73 1785.50 4107.40
RPWV 3648.10 4975.40 6204.10 6903.10

RSPWV 45.29 193.54 1584.20 3961.30
(b) Second Component, 1× 10−5

SP 5.16 8.04 136.88 483.73
SPWV 5.76 8.80 133.50 467.15

WV 237.34 306.31 405.21 447.99
AMWSC 3.62 8.81 140.19 444.00
ASPWV 400.74 450.91 557.93 635.48

AUB 49.20 94.12 298.59 452.07
AAU 19.29 54.31 273.11 445.41
ADF 137.54 216.86 408.39 508.84
RSP 26.17 52.88 288.19 624.45

RGSP 26.73 73.70 371.42 700.51
RMSC 20.90 39.49 277.02 600.25
RPWV 183.87 251.13 398.47 508.63

RSPWV 5.23 21.09 222.81 544.92
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TFR Rényi entropy results for a noisy multi-component signal with concurrent constant
and parabolic FM components for different SNR levels (averaged over 100 noise realizations)
is presented in Table 8. The Rényi entropy ranged from 13.308 to 16.698, with those values
belonging to RSPWV for the SNR of 10 dB and WV for an SNR of −5 dB, respectively. The
results show that the reassigned TFRs outperformed those from the Cohen’s and affine
classes by up to 18.01%, 16.28%, 15.34%, and 14.33% for 10 dB, 5 dB, 0 dB, and −5 dB SNRs,
respectively (with Cohen’s class WV resulting in the highest Rényi entropy for all SNRs).
In terms of the entropy-based distribution concentration for this multi-component signal,
the best-performing TFRs on average per class were AMWSC for the affine class, SPWV
for Cohen’s class, and RSPWV and RMSC from the reassigned class for low and intense
noise, respectively.

Table 8. TFR Rényi entropy for a noisy multi-component signal with concurrent linear and parabolic
FM components for different SNR levels (averaged over 100 noise realizations), cell colors range from
green for the best result to red for the worst result in each column respectively.

10 dB 5 dB 0 dB −5 dB
SP 16.033 16.168 16.392 16.643

SPWV 15.794 16.051 16.345 16.598
WV 16.232 16.453 16.625 16.698

AMWSC 14.642 14.946 15.497 16.125
ASPWV 15.738 16.030 16.182 16.271

AUB 15.239 15.710 16.122 16.342
AAU 15.260 15.780 16.233 16.483
ADF 15.287 15.737 16.099 16.277
RSP 13.820 13.971 14.162 14.372

RGSP 13.913 14.038 14.182 14.315
RMSC 13.615 13.786 14.075 14.305
RPWV 14.245 14.741 15.063 15.181

RSPWV 13.308 13.774 14.223 14.506

3.2. Examples of Real-World Signals

Next, we present the performance of the Cohen’s, affine, and reassigned class dis-
tributions using two real-world examples, in terms of concentration, measured by the
Rényi entropy.

First, we analyzed the concentrations of TFRs for an electroencephalogram (EEG)
signal, observing the P300 response to external stimuli. The multichannel dataset consisted
of 32 channels measuring brain activity and 942 trials with and without external stimuli [60].
We focused on the Cz electrode and analyzed the signal obtained from the average of 466
responses to stimuli.

Figure 7 gives the time–frequency distributions of the analyzed EEG P300 signal.
A simple visual inspection of the classic group of TFRs shows that SP had poor concen-
tration, which was improved on by SPWV at the cost of interference terms. WV showed
even better resolution, but was more deteriorated by cross-terms. From the affine TFRs,
the poorest concentration was found for AMWSC, followed by AUB, AAU, and ADF.
ASPWV had moderately poorer concentration; however, it had fewer cross-terms. From
the reassigned TFRs, RSP and RGSP achieved similar performance. RMSC performed with
acceptable concentration, and RPWV and RSPWV visually performed similarly, showing
satisfactory concentration, with the latter performing better regarding cross-terms.

A numerical comparison of the analyzed TFRs’ for the EEG P300 signal is given in
Table 9. The Rényi entropy ranges between 10.178 and 16.689. The classic TFRs exhibited
average performance, the affine TFRs had poorer performance, and the reassigned TFRs
achieved the best performance. The best- and worst-performing TFRs, when considering
all TFR classes, were RMSC and AMWSC. The best reassigned TFR (RMSC) outperformed
the worst TFR (affine AMWSC) by 39.01%, and the best TFR from the Cohen class (SPWV),
by 20.6%.
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Finally, we provide the comparison of the analyzed TFRs on another real-world
example: the vertical acceleration seismogram of the earthquake that hit Zagreb, the capital
of Croatia, on 22 March 2020. The magnitude was 5.5 according to the Richter scale, making
it the strongest earthquake to hit Zagreb since the 1880s. The depth at the epicenter was
10 km, and the epicenter was 7 km north of the city center. The closest surveying station
was located in the city and municipality of Lobor, some 38 km from the capital of Zagreb,
where the seismogram signal was recorded.

Table 9. TFR Rényi entropy of an EEG P300 signal for the Cz electrode (averaged over 466 trials), cell
colors range from green for the best result to red for the worst result in each column respectively.

Rényi Entropy
SP 13.414

SPWV 13.251
WV 14.366

AMWSC 16.689
ASPWV 16.200

AUB 16.300
AAU 16.302
ADF 16.325
RSP 11.369

RGSP 11.230
RMSC 10.178
RPWV 11.782

RSPWV 11.439

TFRs of the earthquake signals are shown in Figure 8. As in the previous real-life
example, for Cohen’s class, WV achieved the best resolution and most cross-terms, as
opposed to SP for both features. SPWV, as already seen, provided a trade-off between
resolution and cross-terms. When considering the affine group of TFRs, AMWSC presented
poor concentration according to visual inspection, while AUB, AAU, and ADF had intense
cross-terms compared to ASPWV. From the reassigned TFRs, RSP and RGSP showed
relatively good concentration, which was further improved for RMSC. RPWV visually
showed good concentration, but it was also affected by cross-terms, whilst RSPWV showed
acceptable performance with regard to concentration, with the presence of few cross-terms.

Table 10 shows the TFR Rényi entropies for the Zagreb 2020 earthquake vertical accel-
eration seismogram signal. The Rényi entropy values ranged from a minimum of 15.084 to
a maximum of 21.526. It can be seen that the TFRs assume class-related behavior, with the
affine group performing the worst, the classic group of TFRs performing in the middle, and
the reassigned group of TFRs being the best in terms of the Rényi entropy concentration.
The best-performing TFRs per group were SPWV for the classic group, ASPWV for the
affine class, and RMSC for the reassigned class. The best-performing TFR for this example,
in general, was RMSC, and the worst-performing was AMWSC. The best reassigned TFR
(RMSC) outperformed the worst TFR (affine AMWSC) by 29.92%, and the best TFR from
the Cohen class (SPWV) by 12.33%, in the case of the tested earthquake signal.
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Table 10. Rényi entropy for the 2020 Zagreb earthquake vertical acceleration seismogram, cell colors
range from green for the best result to red for the worst result in each column respectively.

Rényi Entropy
SP 18.961

SPWV 18.871
WV 19.831

AMWSC 21.526
ASPWV 20.956

AUB 21.350
AAU 21.417
ADF 21.260
RSP 16.636

RGSP 16.441
RMSC 15.084
RPWV 18.099

RSPWV 16.494

3.3. Computational Cost of Analyzed TFRs

Here we present the computational cost of the tested methods. The TFRs were com-
puted in MATLAB (R2016a version) on Windows 10. As a computational platform, we
used an HP Pavilion Power 17-ab307nm 2ZJ05EA with an Intel® Core™ i5-7300HQ CPU @
2.50 GHz, 16 GB of DDR4-2666 (1333 MHz) RAM, and NVIDIA GeForce GTX 1050 Ti GPU
with 4 GB GDDR5 of dedicated memory (7.9 GB total shared memory).

Table 11 shows the computational cost of calculating each of the analyzed TFRs
from previous examples (averaged over 100 calculations for an SNR of 5 dB). The fastest
TFRs, in terms of computational CPU time, were WV, SP, RPWV, and AMWSC, while the
computationally most demanding was AAU. As for groups, Cohen’s class performed the
fastest, followed by the reassigned class and then the affine class. In addition, as expected,
signal length significantly affected the computational cost. To study the effect of signal
length on computational cost in more depth, we present CPU computational times in
Table 12 for an example of a linear FM signal with a different number of signal samples
(averaged over 100 calculations).

Next, in terms of the computational cost of analyzed TFDs, we present the computa-
tional time for calculating TFRs of different dimensions, as shown in Table 13. As shown,
in general, a larger TFR dimension led to slower TFR calculations, especially for the affine
and reassigned classes, while for Cohen’s class, this increase in CPU computational time
was not so significant.
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Figure 6. TFRs of a noisy multi-component signal with concurrent constant and parabolic FM components for the 5 dB SNR.
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Figure 7. TFRs of an EEG P300 signal for the Cz electrode (averaged over 466 trials).
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Figure 8. TFRs of the 2020 Zagreb earthquake vertical acceleration seismogram.
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In conclusion, this paper provides novel insight into the performances of TFRs from
the Cohen’s, affine, and reassigned classes in terms of their IF estimation, entropy-based
concentration, and computational cost. To the best of our knowledge, based on an exten-
sive literature review, there exists no similar study comparing SP, WV, SPWV, AMWSC,
ASPWV, AUB, AAU, ADF, RSP, RGSP, RMSC, RPWV, and RSPWV on both synthetic (mono-
component and multi-component) signals in noise for different SNR levels, as well as on
the real-time examples. The conclusions and findings of this research may help in selecting
the appropriate TFR for a signal of interest to be analyzed.

As a direction for future work, we suggest designing new adaptive TFRs optimized
for IF estimation and/or distribution concentration and applying these in fields where
classical TFRs are often used, with the expectation of outperforming them.

Table 11. Computation time for analyzed TFRs for tested signals (averaged over 100 realizations,
SNR of 5 dB), cell colors range from green for the best result to red for the worst result in each column
respectively, in milliseconds (ms).

Noisy Mono
Component
Linear FM

Noisy Mono
Component

Sinusoidal FM

Noisy Three
Component

Parabolic and
Linear FM

Noisy Two
Component

Constant and
Parabolic FM

EEG P300
Signal

2020 Zagreb
Earthquake

Number of time
samples 128 128 384 128 128 487

SP 1.6448 1.4987 7.4916 1.4124 1.4105 12.69
SPWV 23.024 22.617 225.12 22.428 22.569 369.87

WV 1.4677 1.3349 7.7009 1.2996 1.2905 13.539
AMWSC 10.219 9.7795 60.675 9.7801 9.6643 93.012
ASPWV 188.92 188.19 3122.5 188.94 189.51 4356.7

AUB 284.9 283.59 2110.8 281.91 283.34 2476.9
AAU 749.92 751.21 6348.1 745.8 748.24 7999
ADF 250.64 250.61 1797.7 250.28 251.04 2049.4
RSP 19.526 19.205 170.08 19.449 19.203 275.86

RGSP 16.126 15.649 145.11 15.565 13.163 192.5
RMSC 275.13 268.87 2650.7 273.55 269.98 4207.1
RPWV 3.7773 3.4253 24.559 3.4197 3.4948 41.555

RSPWV 44.623 43.586 412.51 43.931 43.878 670.22

Table 12. Computational time for analyzed TFRs for a noisy linear FM signal with different numbers
of time samples (averaged over 100 realizations, SNR of 5 dB), cell colors range from green for the
best result to red for the worst result in each column respectively, in milliseconds (ms).

Number of Time
Samples 32 64 128 256 512

SP 0.53308 0.68926 1.4145 3.6583 10.057
SPWV 1.9574 5.7625 22.275 92.194 407.77

WV 0.38185 0.47453 1.2714 2.968 11.174
AMWSC 2.2736 3.9472 9.6087 28.944 104.7
ASPWV 26.755 47.652 179.4 455.84 4537.6

AUB 46.272 103.14 278.18 791.83 2500.5
AAU 99.284 257.56 727.06 2276.1 8031.1
ADF 42.68 94.99 244.54 681.51 2116.2
RSP 2.2171 5.4668 18.87 70.807 285.32

RGSP 2.1111 5.0283 15.18 51.456 201.96
RMSC 16.188 63.321 261.1 1110.3 4600.3
RPWV 0.99658 1.3783 3.3517 9.9509 38.288

RSPWV 3.8662 11.514 42.46 169.57 721.94
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Table 13. Computational time for analyzed TFRs of different dimensions for a noisy linear FM signal
with 128 time samples (averaged over 100 realizations, SNR of 5 dB), cell colors range from green for
the best result to red for the worst result in each column respectively, in milliseconds (ms).

TFR
Dimension 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

SP 1.4193 1.3427 1.4466 1.6453 2.0954
SPWV 23.058 22.478 22.415 23.576 24.098

WV 1.0921 1.0986 1.2774 1.3618 1.5274
AMWSC 3.1886 5.0576 9.607 19.048 37.809
ASPWV 34.879 57.728 101.24 188.75 447.8

AUB 19.101 28.757 48.061 88.604 160.95
AAU 26.891 41.811 73.08 126.18 228.62
ADF 16.001 25.113 43.079 75.009 141.32
RSP 7.2236 11.604 19.851 38.007 72.442

RGSP 5.8219 9.1319 16.085 29.338 57.913
RMSC 66.308 134.42 269.46 542.5 1129.2
RPWV 2.8339 2.7727 3.3549 4.8437 8.2814

RSPWV 30.529 34.782 42.888 59.86 95.77

4. Results Discussion

This study compares the performance of three classes of TFRs (Cohen’s, affine, and
reassigned) for different signals (mono-component and multi-component), different fre-
quency modulations, and different noise levels. As it is visible from the reported results,
there is no one particular TFR that performs best in all tested scenarios in terms of IF
estimation accuracy and TF concentration.

In general, when considering Cohen’s class, consistently good performance was
achieved by SPWV. From the affine class, MWSC and ASPWV performed relatively well,
while RSPWV and RPWV should be considered as the first choices from the reassigned class.

When comparing TFR classes, the classic Cohen’s and reassigned TFRs outperformed
the affine group with regard to the MSE of the estimated IF. In general, for most cases and
SNRs, the Cohen’s class resulted in improved IF estimation, while the reassigned class
resulted in somewhat higher MSE values. Finally, the affine class saw the least change in
performance with the change in the SNR, having mostly medium to poor performance,
with a few exceptions.

According to the Rényi entropy measure, the reassigned class performed best, followed
by the affine and Cohen’s class TFRs, with some exceptions. The best-performing TFRs
per group were AMWSC, SPWV, and RMSC. Over most of the examples and SNRs, the
best-performing TFRs were RMSC, RSP, RSPWV, and RGSP.

The best-performing TFR of the reassigned class was RSPWV, followed by RMS and
RGS (which was more sensitive to noise). The best-performing TFRs from Cohen’s class
were SP (having relatively poor concentration) and SPWV (presenting some residual cross-
terms). Finally, in the case of the affine class, visually, the best-performing was AMWSC,
with a poorer concentration in the lower frequency bands, and ASPWV, which suffered
from cross-terms.

According to the Rényi entropy, used as a measure of TFR concentration, the affine class
of TFRs achieved poor performance, Cohen’s class TFRs displayed medium performance,
while the reassigned class resulted in the best performance for the real-life examples. In
general, the best TFR, according to the Rényi entropy, for tested real-world examples was
RSPWV, followed by RMS, RGS, and RS. When compared at a class level, the best TFRs for
analyzed real-life examples were ASPWV in the affine class, SPWV in Cohen’s class, and
RMS in the reassigned class.
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5. Conclusions

This paper elaborated on and compares three classes of TFRs: Cohen’s, affine, and
reassigned, including the theoretical background of the selected TFRs belonging to these
classes. Next, we performed extensive numerical simulations on non-stationary signals,
including both synthetic and real-life examples. TFD quality was evaluated with respect to
IF estimation accuracy, TF concentration measured by the Rényi entropy, and the presence
of cross-terms.

As shown, the performances of the TFRs were highly affected by the type of signal
being analyzed. When choosing the proper TFR, one should consider the following param-
eters: the presence and intensity of noise, the number of signal components, and the FM of
signal components, to name a few.

The best-performing TFRs in terms of the IF estimation MSE, for the mono-component
linear FM signal, were WV and SPWV, depending on the noise intensity. In the case of the
mono-component sinusoidal FM signal, the best-performing TFRs were RGSP, RSPWV, SP,
and SPWV as the noise intensified. On the other hand, the best for the successive multi-
component signal was RGSP for lower noise and SP for high noise. For the concurrent
multi-component signal, AMWSC outperformed all other TFRs.

Regarding the Rényi entropy, the best-performing TFRs for mono-component linear
FM signals were RSPWV for lower noise and RMSC for higher noise. For the sinusoidal sig-
nal, the best TFRs were RGSP and RMSC, depending on the noise level. For the successive
multi-component FM signal, RMSC outperformed other TFRS for all tested SNRs, while for
the concurrent multi-component signal, the best TFRs were RSPWV for the higher SNRs
and RMSC for the lower SNRs.

Furthermore, there is often a compromise between the time–frequency resolution and
cross-term presence, as well as between the accuracy of the IF estimation and TF concentration.

Since there is no one particular TFR with superior performance for all cases, this study
presents extensive insight into the behavior of the analyzed TFRs classes, providing help
in choosing the appropriate representation for the analyzed signal of a non-stationary
phenomenon.

In future work, we plan to focus on developing new adaptive TFRs (from the Cohen’s,
affine, and reassigned classes) optimized for IF estimation and/or entropy-based concen-
tration and to apply these adaptive TFRs in cases where classical TFRs are often utilized,
with the expectation of improving upon their performance.
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Abbreviations
The following abbreviations are used in this manuscript:

TFR Time–Frequency Representation
TFD Time–Frequency Distribution
TSR Time–Scale Representation
TSD Time–Scale Distribution
IF Instantaneous Frequency
TF Time–Frequency
FM Frequency Modulation
SNR Signal-to-Noise Ratio
MSE Mean Squared Error
SP Spectrogram
SPAWD Smoothed Pseudo-Affine Wigner Distribution
SPWV Smoothed Pseudo-Wigner–Ville
WV Wigner–Ville
AMWSC Affine Morlet Wavelet Scalogram
ASPWV Affine Smoothed Pseudo-Wigner–Ville
AUB Affine Unitary Bertrand
AUU Affine Active Unterberger
ADF Affine D-Flandrin
RSP Reassigned Spectrogram
RGSP Reassigned Gabor Spectrogram
RMSC Reassigned Morlet Scalogram
RPWV Reassigned Pseudo-Wigner–Ville
RSPWV Reassigned Smoothed Pseudo-Wigner–Ville
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