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Abstract: The paper considers the problem of tracking an unknown and time-varying number of
unlabeled moving objects using multiple unordered measurements with unknown association to
the objects. The proposed tracking approach integrates Bayesian nonparametric modeling with
Markov chain Monte Carlo methods to estimate the parameters of each object when present in the
tracking scene. In particular, we adopt the dependent Dirichlet process (DDP) to learn the multiple
object state prior by exploiting inherent dynamic dependencies in the state transition using the
dynamic clustering property of the DDP. Using the DDP to draw the mixing measures, Dirichlet
process mixtures are used to learn and assign each measurement to its associated object identity.
The Bayesian posterior to estimate the target trajectories is efficiently implemented using a Gibbs
sampler inference scheme. A second tracking approach is proposed that replaces the DDP with the
dependent Pitman–Yor process in order to allow for a higher flexibility in clustering. The improved
tracking performance of the new approaches is demonstrated by comparison to the generalized
labeled multi-Bernoulli filter.

Keywords: multiple object tracking; Monte Carlo sampling method; Bayesian nonparametric
modeling; dependent Dirichlet process; dependent Pitman–Yor process

1. Introduction

With emerging technological advances, there is an increasing interest in continuously
monitoring and tracking multiple objects in a scene using data from multimodal systems.
One of the main challenges in such problems is how to adapt the processing algorithms to
rapid changes in the scene. Such changes include different objects entering or leaving the
scene, time-variability in environmental or operational conditions and measurements from
different sensing modalities with unknown association to the objects. Different methods
were proposed in the literature for multiple object tracking such as joint probabilistic
data association and multiple hypothesis density filtering [1–3]. Most of these methods,
however, assume independent state transitions and require known measurement-to-object
associations. Other methods involve random finite set (RFS) theory that provide a common
mathematical framework for multiple object distributions and has been integrated with
probability hypothesis density and multi-Bernoulli filtering [4–7]. An RFS involves a
random number of random and unordered elements and with a cardinality distribution
used to estimate the number of elements. Note, however, that RFS based methods for
tracking multiple objects require post-processing to pair objects with their estimated state
parameters. This is avoided by the generalized labeled multi-Bernoulli (GLMB) filter that
uses labeled RFS to estimate the objects identity by assigning distinct labels to different
states [5,6,8]. Although the GLMB approach has been successfully used, its implementation
requires truncation algorithms as the number of association maps and object labels in
computing the filtering density increase exponentially with time. Recently, an efficient
implementation was shown to reduce the number of GLMB truncations using Gibbs
sampling [7]. However, as approximations are still required, it is difficult to extend the
GLMB to practical tracking scenarios with a large number of objects and multimodal
sensing systems [9].
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In recent years, the ubiquitous influence of Bayesian nonparametric modeling has
been well-established as a way to avoid the restrictions of parametric models [10,11].
Infinite-dimensional random measures, such as the Dirichlet process (DP) and Pitman–Yor
process (PYP), allow the number of model parameters to vary with the data. As such, they
have replaced finite mixture models for clustering, estimation, and inference [12–14]. In
tracking, the DP was used to learn the number of objects [15] and the hierarchical DP was
used to learn changes in the object motion model [16]. However, DP is not adequate for
use under time-varying (TV) conditions. In [17,18], TV DP mixtures were used based on
a generalized Polya Urn scheme and stationary DP mixture models. A better matched
Bayesian nonparametric model is the dependent DP that describes dependency among
collections of stochastic processes [19–21]. In particular, the dependent DP and mixture
model allow for a TV number of clusters for processing batch sequential data [22,23]. As a
result, they are well-matched to tracking objects with unknown labels that enter and leave
a scene at different times.

In this paper, we propose to incorporate a family of prior distributions to learn un-
known time-dependent information in the aforementioned tracking problem. The new
multiple object tracking method captures the inherent dynamic dependencies in the state
transition. The time-dependent states are the unknown parameters of the multiple objects
that are estimated while ensuring that they are assigned to the right object. The object state
priors are constructed using the dependent DP and dependent PYP which are shown to
have well-defined marginal distributions. The proposed priors along with the likelihood
thus provide an efficient way to perform robust inference when integrated with Markov
chain Monte Carlo (MCMC) methods. DP mixture models are used to learn and assign
each measurement to its associated object identity. The method accurately estimates the
dynamically-varying cardinality, identity and state parameters of the multiple objects, with
guaranteed convergence.

The rest of the paper is organized as follows. In Section 2, we discuss the multiple
object scenario used in the tracking formulation. In Section 3, we first review the dependent
DP and then use it to describe our proposed tracking method. The extension to the depen-
dent PYP is provided in Section 4. In Section 5, we provide simulations and performance
comparisons with GLMB filtering.

2. Multiple Object Tracking Formulation

We consider the problem of tracking multiple objects moving in a field-of-view (FOV)
over a time period. The number of objects is unknown and time-varying as objects can
enter, exit or stay in the FOV. At any given time step, we want to estimate the number of
objects present in the FOV, to associate each measurement to the object it originated from, to
estimate the location of each object that is present and to associate each estimated location
to its designated object. Note that the solution to such a problem is applicable in many
different scenarios, including tracking cars speeding in busy intersections, monitoring air
traffic in an airport, and tracking neural activity by estimating the orientation and position
of multiple neurons.

If we assume that the `th object, `= 1, . . . , N, transitions from time step (k− 1) to time
step k and that the mth measurement, m = 1, . . . , M, originates from the `th object, then
the state space formulation is given by (throughout the paper, row vectors are denoted by
boldface lower case letters):

x`,k = f (x`,k−1) + v`,k−1 (1)

zm,k = h(x`,k) + wm,k . (2)

Here, x`,k is the vector of unknown state parameters of the `th object, f (·) is the
transition function, v`,k is a random vector representing modeling error, zm,k is the mth
measurement vector with corresponding noise random vector wm,k, and h(·) is the measure-
ment function. Using (1) and (2), the state of the `th object can be obtained by estimating
the posterior probability density function (PDF) p(x`,k | zm,k). This PDF is obtained by
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first predicting the state using the state transition PDF p(x`,k |x`,k−1) and then updating it
using the likelihood p(zm,k |x`,k). However, the complex multiple object tracking problem
needs to learn the assumed knowledge before using (1) and (2). Specifically, we consider
an unknown TV number Nk of objects that enter, leave or stay in the scene at any time. As
the identify (or label) of an object is not known a priori, information must be learned to
ensure that the previous and current state parameters correspond to the same object before
using Equation (1), We also consider a TV number Mk of unordered measurements whose
associations to the different objects are not known. This information must also be learned
before using (2).

The multiple unknown TV information in the resulting problem formulation lead
to some inherent dynamic dependencies in the state transition. In particular, if an object
transitions between time steps, its label at time step k depends on the labels and number
of objects at the previous time step (k− 1); it also depends on the labels already used by
the previously considered objects at the current time step k. Thus, the proposed tracking
approach must account for these dependencies. To that effect, we exploit Bayesian non-
parametric modeling using the dependent DP and dependent PYP to learn the unknown
and TV information. The modeled prior PDFs are then integrated with MCMC methods to
infer the unknown object state parameters.

Our proposed formalism is depicted as a cyclic directed graph in Figure 1. One
can exploit this graphical model to obtain the posterior distribution of the unknown
parameters xk given measurements zk while learning information using parameters θk, as
presented next.

θ`,k−1 θ`,k|k−1 θ`,k

θ`,k+1

`= 1, . . . , Nk−1 `= 1, . . . , Dk|k−1 ∞

`= 1, . . . , Dk+1|k

xk−1 xk

zk−1 zk

Figure 1. Graphical model capturing dependence in obtaining posterior distribution.

3. Multiple Object Tracking with Dependent Dirichlet Process
3.1. Dependent Dirichlet Process as Prior

The DP is a Bayesian nonparametric model for random probability measures on an
infinite dimensional space [10,14]. The DP G ∼ DP(α, G0) defines a prior on the space of
probability distributions, where α > 0 is the concentration parameter and G0 is the base
distribution. The strict breaking construction for the DP is given by [24]:

G(θ) =
∞

∑
`=1

π` δ(θ− θ`), (3)

where θ` ∈ Θ are independent and identically distributed random vectors drawn from G0,
π` ∼V` ∏`−1

l=1 (1−Vl), and V` ∼ Beta(1, α) are beta distributed.
The DP can be used to estimate the unknown density of data x`, `= 1, . . . , N, as

p(x`)=
∫

p(x` | θ`) dG(θ`), where p(x`|θ`) is the data distribution indexed by θ` and the
DP G ∼ DP(α, G0) is its underlying probability random measure. The DP is also useful
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for clustering data using mixture models without prior knowledge on the number of
clusters. Specifically, data samples x` form a cluster if their modeled distribution p(x` |θ`)
is parameterized by the same parameter θ` drawn from G ∼ DP(α, G0). This follows
from the fact that DP is discrete (with probability one) and the same value of θ` can be
drawn multiple times. The DP mixture (DPM) model is a mixture model with a countably
infinite number of clusters. The clustering is learned by probabilistically assigning data to
clusters proportional to the number of elements in that cluster. Given DP parameter set
Θ`−1 = {θ1, . . . , θ`−1}, the predictive distribution of the next θ` drawn from the DP is given
by [14]:

p(θ` |Θ`−1, G0, α) = P(1) G0(θ`) + P(2)
`−1

∑
j=1

δ(θ` − θj) (4)

with probabilities P(1) =
α

`− 1 + α
and P(2) =

1
`− 1 + α

.

Since Θ`−1 is infinitely exchangeable, the probability of generating the set in any order
is the same [25]. Then, the jth cluster is obtained as the set of `j draws from DP that result
in the same unique parameter θ?j . Thus, Equation (4) can also be written as:

p(θ` |Θ`−1, G0, α) = P(1) G0(θ`) + P(2)
`−1

∑
j=1

`j δ(θ` − θ?j ) .

When clustering is required under TV conditions, the DP assumption of exchange-
ability no longer holds. In such scenarios, the DDP provides a well-matched model as it
allows for dynamic clustering [20]. The DDP mixture model and clustering property may
be obtained similarly to the DP. The main difference is that the DDP cluster parameter
set Θk varies with time, allowing for clusters to transition between time steps or for new
clusters to form at any time [21]. We thus make use of the DDP and its properties to solve
the TV multiple object tracking problem.

3.2. Construction of DDP Prior for State Prediction

The proposed DDP-based State Transitioning Prior (DDP-STP) approach exploits the
dynamic clustering property of the DDP prior to model the dynamic dependencies in
the state transition formulation. These dynamic dependencies arise inherently as: (a) the
number of objects present at time step k depends on the number of objects present at the
previous time step (k−1); and (b) the clustering index of the `th object state at time step
k depends on the clustering indices of the previously clustered (`− 1) object states at the
same time step k. We use the DDP prior to learn the dynamic clustering of object states to
ensure that correctly identified object states are used in Equation (1) if the object remains in
the scene. The DDP learned cluster parameter θ`,k−1 is assumed to be assigned to the `th
object with state parameter vector x`,k−1 at time step (k−1). This prior is designed such
that (based on the DDP definition) we have a DP at each time step. Thus, a DP is used
to model a new object entering the scene without requiring any prior knowledge on the
expected number of objects. The DDP-based state prior construction algorithm is described
next in detail and summarized in Algorithm 1 [26].

As the algorithm is recursive, we provide (i) the parameters that are assumed available
at time step (k−1), (ii) the transitioning of the parameters from time step (k−1) to time
step k, and (iii) the development of the object state transition model to form the multiple
object state prior at time step k. Note that, as a nonparametric algorithm, the number of
parameters varies with time as new measurements become available [11]. Note, also, that
the recursive algorithm is initialized by drawing θ`,0 from DP(α, G0).

(i) Parameters available at the previous time step:
At time step (k−1), we assume that Nk−1 objects are present in the tracking scene and
that there are Dk−1 ≤ Nk−1 non-empty (unique) DDP clusters. As unique clusters
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can include more than one object, multiple objects can be related to the same cluster
parameter. We also assume that the following parameters are available at time step (k−1).

– Set of object state vectors, XNk−1,k−1 = {x1,k−1, . . . , xNk−1,k−1}
– Set of DDP cluster parameters for object states, ΘNk−1,k−1 = {θ1,k−1, . . . , θNk−1,k−1}
– Set of unique DDP cluster parameters, Θ?

Dk−1,k−1⊆ΘNk−1,k−1

– Cardinality of lth unique cluster, q?l,k−1 = [q?
k−1]l , l = 1, . . . , Dk−1

– Cluster label indicator, cl,k, l = 1, . . . , Dk−1 and set CDk−1,k−1 = {c1,k−1, . . . , cDk−1,k−1}
(ii) Transitioning between time steps.

From time step (k−1) to time step k, objects may leave the scene or remain (survive)
in the scene. We model this transition using an object survival indicator s`,k|k−1 that is
drawn from a Bernoulli process whose parameter is the probability of object survival
P`,k|k−1. If s`,k|k−1 = 1, the `th object with state x`,k−1 remains in the scene with proba-
bility P`,k|k−1; if s`,k|k−1 = 0, the object leaves the scene with probability (1− P`,k|k−1).

The total number of objects that transitioned is given by Nk|k−1 = ∑
Nk−1
`=1 s`,k|k−1 .

Algorithm 1 Construction of the prior distribution of DDP-STP

(i) Available parameters at time step (k−1)
– Object state parameter x`,k−1, `= 1, . . . , Nk−1, set XNk−1,k−1
– Cluster parameter θ`,k−1, `= 1, . . . , Nk−1, for `th object, set ΘNk−1,k−1
– Parameter of unique cluster θ?l,k−1, l = 1, . . . , Dk−1, set Θ?

Dk−1,k−1
– Cluster label indicator cl,k−1, l = 1, . . . , Dk−1 and set CDk−1,k−1
– Cardinality of lth unique cluster q?l,k−1, l = 1, . . . , Dk−1

(ii) Transitioning from time step (k−1) to k
– Draw object survival indicator s`,k|k−1 ∼ Bernoulli(P`,k|k−1), `= 1, . . . , Nk−1
– If s`,k|k−1 = 1, the `th object survives; if s`,k|k−1 = 0, it leaves the scene

– Compute number of transitioned objects Nk|k−1 =
Nk−1

∑
`=1

s`,k|k−1

– Denote cardinality of lth cluster, l = 1, . . . , Dk−1, after transitioning by ql,k|k−1
– If ql,k|k−1 ≥ 1, cluster survival indicator λl,k|k−1 = 1; if ql,k|k−1 = 0, λl,k|k−1 = 0

– Compute number of unique clusters to Dk|k−1 =
Dk−1

∑
l=1

λl,k|k−1

– Denote cardinality of lth transitioned cluster by q?l,k|k−1, l = 1, . . . , Dk|k−1

– Denote parameter of transitioned cluster by θ?l,k|k−1, l = 1, . . . , Dk|k−1

(iii) Current time step k
for `= 1 to Dk|k−1 do

if Case 1 (on page 6) then
Draw x`,k from the prior PDF in (6) with probability P(1)

k in (5)

else if Case 2 (on page 6) then
Draw θ`,k from p(θ`,k |θ?`,k−1)

Draw x`,k from the prior PDF in (8) with probability P(2)
k in (7)

else if Case 3 (on page 7) then
Draw θ`,k ∼ G0 following DP(α, G0)

Draw x`,k from the PDF in (10) with probability P(3)
k in (9)

end if
end for
Update number of objects Nk using Nk|k−1 and number of new objects under Case 3
Update lth unique cluster cardinality q?l,k and parameter θ?l,k
return XNk ,k, ΘNk ,k
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If all objects in a cluster leave the scene, we assume that the cluster no longer exists.
If at least one object from the cluster remains in the scene, then the cluster survives and
transitions to time step k. After transitioning, we denote the new cardinality of the Dk−1
clusters by ql,k|k−1, l = 1, . . . , Dk−1; if the lth cluster is empty, we set ql,k|k−1 = 0. In order to
keep track of the transitioned clusters, we define a cluster survival indicator λl,k|k−1. We set
λl,k|k−1 = 1 if ql,k|k−1≥1 and λl,k|k−1 = 0 if ql,k|k−1 = 0. Using this indicator, the number of tran-

sitioned clusters is Dk|k−1 = ∑
Dk−1
l=1 λl,k|k−1. We denote by q?l,k|k−1 and θ?l,k|k−1 the cardinality

and parameter, respectively, of the lth unique transitioned cluster, l = 1, . . . , Dk|k−1.

(iii) State prediction at current time step.
We identify the cluster parameter θ`,k for the `th object present at time step k following
three case scenarios. In Case 1, the `th object survived, `= 1, . . . , Nk|k−1, from a transi-
tioned cluster that is already occupied by at least one of the first (`− 1) transitioned
objects. In Case 2, the `th object survived, `= 1, . . . , Nk|k−1, from a cluster not yet
transitioned. In Case 3, a new object enters the scene and a new cluster is generated.
The prior state PDF obtained in each case is discussed next.

Case 1: The `th object transitioned in a cluster already occupied by at least one of the
(`−1) previously clustered objects. As the cluster label indicator set CDk ,k induces an infinite
exchangeable random partition, the `th object is assumed the last to be clustered. The
object selects an existing transitioned cluster with probability P(1)

k = Pr
(
select lth cluster,

l ≤ Dk|k−1 | Θ`−1,k
)
, where:

P(1)
k =

ql,k +

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(cl,k − cj,k)

(`− 1) + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

. (5)

Thus, the probability depends both on the number of objects in the lth cluster at time
k and on the number of objects that survived in the same cluster from time (k−1). With
probability P(1)

k , the state prior PDF of the `th object is given by:

p1

(
x`,k | X`−1,k,X`,k−1, Θ?

Dk|k−1,k|k−1, Θ`−1,k

)
∝ p(x`,k |x`,k−1, θ`,k), (6)

where: p(x`,k | x`,k−1, θ`,k) is obtained from (1), and is selected from an infinite number
of Gaussian PDFs with parameter θ`,k. It is worth mentioning that we only choose Gaus-
sian PDFs for the sake of simplicity and one can choose any valid distribution without
compromising the theory.

Case 2: The `th transitioned object is in a cluster that has not yet been selected by
the previous (` − 1) objects. The object transitions in this cluster with the probability:

P(2)
k = Pr

(
select lth cluster, l≤Dk|k−1 | Θ`−1,k

)
, where:

P(2)
k =

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(cl,k − cj,k)

(`− 1) + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

. (7)

The cluster parameter θ`,k associated with the `th object is drawn from the DDP prior
PDF p(θ`,k |θ?`,k−1) that evolves through transition equation θ`,k = θ?`,k−1 + νk−1 where νk−1
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is a known time-dependent Gaussian variable. With probability P(2)
k , the state prior PDF of

the `th object is given by:

p2

(
x`,k | X`−1,k,X`,k−1, Θ?

Dk|k−1,k|k−1, Θ`−1,k

)
∝ p(x`,k |x`,k−1, θ`,k) p(θ`,k |θ?`,k−1) . (8)

Case 3: As the `th object enters the scene at time k, it does not belong to an exist-
ing cluster. A new cluster is formed with parameter θ`,k ∼ G0 obtained from the base
distribution of DP(α, G0). The object selects this cluster with probability

P(3)
k = Pr

(
new cluster | Θ`−1,k

)
=

α

(`− 1) + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

. (9)

With probability P(3)
k , the state PDF is obtained as:

p3(x`,k) =
∫

θ
p(x`,k | θ) dG0(θ) . (10)

Thus, the predicted object state parameter distribution at time step k is given by:

p(x`,k |x`,k−1, θ`,k, θ?`,k−1) ∝


p(x`,k |x`,k−1, θ`,k) , if Case 1
p(x`,k |x`,k−1, θ`,k) p(θ`,k |θ?`,k−1), if Case 2
p3(x`,k), if Case 3

(11)

For Cases 1 and 2, the object cardinality at time step k is set to Nk = Nk|k−1. Furthermore,
the cluster parameter θ`,k is set to θ?l,k|k−1, if the lth transitioned cluster includes the `th
transitioned object. For Case 3, Nk is given by Nk|k−1 plus the number of new objects
entering scene. Before the next time step, we denote the lth unique cluster cardinality and
parameter by q?l,k, cl,k and θ?l,k, , respectively.

The DDP in Cases 1–3 defines marginal DPs at each time step k, given the DDP config-

urations at time step (k− 1). We denote this as: DDP-STPk |DDP-STPk−1 ∼ DDP
(

α, H
)

,
with the base distribution given by

H(θ`,k) = P(1)
k

Dk

∑
j=1

θj,k∈ΘDk ,k

δ(θ`,k − θj,k) + P(2)
k

Dk

∑
j=1

θj,k∈Θ?
Dk ,k|k−1\ΘDk ,k

p(θ`,k |θ?`,k−1) δ(θ`,k − θj,k) + P(3)
k G0(θ`,k) (12)

Note that the DDP-based model also allows for the variation and labeling of clusters
as it is defined in the space of partitions.

3.3. Learning Measurement Model for State Update

The predicted state parameter distributions at time step k in (11) needs to be updated
using the available measurements zm,k, m = 1, . . . , Mk. The updated distribution is then
used to estimate the time-dependent object cardinality and to infer posterior distributions
using MCMC. We assume that each measurement is generated by only one object, and
thus belongs to only one cluster, and is independent of other measurements. We can
thus exploit Dirichlet process mixtures (DPMs) with the base distribution drawn from the
DDP in Algorithm 1 to cluster the measurements. Note that the measurement vectors are
unordered in that the mth measurement is not necessarily associated to the `th object state.
As the objects are already labeled from their DDP clustering, the DPM model is used to
learn the association between each measurement and its corresponding object label. The
likelihood distribution is inferred from:

zm,k |x`,k, ψm,k ∼ p(zm,k |x`,k, ψm,k) (13)
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where p(zm,k | x`,k, θ`,k, ψm,k) depends on DDP(α, H), on the measurement likelihood
function p(zm,k | x`,k, ψm,k) in (2), and on DP(β, H′) for the measurement parameters ψ.
Algorithm 2 summarizes the mixing process that associates measurements to objects. Note
that, as a result of using DPMs, clutter can be separated from measurements that originate
from objects without requiring prior knowledge of the clutter statistics. This ensures that
performance does not deteriorate when tracking in clutter.

Algorithm 2 Infinite mixture model for measurement-to-object association

Input: {z1,k, . . . , zMk ,k}, measurements
From construction of prior distribution from Algorithm 1
Input: Object state vectors {x1,k, x2,k, . . .}
Input: Cluster parameter vectors {θ1,k, θ2,k, . . .}
Input: Cluster label indicators
At time k:
for m = 1 to Mk do

Draw zm,k | x`,k, ψm,k from Equation (13)
return CDk ,k, induced cluster assignment indicators

end for
return Dk (number of clusters) and CAk
return posterior of zm,k | x`,k, θ`,k, m = 1, . . . , Mk

The Bayesian posterior to estimate the target trajectories is efficiently implemented
using a Gibbs sampler inference scheme. The scheme iterates between sampling the
object states and the dynamic DDP parameters, and it is based on the discreteness of the
DDP [20,27]. Marginalizing out all parameters, the Bayesian posterior is:

p(x`,k |Zk) =
∫

p(x`,k |Zk, ΘDk ,k, Ψk) dG(ΘDk ,k |Zk) dG(Ψk |Zk) (14)

where G(ΘDk ,k|Zk) is the cluster parameter posterior distribution given the measurements
and G(Ψk |Zk) is the parameter posterior distribution given the measurements. As the
direct computation of Equation (14) is not realizable [12,28], we exploit Gibbs sampling to
predict x`,k given the measurements. Note that it can be shown that the posterior predictive
distribution of state parameters is given by:

π(θ`,k | ΘDk ,k) = P(1)
k

Dk

∑
j=1,j 6=`

θj,k∈ΘDk ,k

δ(θ`,k − θj,k) + P(2)
k

Dk|k−1

∑
j=1,j 6=`

θj,k∈Θ?
Dk|k−1,k|k−1\ΘDk ,k

p(θ?`,k |θ`,k−1) δ(θ`,k − θj,k) + P(3)
k G0(θ`,k). (15)

The posterior distribution of the states given the parameters and measurements,
p(x`,k |Zk, ΘDk ,k, Ψk) is evaluated as:

p(x`,k |Zk, ΘDk ,k, Ψk) ∝ p(zm,k |x`,k, ψm,k)p(x`,k |Zk−1, ΘDk ,k, Ψk−1). (16)

The Gibbs sampler distribution for state parameters ΘDk ,k given the measurements is

θ`,k | Θ(−`)
k ,Zk ∼

Dk

∑
l=1

ξl,k δ(θ`,k − θl,k) +

Dk|k−1

∑
l=1

l /∈CDk ,k

βl,k p(z`,k | xl,k, θl,k) + γ`,k H`,k(θ`,k), (17)
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where Θ(−`)
k = {θ1,k, θ2,k, . . . , θ`−1,k, θ`+1,k, . . . , θDk|k−1,k}, γ`,k = 1−

Dk

∑
l=1

ξl,k −
Dk|k−1

∑
l=1

l /∈CDk ,k

βl,k,

ξl,k = p(z`,k | xl,k, θl,k)

ql,k +

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(cl,k − cj,k)

(`− 1) + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

βl,k =

Dk|k−1

∑
j=1

j/∈CDk ,k

q?j,k|k−1 λj,k|k−1

(`− 1) + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

.

Furthermore, H`,k(θ`,k) ∝ p(z`,k | xj,k, θj,k) G0(θ`,k) and G0 is the base distribution
on θ`,k. The derivation is provided in [28]. It can be shown that the Gibbs sampler for
G(Ψk|Zk) is:

ψm,k |Zk, Ψ(−m)
k ∼ ∑

s 6=m
qmsδ(θm,k − θm,s) + rmHm,k (18)

where Ψ(−m)
k is the set of all parameters excluding the mth measurement. Furthermore,

qms ∝ p(zm,k |x`,k, ψm,s), Hm,k is the distribution of ψ |zm,k, H′, and ∑s 6=m qms + rm = 1.

3.4. DDP-STP Approach Properties

Convergence: In the Gibbs sampler, it can be shown that the cluster parameter transition
kernel converges to the posterior distribution for almost all initial conditions θ`,0. If after

n iterations of the algorithm, A(n)
k (ΘDk ,k | θ`,0) is the transition kernel for the Markov

chain starting at θ`,0 and stopping in the set ΘDk ,k, then it can be shown to converge to the

posterior G(ΘDk ,k | Zk) given measurements Zk at time step k. Specifically, ||A(n)
k (ΘDk ,k |

θ`,0) − G(ΘDk ,k | Zk)||TVN → 0 as n → ∞, for almost all initial conditions in the total
variation norm (TVN) (see [29,30] in relation to the Gaussian distribution). The proof of
convergence can be found in [28].

Exchangeability: The infinite exchangeable random partition induced by CDk ,k at time k
follows the exchangeable partition probability function [25]:

pNk (q
?
k ) =

αDk

α[Nk ]

Dk

∏
j=1

(q?j,k − 1)

where q?
k = [q?1,k . . . q?Dk ,k]

T , q?l,k is the cardinality of the cluster with assignment indicator

cl,k ∈ CDk ,k, and α[n] = α(α + 1) . . . (α + n − 1). Due to the variability of Nk, there is an
important relationship between the partitions based on Nk − 1 and Nk. In particular,
given the configuration at time (k− 1), pNk−1(q?

k )= ∑Dk
j=1 pNk (q

?
j,k) + pNk

(
[q?

k 1]
)
, where

q?
j,k = [q?1,k . . . (q?j,k + 1) q?j+1,k . . . q?Dk ,k]. This relationship entails a notion of consistency

of the partitions in the distribution sense, and it holds due to the Markov property of the
process given the configuration at time (k− 1).

Consistency: We consider rθ0 to be the true measurement density with probability
measure Rθ0 . Then, if rθ0 is in the Kullback–Leibler (KL) support of the prior distribution in
the space of all parameters [31], then the posterior distribution G(· |Zk) can be shown to be
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weakly consistent at rθ0 . It is also important to investigate the posterior contraction rate as it
is highly related to posterior consistency. This rate shows how fast the posterior distribution
approaches the true parameters from which the measurements are generated. As detailed
in [28], the contraction rate matches the minimax rate for density estimators. Hence, the
DDP prior constructed through the proposed model achieves the optimal frequentist rate.

4. Tracking with Dependent Pitman–Yor Process

Another Bayesian nonparametric model for random probability measures is the
Pitman–Yor process (PYP) G ∼ PYP(d, α, G0) [13]. In addition to the concentration pa-
rameter α and based distribution G0 offered by the DP, the PYP includes the discount
parameter d ∈ (0, 1), with α > −d. When d = 0, the PYP simplifies to DP(α, G0). The
discount parameter allows for a higher flexibility in clustering as the number of unique
clusters under a PYP prior grows much more rapidly than a DP prior [32]. The stick
breaking construction for the PYP is similar to (3) but with beta distributed parameters
V` ∼ Beta(1− d, α + ` d).

This flexibility in clustering allows us to extend the tracking algorithm in Section 3 by
replacing the dependent DP by the dependent PYP (DPYP). The PYP model has a higher
probability of having a large number of unique clusters; also, clusters with only a small
number of objects have a lower probability of selecting new objects. In particular, for Nk
objects to be clustered, whereas the expected number of unique clusters used by the DP
during transitioning is α log (Nk), the number used by the PYP follows the power law αNd

k .
The more flexible DPYP model is better matched to increased TV activity in objects entering
or staying in the scene at each time step.

The proposed DPYP state transitioning prior (DPY-STP) tracking approach is devel-
oped similarly to the DDP-based approach. The main difference is in the object clustering
when constructing the state prior distribution. In particular, the probability of an object
selecting a particular cluster following Cases 1–3 in Section 3.2 are now given as follows [33].
Under Case 1, the transitioned object selects an existing transitioned cluster with probability

P(1)
k =

ql,k +

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(cl,k − cj,k)− d

`−1

∑
i=1

qi,k + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

.

Under Case 2, the transitioned object selects a cluster not yet selected with the probability:

P(2)
k =

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(cl,k − cj,k)− d

`−1

∑
i=1

qi,k + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

.

Under Case 3, a new cluster is generated with the probability:

P(3)
k =

α + d D(`−1)
k

`−1

∑
i=1

qi,k + α +
`−1

∑
i=1

Dk|k−1

∑
j=1

q?j,k|k−1 λj,k|k−1 δ(ci,k − cj,k)

.

where D(`−1)
k is the total number of clusters used by the previous (`− 1) objects.

The main difference in the learning algorithm to update the object states in Section 3.3
is that the mixing measure is drawn from the DPYP. Both the DDP-STP and DPY-STP
algorithms use DPMs to learn the measurement-to-object associations.
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5. Simulation Results

We use simulations to demonstrate the performance of the proposed DDP-STP and
DPY-STP tracking methods. We also compare them with the generalized labeled multi-
Bernoulli filter (GLMB) that models time-variation using labeled RFS [5–7]. In all experi-
ments, the tracking involves an unknown and TV number of moving unlabeled objects that
enter, leave or stay in the scene at different time steps. In addition, the measurements are
unordered and their associations to the objects are unknown. We also add more complexity
to the tracking scene, including the presence of clutter, objects moving in close proximity,
and varying signal-to-noise ratio (SNR).

Our simulations consider the tracking of multiple objects that are moving in the two-
dimensional (2D) plane. For example, the simulated scenario can involve the tracking
of an unknown number of cars that move in and out of a busy intersection, where it is
possible for a car to make a left or right turn. Unless otherwise stated, the simulations used
the following parameters. We assume that there are Nk cars moving in the scene at time
step k. The unknown state parameter vector for the `th car is x`,k = [x`,k ẋ`,k y`,k ẏ`,k ω`,k],
`= 1, . . . , Nk, where (x`,k, y`,k) and (ẋ`,k, ẏ`,k) are the 2-D Cartesian coordinates for the
car’s position and velocity, respectively, and ω`,k is the car’s constant turn rate. The state
transition that describes the physics-based model of coordinated turn motion is given by
x`,k = F x`,k−1 + v`,k−1, where matrices F and Qv, the covariance matrix of the zero-mean
Gaussian modeling error v`,k−1, are:

F =



1 sin(ωk−1)
ωk−1

0 − 1−cos(ωk−1)
ωk−1

0

0 cos(ωk−1) 0 − sin(ωk−1) 0

0 1−cos(ωk−1)
ωk−1

1 sin(ωk−1)
ωk−1

0

0 sin(ωk−1) 0 cos(ωk−1) 0

0 0 0 0 1


, Qv =



σ2

4
σ2

2 0 0 0

σ2

2 σ2 0 0 0

0 0 σ2

4
σ2

2 0

0 0 σ2

2 σ2 0

0 0 0 0 σ2
v


with σ = 15 m/s2 and σv = π

180 rad/s. The measurements, angle bearing φk ∈ (−π
2 , π

2 )
and range rk ∈ (0, 2) km, are related to the unknown state parameters according to
zk = [φk rk] + wk = h(x`,k) + wk, where h(x`,k)= [arctan(y`,k/x`,k) (x2

`,k + y2
`,k)

1/2]. The noise
wk is assumed zero-mean Gaussian with covariance matrix Qw = diag(25, ( π

180 )
2); the SNR

is −3 dB. The maximum number of time steps is 100 and 10,000 Monte Carlo realizations
are simulated. For DDP and DPYP, the cluster parameter base distribution G0 is generated
using a normal-inverse Wishart distribution and the gamma distribution is used as the prior
for the concentration parameter α. The probability of object survival is P`,k|k−1 = 0.95, ∀`.
We use the optimal subpattern assignment (OSPA) metric, with cut-off parameter c = 100
and order p = 1, to compare the tracking performance [34]. This is a metric associated with
tracking multiple objects as it provides both cardinality and state estimation error. Note
that the lower the OSPA value the higher the performance.

Experiment 1. DDP-STP for tracking multiple objects in clutter. We consider the tracking of a
maximum number of 10 moving objects, similar to the example used for the GLMB (see Section IV.B
in [7]). The noisy measurements are assumed to have originated either from the objects or from
clutter. In the simulations, we assumed that the number of false alarms follows a Poisson distribution
with average ρV = 40, where ρ is the clutter density and V is the validation gate volume. Note that
the validation gate corresponds to a region in the observation space with measurements validated to
have potentially originated from the objects [35]. The clutter model also assumes that the clutter is
uniformly distributed in the volume. For each object, Table 1 lists the time steps they enter and leave
the scene, together with the (x, y)-coordinates at which they enter the scene. These coordinates are
marked by ? in Figure 2; the figure also depicts the true coordinates of the moving objects. For this
example, NIW(0.001, 0, 50, I) was used for G0 and Γ(1, 0.1) for α; here, I is the identify matrix.
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Figure 2. True (x, y)-coordinates for the moving 10 objects in Example 1; the object number and the
coordinate at which the object enters the scene (marked by ?) are listed in Table 1.

Table 1. Enumerated objects in Experiment 1 with time steps at which `th object enters and leaves
the scene and (x, y)-coordinate at which object enter the scene.

Object Time Step k Time Step k (x, y) m That
Number ` Object Enters Object Leaves Object Enters

1 0 100 (1000, 1488)
2 10 100 (−245, 1011)
3 10 100 (−1500, 260)
4 10 66 (−1450, 250)
5 20 80 (245, 740)
6 40 100 (−256, 980)
7 40 100 (950, 1470)
8 40 80 (230, 740)
9 60 100 (930, 1500)

10 60 100 (220, 750)

The xk and yk coordinates estimated using the DDP-STP are compared to the true ones
in Figure 3a,b, respectively. As the mixing measure used to infer the likelihood distribution
in (13) is drawn from the DDP, the DDP-STP identifies the measurements that are not
on the tracks as clutter and does not use it to update the object states. Figure 4a,b show
the estimated TV object cardinality for the DDP-STP and GLMB, respectively. The OSPA
cardinality is also compared in Figure 5b and the OSPA for the estimated range (computed

as
√

x2
k + y2

k) is compared in Figure 5a. As shown, the new DDP-STP method results in
higher tracking performance than the GLMB. This is because the GLMB filter is highly
sensitive to the presence of clutter as it assumes that clutter statistics are known a priori [36];
this assumption is not needed for the DDP-STP. The GLMB also uses approximations to
update the tracks.
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Figure 3. (a) xk and (b) yk actual and DDP-STP estimated coordinates at time step k in Experiment 1.
DDP-STP determines that the scattered measurements (marked by x) correspond to clutter.
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Figure 4. Estimated cardinality using (a) DDP-STP and (b) GLMB in Experiment 1.
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Figure 5. (a) OSPA range and (b) OSPA cardinality using DDP-STP and GLMB in Expriment 1.
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Experiment 2. DDP-STP for tracking multiple objects in close proximity. We consider a more
complex scenario, where objects are moving in close proximity to each other. A maximum of 5 objects
enter the scene at times steps k = 0, k = 5, k = 20, k = 30, and k = 40, respectively; they leave the scene
at time steps k = 70, k = 100, k = 100, k = 45, and k = 80. All 5 objects follow the same path but at
different times. For this experiment, NIW(0.001, 0, 100, I) was used for G0 and Γ(1, 0.3) for the
concentration parameter prior. The comparison between the DDP-STP and GLMB for the estimated
cardinality and OSPA metrics are shown in Figures 6 and 7, respectively. As demonstrated, the
DDP-STP performs much higher than the GLMB for closely-spaced targets.
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Figure 6. True and estimated cardinality using (a) DDP-STP and (b) GLMB in Experiment 2.
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Figure 7. OSPA (a) range and (b) cardinality using DDP-STP and GLMB in Experiment 2.

Experiment 3. DDP-STP for tracking multiple objects under varying SNR. We demonstrate the
effect of varying the SNR when tracking multiple targets using DDP-STP. In this experiment, we
assume that 11 objects enter and leave the scene at different times, as shown by the true object
cardinality in Figure 8. We use ωk = 0 and assume that only range measurements are available.
The tracking was simulated for −3 dB, −5 dB and −10 dB SNR using NIW(0, 0, 100, I) for G0
and Γ(1, 0.2) for α. The estimated cardinality is compared to the true one for decreasing SNR
in Figure 8a–c. As expected, the performance of the DDP-STP decreases as the SNR decreases.
Figure 9a,b compare the OSPA range and OSPA cardinality performance as the SNR decreases.
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Figure 8. Comparison of true and estimated object cardinality using DDP-STP for (a)−3 dB, (b)−5 dB,
and (c) −10 dB SNR in Experiment 3.
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Figure 9. DDP-STP OSPA (a) range and (b) cardinality for −3, −5 and −10 dB SNR in Experiment 3.

Experiment 4. DPY-STP and DDP-STP for tracking multiple objects. As discussed in Section 4,
the DPYP is a better match than the DDP when tracking objects with high variability in the
scene. This is demonstrated by comparing the new DPY-STP and DDP-STP methods in tracking a
maximum number of 10 targets. The simulations used NIW(0, 0, 100, I) for G0 and Γ(1, 0.1) for α
for both methods. Using empirical Bayes, the DPYP discount parameter value was approximated to
d = 0.37. The increased performance of the DPY-STP is demonstrated by comparing the true and
estimated range obtained by the DPY-STP and DDP-STP in Figure 10. The increased performance
is attributed to the increased flexibility of the DPYP in dynamically selecting clusters with a large
time-varying number of objects moving in the tracking scene. We also demonstrate this using
the OSPA metric with cut-off c = 100 and order p = 1. We observe that DPY-STP has a better
performance compared to DDP-STP as depicted in Figure 11.
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Figure 10. Range estimation using DPY-STP (top) and DDP-STP (bottom) in Experiment 4.
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Figure 11. OSPA comparison between DPY-STP (black) and DDP-STP (blue).

6. Conclusions

We proposed new methods for tracking multiple objects under various unknown
conditions. In particular, the number of moving objects is unknown and varies with time,
as objects can enter, leave or remain in the tracking scene at any time. Furthermore, the
measurements are unordered and the measurement-to-object associations are unknown.
The methods integrate Markov chain Monte Carlo methods with dependent Bayesian
nonparametric models to account for dynamic dependencies in the tracking formulation.
Specifically, the proposed DDP-STP tracking algorithm exploits the dynamic clustering
property of the dependent Dirichlet process (DDP) to learn unlabeled information in the
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state transition formulation. Dirichlet process mixtures are used to associate measurements
to objects, drawing the mixing mixtures from DDP to learn the likelihood distribution.
The Bayesian posterior used to obtain the object state estimates is efficiently implemented
using a Gibbs sampler inference scheme. The second proposed tracking method, DYP-STP
uses the dependent Pitman–Yor (DPY) process. The DPY-STP is advantageous over the
DDP-STP when higher variability in the dynamic clustering is required to handle the higher
variability in the tracking formulation.

We used simulations to compare the DDP-STP with the generalized labeled multi-
Bernoulli (GLMB). We demonstrated that the dynamic clustering offered by the DDP is more
flexible to object labeling in addition to identifying measurement-to-object associations
using DP mixtures. Allowing for a dynamically varying number of clusters, the new
methods perform well even in the presence of clutter measurements without knowledge of
clutter statistics needed by the GLMB. Furthermore, unlike the GLMB, the new methods
do not require any approximations in solving rank assignments. This allows for more
efficient implementation in the new methods as well as their applicability in tracking a
large number of objects in multimodal sensing systems.
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