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Abstract: Chlorophyll content is an important indicator of plant photosynthesis, which directly
affects the growth and yield of crops. Using hyperspectral imaging technology to quickly and
non-destructively estimate the soil plant analysis development (SPAD) value of pepper leaf and its
distribution inversion is of great significance for agricultural monitoring and precise fertilization
during pepper growth. In this study, 150 samples of pepper leaves with different leaf positions were
selected, and the hyperspectral image data and SPAD value were collected for the sampled leaves. The
correlation coefficient, stability competitive adaptive reweighted sampling (sCARS), and iteratively
retaining informative variables (IRIV) methods were used to screen characteristic bands. These were
combined with partial least-squares regression (PLSR), extreme gradient boosting (XGBoost), random
forest regression (RFR), and gradient boosting decision tree (GBDT) to build regression models. The
developed model was then used to build the inversion map of pepper leaf chlorophyll distribution.
The research results show that: (1) The IRIV-XGBoost model demonstrates the most comprehensive
performance in the modeling and inversion stages, and its R2

cv, RMSEcv, and MAEcv are 0.81, 2.76,
and 2.30, respectively; (2) The IRIV-XGBoost model was used to calculate the SPAD value of each
pixel of pepper leaves, and to subsequently invert the chlorophyll distribution map of pepper leaves
at different leaf positions, which can provide support for the intuitive monitoring of crop growth and
lay the foundation for the development of hyperspectral field dynamic monitoring sensors.

Keywords: pepper leaf; SPAD value; hyperspectral inversion; characteristic waveband selection

1. Introduction

Chlorophyll content is one of the most important indicators of the health status of
crops and is significant for guiding crop fertilization and field management in different
crop growth periods [1]. SPAD values can be directly used as relative values to characterize
chlorophyll content. A portable chlorophyll meter is usually used to measure the SPAD
value of plant leaves to directly characterize the relative plant chlorophyll content. How-
ever, leaves need to be repeatedly inserted during the process, which makes large-scale
chlorophyll detection using this method difficult. Research shows that the SPAD value
can be used to accurately derive hyperspectral remote sensing data in a non-destructive
and pollution-free manner at a low price. In recent years, hyperspectral remote sensing
has become a powerful tool for chlorophyll content estimation. Because it is rapid, non-
destructive, and capable of detecting chlorophyll over large areas, it is of great significance
for crop growth monitoring, precise fertilization, and yield evaluation [2,3].

Hyperspectral imaging technology combines the advantages of both spectrum and
image. It has a high resolution and multi-band capabilities. Further, it integrates an atlas,
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combining traditional imaging and spectral technologies [4]. Changes in plant chlorophyll
content lead to changes in the plant reflectance spectrum characteristics [5]. The use of
hyperspectral technology to obtain plant growth parameters provides a theoretical basis
for measuring chlorophyll, which makes it possible to monitor the growth of crops across
a large area [6]. Traditional chlorophyll determination methods mainly rely on chemical
experiments, are labor intensive, consume a lot of material resources, and require sample
destruction. Although portable chlorophyll meters can measure chlorophyll content in real
time, they require manual and repeated measurements, which limits their application in
the monitoring of large areas. Furthermore, portable devices can only provide information
about the chlorophyll content at a certain point of the leaf, which is not sufficient to obtain
an accurate whole-leaf chlorophyll concentration [7].

Hyperspectral technology can not only quantitatively predict the chlorophyll content
of the plant leaf but also perform inversion research and image presentation on the distribu-
tion of the leaf’s chlorophyll content. Zhao et al. used this technology in combination with
vegetation index analysis to develop a method that uses hyperspectral imaging technology
to obtain five different images in real time to facilitate measurements of leaf water status,
relative water content, and equivalent water thickness in tomato varieties [8]. Daughtry
and Wu et al. analyzed the accuracy of more than 10 spectral indices, such as MCARI and
OSAVI, to estimate the chlorophyll concentration in maize leaves [9,10]. Yu et al. collected
samples of leaves, roots, and stems of pepper plants and determined the nitrogen content
using a random frog algorithm combined with the partial least-squares method to establish
the nitrogen content growth model of the pepper plant [11]. Their results show that hyper-
spectral imaging is a very promising technology and has great potential for determining
the spatial distribution of nitrogen content in pepper plants.

However, there are no studies that use hyperspectral imaging to examine the differ-
ences in spatial distribution of SPAD values in leaves located at different positions on
pepper plants. Therefore, to ascertain the response of pepper plants’ leaf chlorophyll
spatial distribution during the growth process, this study adopted hyperspectral imaging
technology to develop a method for diagnosing the SPAD value and mapping the spatial
distribution of chlorophyll in leaves located at different positions. Four algorithms were
used to screen the sensitive wavelengths of pepper leaf chlorophyll diagnosis. These were
combined with four regression models to establish a SPAD value diagnostic model. This
lays a foundation for the dynamic response of chlorophyll during the growth season of
pepper plants.

2. Materials and Methods
2.1. Sample Collection

The study area was located in Wuhu Dehong Ecological Agriculture Co., Ltd. (118◦12′ E,
31◦26′ N), Shuangba Village, Shenxiang Town, Jiujiang District, Wuhu City, China. It
has a subtropical temperate monsoon climate, with sufficient sunlight and rainfall. The
experimental variety was Wanjiao 177, the planting time was 20 July 2020, and the collection
time was 7 September 2020. The pepper samples were collected at the seedling stage. The
fertilization level was selected according to the local conventional fertilization level. The
pepper leaves are arranged in descending order according to the leaf growth sequence
and are divided into upper, middle, and lower leaves. The upper leaves were the smallest
in size, while the lower leaves were the largest. The size of the middle leaves was in
between the sizes of the upper and lower leaves (Figure 1). The leaves of the pepper plants
were artificially plucked. Fifty leaves were randomly collected from three leaf positions
of different pepper plants. Hence, 150 leaf samples in total were placed in a sealed bag to
keep the leaves fresh, and taken back to the laboratory immediately to obtain hyperspectral
image data.
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Figure 1. Pepper plant leaf position.

2.2. Chlorophyll Determination

The SPAD-502 Plus chlorophyll meter (Konica Minoita, Tokyo, Japan) was used to
measure chlorophyll content. SPAD values can be directly used as relative values to charac-
terize chlorophyll content [12–14]. The chlorophyll meter has the following characteristics:
measurement area: 2 × 3 mm2; measurement accuracy: ±1.0 SPAD unit; and measurement
range: −9.9–199.9 SPAD unit. Each leaf was divided into six plots (as shown in Figure 2).
Three measurements were recorded for each plot, and the average value was taken as the
final result of the chlorophyll content of the leaves.

Figure 2. Sampling area of pepper leaves.

The formula used to calculate the SPAD values is shown in Equation (1):

SPAD =K · lg
(

IRt/IR0
Rt/R0

)
(1)

where K is a constant; IRt is the incident 940 nm infrared light intensity passing through
the blade; IR0 is the emitted infrared light intensity; Rt is the incident 650 nm red light
intensity passing through the blade; and R0 is the emitted red light intensity.

2.3. Hyperspectral Data Collection

After completing the chlorophyll measurements, the leaves were cleaned with ultra-
pure water, and the excess surface water was removed using an absorbent paper. Figure 3
shows a schematic diagram of the hyperspectral imaging system used in this study (Wuxi
Dualix Spectral Image Technology Co., Ltd. (formerly Sichuan Dualix Spectral Image Tech-
nology Co., Ltd.), Wuxi, China, Model: GaiaSorter). The imaging system mainly includes
a tungsten halogen lamp as the light source, a hyperspectral camera, an electronically
controlled mobile platform, a server and computer control, and other parts.
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Figure 3. Schematic diagram of the GaiaSorter hyperspectral imaging system. 1. Hyperspectral
imager, 2. imaging lens, 3. halogen lamp, 4. sample table, 5. correction whiteboard, and 6. electric
translation table.

The height between the hyperspectral camera and the displacement platform was
60 cm, and the height between the halogen tungsten light source and the displacement
platform was 40 cm. The wavelength range was 400–1000 nm, and the spectral resolution
was 3.6 nm. Experiments were performed in a dark box to perform image correction on the
collected spectral images. The image correction formula is given in Equation (2).

Rre f =
DNraw − DNdark

DNwhite − DNdark
(2)

where Rre f is the corrected image, DNraw is the original image, DNwhite is the whiteboard
image, and DNdark is the blackboard corrected image.

2.4. Spectral Extraction

ENVI 5.3 was used to read the hyperspectral image data of pepper leaves and select six
representative rectangular regions of interest (avoiding leaf veins) in the image (Figure 2)
as the original spectrum of the sample. A weighted average spectrum was also obtained,
which was used as the original spectral data (Figure 4).

Figure 4. Original spectral curve.
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2.5. Research Methods
2.5.1. Correlation Coefficient Method

Spearman’s correlation coefficient, which is an index that measures the association
between two sets of variables, was used to describe the relationship between the spectral
characteristics and SPAD value of pepper leaves [15,16]. We used a monotonic equation to
evaluate the correlation between the two statistical variables. The formula used is shown
in Equation (3):

ρ =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1 (xi − x)2∑N
i=1 (yi − y)2

(3)

where ρ represents the correlation coefficient, xi is the reflectance of the ith band, yi is the
SPAD value of the ith leaf sample, x is the average reflectance, and y is the average SPAD
value of the pepper leaves.

2.5.2. Stability Competitive Adaptive Reweighted Sampling (sCARS)

sCARS is an advanced wavelength selection method that gradually removes unimpor-
tant variable information to achieve the purpose of collecting informative variables [17,18].
The algorithm defines the critical wavelength as the wavelength with the largest absolute
value of the regression coefficient in a multivariate linear model (such as PLSR). sCARS
can be summarized as follows:

1. Select N wavelength subsets from N Monte Carlo sampling [19] runs in an iterative
and competitive manner. In each sampling process, a fixed proportion of samples is
randomly selected to establish a calibration model.

2. Perform a two-step process to select characteristic wavelengths: use an exponential
decrease function [17] for wavelength selection and use adaptive reweighted sampling
to achieve competitive wavelength selection.

3. Use cross-validation [20] to select the subset with the smallest cross-validation root
mean square error (RMSECV).

2.5.3. Iteratively Retaining Informative Variables

Iteratively retaining informative variables (IRIV) is a feature variable selection algo-
rithm based on the binary matrix shift filter (BMSF) [21]. Each row of the matrix (containing
random combination of the variables) separately establishes partial least-squares mod-
els and uses RMSECV to evaluate the effect of different random variable combination
models [22,23]. Based on the model cluster analysis method, the average value of RM-
SECV with and without the variable is calculated for each wavelength, and the difference
between the two, known as the difference of mean values (DMEAN), is obtained. The
non-parametric test method, Mann–Whitney U test, is used for hypothesis testing [22,24].
Each iteration generates different DMEAN and p values. Both the strongly and weakly
informative wavelength variables are retained. After multiple iterations, the uninformative
wavelength variables and interfering wavelength variables are eliminated, and finally,
reverse elimination is performed to obtain the optimal characteristic wavelength variable.

Step 1: The raw data of m samples of p variables are formed into a matrix A containing
only the numbers 0 and 1, where the number 1 represents a variable used for modeling, and
the number 0 means that the variable was not used for the modeling. The RMSECV value
obtained by five-fold cross-validation was used as the evaluation standard, and the vector
of m× 1 size was recorded as RMSECV0. substitute 1 in the ith column (i = 1, 2, ..., p) of
matrix A for 0, and 0 for 1 to obtain matrix B. The partial least squares (PLS) model is also
established in each row of matrix B, and the vector of m× 1 size is recorded as RMSECVi.

Step 2: Define ϕ0 and ϕi to evaluate the importance of each variable as follows:

ϕ0k =

{
kthRMSECV0
kthRMSECVi

Aki = 1
Bki = 1

; ϕik =

{
kthRMSECV0
kthRMSECVi

Aki = 0
Bki = 0

(4)



Sensors 2022, 22, 183 6 of 19

where kth represents the kth line in the vector, and the kthRMSECV0 and kthRMSECVi rep-
resent the values of the kth row in the vectors RMSECV0 and RMSECVi, respectively. The
mean values of ϕ0 and ϕi are denoted as Mi,in and Mi,out, respectively, and the two mean
values are subtracted to obtain DMEANi. If DMEANi < 0, it is a strongly informative
variable or a weakly informative variable; if DMEANi > 0, it is an uninformative variable
or an interfering variable.

DMEANi = Mi,in −Mi,out (5)

p = 0.05 was defined as the threshold for the Mann–Whitney U test [21], where the
p value, denoted as pi, is computed by the Mann–Whitney U test with the distribution of
ϕ0 and ϕi. The smaller the pi value, the more significant the difference between the two dis-
tributions. Finally, the variables were divided into the four categories (strongly informative
variables, weakly informative variables, uninformative variables, and interfering variables).

Step 3: Strongly informative variables and weakly informative variables are retained
for each iteration, and uninformative variables and interfering variables are eliminated, so
that a new subset of variables is generated. Return to step 1 for the next iteration until there
are only strong and weak informative variables left. The defined variable types are listed
in Table 1.

Table 1. Variable classification rules.

Wavelength Variable Type Classification Rules

Strongly informative DMEANi < 0, Pi < 0.05
Weakly informative DMEANi < 0, Pi > 0.05

Uninformative DMEANi > 0, Pi > 0.05
Interfering DMEANi > 0, Pi < 0.05

Step 4: The backward elimination of the reserved variables is undertaken as follows:
(a) Denote t as the number of reserved variables.
(b) For all the reserved variables, obtain the RMSECV value with five-fold cross-

validation using PLS, which is denoted as θt.
(c) Leave out the ith variable and apply five-fold cross-validation to the remaining

t− 1 variables to obtain the RMSECV value θ−i. Conduct this for all variables i = 1, 2, . . . , t.
(d) If min{θ−i, 1 ≤ i ≤ t} > θt, step (g) is performed.
(e) When excluding the ith variable with the minimum RMSECV value, remove the

ith variable and change t to be t− 1.
(f) Repeat steps (a)–(e).
(g) The remaining variables are the final informative variables.

2.5.4. Partial Least-Squares Regression

Partial least-squares regression (PLSR) is a spectral analysis method that includes
multiple linear regression, canonical correlation analysis, and principal factor analysis. The
main objective of PLSR is to establish a linear model of independent variables, particu-
larly in cases where two groups containing a large number of highly linearly correlated
variables are analyzed. PLSR is also used when the number of samples is less than the
number of variables to avoid overfitting [25–27]. The principle of PLSR is as follows. First,
extract the mutually independent components (x1, x2,...,xm) from the independent variable
Th(h = 1, 2, . . .). The extracted principal components carry as many original components as
possible. Then, extract the independent components (y1,y2, . . . , ym) from the independent
variable Uh = (h = 1, 2, . . .). The covariance between Th and Uh must be maximized, and
the regression equation between the extracted components and the dependent variable is
established through the multiple regression method. The basic model of the PLSR is:

X = ThPT + E (6)

Y = UhQT + F (7)
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where P and Q are m× h orthogonal load matrices, and E and F are error terms, which are
random variables that follow a normal distribution.

2.5.5. Extreme Gradient Boosting (XGBoost)

XGBoost is a distributed gradient boosting algorithm based on classification and
regression trees. XGBoost is popular in the fields of machine learning and data mining and
has excellent judgment and recognition capabilities. The basic principle is to weigh the
results of multiple decision trees (weak classifiers) as the final output (strong classifier) [28].
XGBoost achieves good control of model complexity by adding rule items to the objective
function, thereby solving the problem of collinearity between the variables to a certain
extent and preventing overfitting of the model. In the XGBoost model, the second-order
Taylor series is used for the cost function, and the first-order and second-order derivatives
are used to approximate the optimization of the objective function closer to the actual value,
thereby improving the prediction accuracy [29,30].

2.5.6. Random Forest Regression (RFR)

RFR is an integrated statistical learning classification and regression algorithm that
combines multiple decision trees to produce similar predictions for different features of the
same phenomenon [31]. The output is the average of all the decision tree results in a random
forest, assuming that the training set is independently extracted from the distribution of
random vectors. The prediction result of the model is the mean of the k regression trees.

2.5.7. Gradient Boosting Decision Tree (GBDT)

GBDT is a comprehensive algorithm with a strong learning strategy. Although the
original purpose was to solve the classification problem, it has been successfully applied in
the field of regression [32,33].

Fm(x) = Fm−1(x) + hm(x) (8)

Here, hm(x) represents the basic functions of the weak learners. In GBDT, the basic
function hm is a small regression tree of fixed size, and the GBDT model Fm(x) can be
regarded as the sum of m small regression trees. A new tree is generated for each iteration,
m. A simple tree is determined by the deviation between the experimental measurements
and all previous model (i.e., gradient) predictions. Then, the regression tree is incorporated
into the GBDT model.2.5.8. Software

CA, sCARS, and IRIV were programmed in MATLAB Version 2017b. SPXY and the
regression models (PLSR, XGBoost, RFR, GBDT) were written in Python/Jupyter Notebook.
The machine learning algorithms in the scikit-learn packages were also used.

2.6. Accuracy Evaluation

A 10-fold cross-validation was used to evaluate the accuracy of the model. The original
dataset was randomly divided into 10 subsets with approximately equal sample sizes. Nine
of them were combined as the training set in turn, and the one remaining set was used
as the test set. In each test, the evaluation index, such as the correct rate, was calculated,
and the generalization ability of the model was evaluated by taking the average value of
the evaluation index after k tests. The parameters of determination coefficients (R2

cv), root
mean square error (RMSEcv), and mean absolute error (MAEcv) generated by 10- fold cross
validation were used to measure the accuracy of the models. The closer R2

cv is to 1, the
better the stability of the model and the higher the degree of fit. The RMSEcv and MAEcv
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were used to test the predictive ability of the model. The smaller the RMSEcv and MAEcv,
the better the predictive ability.

R2 =


n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

 (9)

RMSE =

√
∑n

i−1 (yi − ŷi)
2

n
(10)

MAE =
1
m∑n

i=1|yi − ŷi| (11)

where n is the number of samples, yi is the measured value, ŷi is the predicted value, and y
is the average of the measured values.

2.7. Technical Roadmap

In this study, 150 samples of pepper leaves with different leaf positions were selected as
the research object, and the hyperspectral image data and chlorophyll content of the pepper
leaves were obtained. The technical roadmap is illustrated in Figure 5. The hyperspectral
images were first white-calibrated, and then the original spectral data were obtained
through the region of interest. The CA, sCARS, and IRIV methods were used, respectively.
The IRIV screens the characteristic bands and uses PLSR, XGBoost, RFR, and GBDT to
construct regression models. A 10-fold cross-validation was used as the accuracy evaluation
index to filter out uninformative variables. The optimal algorithm reuses the constructed
model to establish the inversion map of pepper leaf chlorophyll distribution, which lays
the foundation for exploring the dynamic response of pepper chlorophyll during the
growth period.

Figure 5. Technical Roadmap.

3. Results
3.1. Selection of Characteristic Band Based on CA Algorithm

Spearman’s correlation analysis was performed between the original spectral re-
flectance of the whole wave band (400–1000 nm) and the SPAD values of pepper leaves.
The spectral reflectance of each band was correlated with the SPAD value and a correlation
curve was drawn. As shown in Figure 6, the overall correlation was relatively high, and the
volatility was relatively large. In visible light (533–560 nm), the correlation is highly nega-
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tive. After 697 nm, the correlation tends to be stable and continues to increase. Through the
significance level test of p=0.01, the band with a correlation greater than 0.65, was finally
extracted as the sensitive band. This significant band range was 403–475 nm, with a total
of 76 bands, accounting for 43.18% of the overall variable. They are 533.3 nm, 536.7 nm,
540 nm, 543.4 nm, 546.7 nm, 550.1 nm, 553.4 nm, 556.8 nm, 560.1 nm, 697.1 nm, 700.6 nm,
704.1 nm, 707.6 nm, 711.1 nm, 767.6 nm, and 771.1–990.4 nm.

Figure 6. Correlation of SPAD values and spectral reflectance.

3.2. Selection of Characteristic Band Based on SCARS Algorithm

Using the original spectrum as the input spectrum, the specific calculation process of
the sCARS algorithm is shown in Figure 7. Figure 7a shows that as the number of sCARS
iterations increases, the number of wavelengths retained gradually decreases. The decrease
speed is from fast to slow, indicating that sCARS has two stages, “rough selection” and
“selection” in the process of screening characteristic bands. Figure 7b shows the change
in trend of 10-fold cross-validation, which has a trend from large to small and then to
large. When the operation reaches 459 times, the value is the smallest, which means that
at 459 times, the wavelength that affects the SPAD value modeling of the pepper leaf is
eliminated. The smallest is the best selection of the band subset, and a total of 46 bands
were selected, accounting for 26.14% of the overall variable. They are 386.6 nm, 392.9 nm,
402.5 nm, 415.4 nm, 431.5 nm, 526.7 nm, 530.0 nm, 590.5 nm, 593.9 nm, 597.3 nm, 600.7 nm,
610.9 nm, 614.3 nm, 617.7 nm, 624.6 nm, 641.7 nm, 645.1 nm, 676.2 nm, 679.7 nm, 683.2 nm,
693.6 nm, 711.1 nm, 718.1 nm, 732.2 nm, 832.1 nm, 850.2 nm, 853.8 nm, 868.4 nm, 872.0 nm,
875.7 nm, 879.3 nm, 890.3 nm, 894.0 nm, 916.0 nm, 919.7 nm, 923.4 nm, 927.1 nm, 930.8 nm,
938.2 nm, 945.6 nm, 953.0 nm, 960.5 nm, 971.7 nm, 979.2 nm, 982.9 nm, and 986.7 nm.

Figure 7. Characteristic variable selection process of sCARS algorithm. (a) Changes in the number of
waveband variables. (b) Validation of RMSECV. (c) Path of variable regression coefficients.

3.3. Selection of Characteristic Band Based on IRIV Algorithm

The purpose of the IRIV algorithm is to eliminate irrelevant variables and retain
variables related to the SPAD value of pepper leaves. The algorithm uses a 5-fold cross-
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validation method to establish a partial least-squares model to select the characteristic
variables. The IRIV algorithm has gone through seven rounds. As shown in Figure 8, the
number of iteration variables in the first three rounds decreased rapidly, from 176 to 48, and
then the rate of variable reduction slowed down. After the 6th iteration, the uninformative
variables and interfering variables are completely eliminated. In general, only variables
with a large amount of information are selected as the best set of variables. Although
they have significant positive effects, they are not always optimal because the positive
effects of weakly informative variables are ignored. Thus, weakly informative variables
are retained at this stage. Therefore, IRIV is used to search for important variables through
multiple iterative loops until there are no uninformative or interfering variables, and the
optimal characteristic wavelength variable is obtained through reverse elimination. A total
of 26 bands were selected, accounting for 14.77% of the overall variables. They are 477.1 nm,
490.3 nm, 510.1 nm, 526.7 nm, 597.3 nm, 600.7 nm, 610.9 nm, 614.3 nm, 617.7 nm, 624.6 nm,
628 nm, 638.3 nm, 648.6 nm, 676.2 nm, 725.1 nm, 728.7 nm, 839.3 nm, 853.8 nm, 861.1 nm,
868.4 nm, 875.7 nm, 879.3 nm, 894 nm, 916 nm, 945.6 nm, and 979.2 nm.
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3.4. Screening Results

As shown in Figure 9, the order of the three methods used to simplify the model
capacity is as follows: IRIV > sCARS > CA. The CA, sCARS, and IRIV algorithms selected
76, 46, and 26 characteristic variables for modeling, accounting for only 43.18%, 26.14%,
and 14.77% of the entire band, respectively. The sensitive wavelengths of pepper leaf SPAD
value were concentrated between 415.4–431.5 nm, 526.7–676.2 nm, and 839.3–979.2 nm,
indicating that these three bands are closely related to pepper leaf SPAD value, as shown
in Figure 9, where the blue line part is the same part of the band selected by the three
feature selection methods, and they are 853.8 nm, 868.4 nm, 875.7 nm, 879.3 nm, 916 nm,
945.6 nm, and 979.2 nm. This may be related to the plant nutritional status. When the
nutritional status is good, the content of chlorophyll in leaves is high, there are more cell
layers, and the gap between mesophyll and cells is thick, which can further increase the
spectral reflectance. Finally, the higher the SPAD value, the higher the reflectance, and
the same correlation is also high, which provides a reliable mathematical basis for the
chlorophyll diagnosis model of pepper leaves [34].
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Figure 9. Comparison chart of optimal variable distribution.

3.5. Optimal Algorithm Selection
3.5.1. Accuracy Comparison of Different Methods

A comprehensive comparison of the model prediction results established by different
variable selection methods can be seen in Table 2. According to the 10-fold cross-validation
discriminant results, the model based on the characteristic variables of the IRIV algorithm
achieves the highest accuracy, and the modeling accuracy of each model is relatively high.
R2

cv is above 0.8, and the accuracy of the four models constructed by it is much greater
than that of the other three methods. It can be seen that the IRIV method is an effective
variable selection method and is better than the full band, CA, and sCARS methods. This
also shows that the IRIV algorithm is an effective means of improving the accuracy of
model prediction and can improve modeling efficiency. In addition, a comparison of the
four modeling methods indicates that the characteristic variable modeling of the PLSR
algorithm achieves the highest accuracy. However, in terms of the overall accuracy, there is
not much difference among the four models.

Table 2. Comparison of accuracy of different methods.

Selection
Method

Number of
Bands

Modeling
Algorithm R2

cv RMSEcv MAEcv

Full bands 176

PLSR 0.52 2.57 2.11
XGBoost 0.48 2.80 2.28

RFR 0.42 2.95 2.83
GBDT 0.50 2.76 2.19

CA 76

PLSR 0.48 2.59 2.1
XGBoost 0.29 3.00 2.39

RFR 0.41 2.95 2.4
GBDT 0.44 2.84 2.23

sCARS 46

PLSR 0.55 2.59 2.13
XGBoost 0.54 2.68 2.17

RFR 0.43 2.92 2.32
GBDT 0.53 2.74 2.17

IRIV 26

PLSR 0.84 2.46 2.02
XGBoost 0.81 2.76 2.30

RFR 0.80 2.85 2.28
GBDT 0.80 2.82 2.22
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3.5.2. Model Construction Based on the Bands selected by the IRIV Algorithm

Figure 10 shows a scatter plot of the four estimation models under IRIV feature
variable screening. From the fitting effect, the results of the four modeling methods were
evenly distributed on both sides of the 1:1 straight line. This shows that selecting effective
feature variables from the full band spectral data and using these feature variables to build
a prediction model can not only greatly simplify the model and reduce the amount of
model calculations, but also improve the prediction ability and robustness of the built
model. It also shows that the model constructed using this method can be used in the actual
monitoring of the SPAD value of pepper leaves.

Figure 10. Scatter plot of measured and predicted values of the four models: (a) PLSR; (b) XGBoost;
(c) RFR; and (d) GBDT.

3.6. Chlorophyll Distribution of Pepper Leaves

Using the IRIV-XGBoost model, we estimated the SPAD value of each pixel of pepper
leaves, and then drew the chlorophyll distribution map of the pepper leaves. Each SPAD
value corresponds to a specific color in the color table. The specific steps are as follows:

Step 1: Hyperspectral images of pepper leaves were obtained under 26 characteristic
wavelengths selected by the IRIV algorithm.

Step 2: The reflectivity of each pixel in the characteristic wavelength image was
extracted.

Step 3: The SPAD value of each pixel was calculated, and a gray distribution map
was obtained.

Step 4: The gray distribution map was used to draw the SPAD distribution map of the
pepper leaves at different leaf positions.
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As shown in Figures 11–13, different colors (green, yellow, and red) and color depth
represent the SPAD value of pepper leaves at different concentrations. Overall, leaf chloro-
phyll spreads around the central vein. In the lower leaf, the overall color was evenly
distributed, and the yellow and red were darker, while the middle leaf and upper leaf
chlorophyll were lighter in yellow and red. The distribution of SPAD value in different
leaf positions can be seen intuitively: lower > middle > upper, which is consistent with the
actual measurements regarding the distribution and changes in the trend of pepper leaf
SPAD values, as well as with the growth law of the pepper seedling stage.

Figure 11. Distribution of SPAD value in the lower leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

As shown in Table 3, the statistical information of the inversion graph constructed by
the three nonlinear models of XGBoost, RFR, and GBDT is relatively close to the true value,
while the statistical results of the linear model PLSR show a maximum value of 82 and
a minimum value of 2. This is inconsistent with the actual situation. In terms of overall
performance, IRIV-XGBoost performed the best.



Sensors 2022, 22, 183 14 of 19

Figure 12. Distribution of SPAD value in the middle leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

Table 3. Statistical information of chlorophyll inversion map of pepper leaves under different models
and different leaf positions.

Leaf Position Measured Value Model Method Min Value Max Value

Lower leaf

66.0

PLSR 19 82
XGBoost 43 69

RFR 46 67
GBDT 43 70

69.0

PLSR 21 85
XGBoost 44 69

RFR 47 67
GBDT 45 69

Middle leaf

61.0

PLSR 14 82
XGBoost 42 69

RFR 45 66
GBDT 42 69

60.6

PLSR 12 83
XGBoost 41 69

RFR 45 66
GBDT 44 69

Upper leaf

48.3

PLSR 3 73
XGBoost 42 67

RFR 45 65
GBDT 42 68

50.5

PLSR 2 72
XGBoost 42 67

RFR 45 64
GBDT 42 68
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Figure 13. Distribution of SPAD value in the upper leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

3.7. Statistical Summary Based on the IRIV-XGBoost Algorithm

The SPAD inversion images of pepper leaves obtained by the IRIV-XGBoost algorithm
were separately counted. From the mean and standard deviation of each pixel of the
inversion image (Figure 14), most of the predicted values are consistent with the measured
values, and the predicted and measured values have strong correlation. This shows that
the use of hyperspectral imaging technology to construct the SPAD distribution map of
pepper leaves is effective, realizes the rapid and accurate acquisition of the SPAD of pepper
leaves at a small area scale, and provides a theoretical basis for later crop growth and the
development of new equipment.

Figure 14. Predicted SPAD value and measured value with the standard deviation as error bars
(No.1,2—Figure 11b,f, No.3,4—Figure 12b,f, No.5,6—Figure 13b,f).
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4. Discussion

CA, sCARS, and the IRIV algorithm respectively select 76, 46, and 26 characteristic
variables for modeling. The results show that prior to modeling, screening the characteristic
variables of the original spectrum not only ensures the accuracy of the model, but also
greatly reduces the complexity of the model. There are two reasons for this phenomenon:
(1) A large number of spectral bands in hyperspectral data provides us with rich spectral
information. At the same time, it also leads to redundant information and increases
the complexity of data processing, which increases the calculation deviation of statistical
parameters. The extraction of characteristic parameters can effectively reduce the dimension
of hyperspectral data so as to achieve the effect of optimizing the model [35,36]. (2) The IRIV
strategy considers the synergetic effect among variables through random combination. By
means of this, only strongly informative and weakly informative variables are retained in
each round. This is due to their positive effect under the condition of random combinations
among variables. When compared with two outstanding variable selection methods, the
outstanding performance of IRIV indicates that it is a good alternative to variable selection
in multivariate calibration [22].

The three nonlinear models, XGBoost, RFR, and GBDT, obtained similar results in the
hyperspectral imaging inversion stage. All three achieved good results and conformed
to the measured value distribution and growth law of pepper. However, the PLSR does
not match the actual situation in the inversion stage. Although the accuracy of PLSR in
the modeling stage was slightly higher than that of the other three models, it performed
poorly in the inversion stage. This is because the PLSR model is a linear model, and it has
certain limitations when dealing with high-dimensional data. PLSR can solve the problems
of multiple variables and multiple correlations between variables, but it will lose part of
the effectiveness after the principal component transformation of the data. Therefore, PLSR
is weak in solving nonlinear problems [37,38], and the three nonlinear models of XGBoost,
RFR, and GBDT can better solve the complex nonlinear relationship between hyperspectral
images and SPAD value. The model has good anti-noise ability, high model accuracy, and
good robustness [39].

As shown in Figures 11–13, the SPAD value of pepper leaves exhibited a stepped
distribution. The farther away from the center of the plant, the lower the chlorophyll index
value. The lower leaves contained higher SPAD value than the upper leaves. The reasons
for this analysis may be as follows: (1) Chlorophyll is a light-absorbing substance and an
important nutritional indicator. Plant nutrients are transported from the stem upward
through the center of the plant to the edge of the leaf, so the SPAD value in the center of
the plant is slightly higher than in the edge of the leaf. (2) Since the collected pepper plants
are in the seedling stage and the lower leaves are still in the vigorous growth period, they
contain more mesophyll, and the leaf functions characterized by chlorophyll are growing
vigorously. The leaves are only formed during the seedling stage, and they are in a vigorous
growth period. Respiration was strong. Although the stomatal conductance is high, many
internal structures are imperfect, so the SPAD value is relatively low. As the leaf age
increased, the leaf structure became complete, and the SPAD value gradually increased.

5. Conclusions

Hyperspectral data for pepper leaves located at different positions on the plant were
collected to analyze the differences in the SPAD value distribution and the dynamic char-
acteristics of the growth period of the pepper plants. The average spectra of the SPAD
value measurement positions of pepper leaves were extracted, and CA, sCARS, and IRIV
were used to screen feature bands. These methods were combined with PLSR, XGBoost,
RFR, and GBDT to construct regression models, and the distribution of SPAD value in
pepper leaves at different leaf positions was drawn. The main conclusions of this study are
as follows:

(1) A comprehensive comparison of the full band, CA, sCARS, and IRIV variable
screening feature bands was undertaken to construct a variety of SPAD value estimation
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models and the model capabilities were tested through 10-fold cross-validation. The
estimation capabilities of the different models were quite different. The IRIV algorithm
achieved the highest accuracy, above 0.8, which greatly reduces the complexity of the model
while ensuring the accuracy of the model.

(2) Four modeling methods were compared: PLSR, XGBoost, RFR, and GBDT. The
accuracy of PLSR in the modeling stage is slightly higher than that of the other three models,
but it performs poorly in the inversion stage. XGBoost is better suited to solve the complex
nonlinear relationship between hyperspectral images and SPAD value. The model has
good anti-noise ability, high model accuracy, and good robustness.

(3) The IRIV-XGBoost model was used to calculate the SPAD value of each pixel of
pepper leaves and then invert the chlorophyll distribution map of pepper leaves at different
leaf positions, which can reflect the dynamic response of pepper leaf chlorophyll in plants
in the seedling stage and finally realize the non-destructive detection of pepper leaf content
for different leaves and the visual expression of chlorophyll distribution. This result is
consistent with the distribution and change trend of the SPAD value of pepper leaves when
measured, and it is also in line with the growth law of pepper seedling stage. In future,
the dynamics of different growth periods need to be tested and verified in the field to lay a
foundation for the overall dynamic diagnosis of pepper canopy.
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