
sensors

Article

Integrating Pavement Sensing Data for Pavement
Condition Evaluation

Konstantinos Gkyrtis * , Andreas Loizos and Christina Plati

����������
�������

Citation: Gkyrtis, K.; Loizos, A.;

Plati, C. Integrating Pavement

Sensing Data for Pavement Condition

Evaluation. Sensors 2021, 21, 3104.

https://doi.org/10.3390/s21093104

Academic Editor: Branko Glisic

Received: 18 March 2021

Accepted: 27 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Pavement Engineering, NTUA Campus, National Technical University of Athens (NTUA), 5,
Iroon Polytechniou, GR-15773 Athens, Greece; aloizos@central.ntua.gr (A.L.); cplati@central.ntua.gr (C.P.)
* Correspondence: gkyrtis@central.ntua.gr; Tel.: +30-210772-2585

Abstract: Highway pavements are usually monitored in terms of their surface performance assess-
ment, since the major cause that triggers maintenance is reduced pavement serviceability due to
surface distresses, excessive pavement unevenness and/or texture loss. A common way to detect
pavement surface condition is by the use of vehicle-mounted laser sensors that can rapidly scan huge
roadway networks at traffic speeds without the need for traffic interventions. However, excessive
roughness might sometimes indicate structural issues within one or more pavement layers or even
issues within the pavement foundation support. The stand-alone use of laser profilers cannot provide
the related agencies with information on what leads to roughness issues. Contrariwise, the integration
of multiple non-destructive data leads to a more representative assessment of pavement condition
and enables a more rational pavement management and decision-making. This research deals with
an integration approach that primarily combines pavement sensing profile and deflectometric data
and further evaluates indications of increased pavement roughness. In particular, data including
Falling Weight Deflectometer (FWD) and Road Surface Profiler (RSP) measurements are used in
conjunction with additional geophysical inspection data from Ground Penetrating Radar (GPR).
Based on pavement response modelling, a promising potential is shown that could proactively assist
the related agencies in the framework of transport infrastructure health monitoring.

Keywords: pavement profile; deflectometric data; geophysical inspections; data integration; pave-
ment management

1. Introduction

Being a core part of the critical transportation infrastructure network, highways serve
the need for safe transportation of human beings and freight on a daily basis at both
national and international level. As such, modern roadways constitute fundamental core
investments and significant assets indicating economic health and social prosperity [1]. To
maintain this prestige, roadways require pavements in good overall physical condition with
both structural soundness and increased serviceability. The latter is the most important
factor that road users can judge, since users’ satisfaction is related to pavement ride comfort
and road safety considerations that both affect driving quality [2–6]. This is why highway
pavements are most often monitored in terms of their surface performance considering
that the major cause that triggers maintenance is reduced pavement serviceability due to
surface distresses, excessive pavement unevenness and/or texture loss.

Among the surface condition indicators, pavement roughness is a critical one, which
apart from indicating surface comfortability affects vehicles’ movement and speed, fuel
efficiency and general vehicle costs [3,7–10]. In addition, it has been reported that rough-
ness characterizes energy consumption during the use phase from a life-cycle assessment
view [11]. These facts justify why roughness measurements attract the interest of a Pave-
ment Management System (PMS) [12,13]. Roughness is most often quantified in terms
of the International Roughness Index (IRI, m/km), developed by the Word Bank in the
mid-1980s as a standardized measurement method [14]. Vehicle-mounted laser profilers
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(or Road Surface Profilers, RSPs) constitute popular and practical systems with high pro-
ductivity that are used to sense pavement profile data. RSPs can move at traffic speeds
up to 80 km/h, so big data can be rapidly and cost-effectively sensed without the need
for traffic interventions. RSP’s output is a direct input into a PMS that assists the decision-
making processes.

Over recent decades, there have been many studies attempting to extend the power of
IRI by investigating interdependencies between roughness and structural indices or other
pavement surface distresses, such as cracking or rutting [15]. Most focus on the relationship
between IRI and Pavement Condition Index (PCI), which is an indicator of surface condi-
tion, based on linear regression modelling and machine learning techniques [9,16,17]. The
rationale behind this approach lies upon the fact that the relationship between roughness
and pavement distresses is bilateral [17,18]. Rough surfaces might tend to increase the pave-
ment vertical stresses, impose surface deformations and exacerbate pavement fatigue [17].
Vice versa, a distressed pavement will progressively deteriorate pavement roughness [19].
Besides, surface profile imperfections are known to modify the load magnitude of moving
vehicles that oscillate vertically because of vehicle dynamics [20]. Several pieces of research
have so far focused on vehicular dynamic loading [20–22], since the interaction of truck
suspension system with pavement profile may exert additional forces to the pavement
structure [23]. Even at smooth profiles, pavement is subject to traffic loads of around 10%
higher than the design loads, and as a consequence pavement damage acceleration might
be expected earlier [21]. In the same context, a reduction of about 29% and 20% has been
reported for bottom-up fatigue failure and subgrade rutting failure, respectively [20].

However, including pavement-vehicle dynamics into common analysis aspects is
peculiar, so research interests are consistently centered on simpler correlations between
roughness and pavement structural performance [15,16,18,24]. The rationale of such ap-
proaches is grounded on the speed limitations, high unit costs and stop-and-go impacts
on traffic when using stationary deflectometric systems, such as the Falling Weight Deflec-
tometer (FWD) or the Heavy Weight Deflectometer (HWD). The main idea is to evaluate
structural indices alternatively in order to reduce the testing frequency of slow and expen-
sive systems [24]. However, no consistent results have been reported and it has been proved
rather laborious to develop analytical relationships that could be directly usable by the
related agencies. Indeed, according to a Federal Highway Administration (FHWA) report
based on Long-Term Pavement Performance (LTPP) data [25], no relationship was found
between IRI and the Structural Number (SN), neither in the parameter values nor in their
change rates. These remarks coincide with the authors’ perception that the stand-alone use
of RSPs cannot provide the related agencies with information with respect to a pavement’s
structural integrity despite their cost-effectiveness for network level investigations. This
is even more pronounced on highways with limited or no surface deterioration, as is the
case with Public Private Partnerships (PPP) highways where the related agencies strive to
continuously maintain structurally sound and fully serviceable pavements. Destructive
testing, such as coring, cuts and boreholes, are rather undesirable, because they are time-
consuming, costly and provide location-specific information. On the contrary, NDT and/or
sensor-based structural assessment appear to be better approaches, which are more than
necessary in order to proactively detect potential issues that could progressively become
obvious in the pavement surface in due course.

A reliable determination of pavement structural condition deterioration over time
under traffic and environmental loading can be established through sensing pavement
deflections with either the FWD or the more sophisticated Traffic Speed Deflection Devices
(TSDD) [26–28]. As a standard practice worldwide, deflectometric data is most often
combined with pavement stratigraphy data estimated through geophysical surveys, i.e.,
Ground Penetrating Radar (GPR), in order to back-calculate the pavement stiffness profile
and further proceed with a pavement response and failure analysis [26,29–31]. Thus, the
integration of systems utilized for both the structural and functional assessment of pave-
ments is more than desirable, since a good ride quality itself may not necessarily ensure
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structural adequacy. On the other hand, even in cases of roughness issues with no other
surface distresses, the absence of structural information may result in erroneous mainte-
nance planning. An example is the case of pavement resurfacing that can immediately
reduce roughness and restore pavement serviceability without significantly improving
pavement structural capacity [24]. In addition, the presence of roughness might sometimes
indicate pavement construction issues (e.g., improper design or poor compaction) and
structural problems that may not necessarily be obvious in the pavement surface [25]. In
other words, the integration of both RSP and FWD might lead to a more holistic assess-
ment of pavement assets during their lifespan. Besides, this is the purpose of integrating
multiple non-destructive testing systems in order to sense the pavement condition and
manage transportation assets both proactively and cost-effectively in terms of maintenance
or rehabilitation planning.

2. Aim and Objectives

On these grounds, the present research study aims to assess how the presence of
roughness issues along an asphalt pavement surface with no other surface distresses could
indicate hidden structural issues within one or more pavement layers or even issues within
the pavement foundation support. Towards this, LTPP data from a trial pavement section
of an interurban motorway was used to develop an integrated analysis approach within
the framework of proactive monitoring of pavement assets. The considered sensing data
included roughness measurements through RSP, deflectometric data through FWD and
pavement thickness data estimated through GPR analysis. Although pavement profile is
known to interact with pavement response in terms of pavement–vehicle dynamics, the
present investigation focuses on static loading conditions that are usually adopted in the
framework of pavement analysis as a standard practice [26,29,30]. Therefore, to meet the
research aim, the following objectives were set:

• To statistically treat RSP data in order to define characteristic IRI values at the FWD
test locations.

• To integrate FWD and GPR data, model the pavement response and calculate pave-
ment critical strains.

• To investigate pavement strain modelling aspects based on mechanistic principles
considering both deflections and IRI values as input.

• To assess the findings of the modelling process by investigating alternative pavement
models and to demonstrate the power of integrating sensing data as an effective solu-
tion towards reliable decision-making for transport infrastructure health monitoring.

3. NDT-Based Pavement Sensing
3.1. Roughness—Road Surface Profiler (RSP)

The presence of surface vertical irregularities and profile elevations along a pavement’s
longitudinal line contributes to what is defined as pavement roughness (Figure 1). Roughness
is responsible for a vehicle’s suspension response while it moves over the road [32]. IRI
calculations are based on the dynamic response of a reference automobile, the so-called
Quarter-Car System (QCS) [3,5,32,33]. The model simulates a QCS travelling at a constant
speed of 80 km/h and measures the suspension deflection. IRI is calculated as the cumulative
vertical movement of the suspension of the QCS divided by the traveling distance, resulting
in an index with units of slope, m/km or mm/m [32]. When IRI equals zero, the pavement
surface is completely smooth (even), while an IRI value of more than 8 m/km implies that a
pavement is practically impassable (uneven), requiring low vehicle speeds [34].
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Figure 1. Schematic illustration of pavement profile components (adapted from [33], copyright 2018, Fast track publications).

IRI was developed to be workable with different measurement systems or techniques.
Nevertheless, the use of high speed inertial RSPs outperforms any other relevant systems
or methods (e.g., straight edge, Dipstick profiler, profilograph) [3]. RSPs operate at high
speeds, can detect and analyze long wavelengths, exhibit excellent repeatability and their
output is a direct measurement of the actual pavement profile. They consist of: (i) a
supporting frame, to which laser sensors are attached, suspended approximately 30 cm
above the pavement surface, (ii) an odometer and (iii) an inertial unit (accelerometer)
that detects vehicle movement in the vertical plane [33]. The latter establishes a moving
reference measurement plane and makes the produced data practically independent of the
RSP speed, provided that no sharp speed changes occur.

RSP sensor systems have in general a constant performance and the produced profile
measurements are reliable [3]. Moreover, since most vehicles travel in well-defined paths,
roughness is typically measured at both wheel paths within a traffic lane. Finally, RSPs are
also capable of measuring additional surface performance indicators, such as transverse
profile, in terms of rut depth (Figure 1) and surface texture.

3.2. Load Response—Falling Weight Deflectometer (FWD)

The most popular and practical method for structural integrity assessment of pavement
layers and subgrade is the use of the FWD [35,36]. As a stationary device, FWD simulates a
moving truck through a load pulse applied to the pavement surface. Dropping a known
mass from a specified height (H) onto a steel plate located in the pavement surface results
in a typical deflection response, such as that shown in Figure 2. Several load levels can be
applied by adjusting the drop height according to the predefined load levels for the LTPP
FWD test [37]. The deflection basin at each test location is shaped through surface deflection
records, normally achieved through multiple sensors (usually, seven or nine). These sensors
are located at specified distances from the center of the loading plate (Figure 2).

A direct consideration of the FWD output leads to deflection-based assessment, which
is widely used for a first-level analysis of pavement structural evaluation, useful mainly
for network level assessment [31]. A semi-empirical, semi-mechanistic approach was
developed for pavement structural analysis, according to which the supplementary use of
deflection bowl parameters along with visual inspection surveys facilitate a benchmarking
assessment of pavement structure, indicating areas with structural issues [38]. In this con-
text, the first-level analysis is supported by Deflection-Based Parameters (DBPs) that best
suit network level investigations. A list of the most commonly utilized DBPs is shown in Ta-
ble 1 together with the pavement region for which they provide structural indications [38].
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In addition, a new methodology has been recently developed for pavement network level
assessment based on DBPs without the necessity of knowing layer thicknesses [39].
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Table 1. Deflection-Based Parameters (DBPs).

Indexes Equation Pavement Region

Central (maximum) deflection: d0 [µm] - Overall pavement condition
Surface Curvature Index (SCI) [µm] d0 − d300 Surface layer condition

Base Damage Index (BDI) [µm] d300 − d600 Intermediate layers condition
Base Curvature Index (BCI) [µm] d600 − d900 Intermediate layers condition

AREA parameter (AREA)
[dimensionless] 6(d0 + 2d300 + 2d600 + d900)/d0 Overall pavement condition

Area Under Pavement Profile (AUPP) [µm] 0.5(5d0 − 2d300 − 2d600 − d900) Upper layers pavement condition
Deflection at the outer geophone: d1800 [µm] - Subgrade condition

However, in most cases information about the pavement substructure (i.e., layer
thicknesses) is needed in order to proceed with a second-level analysis of pavement
condition assessment. In particular, FWD deflections are utilized as input (in combination
with layer thicknesses) in order to back-calculate the pavement stiffness profile that is
determinant for pavement response analysis [40]. In turn, the pavement failure potential
can be assessed, which is necessary in order to estimate pavement remaining life and assess
the need for pavement redesign [28,31]. Being a more in-depth analysis, it best suits project
level investigations, required, for example, in the framework of potential rehabilitation
design strategies. Overall, the FWD system constitutes the standard approach for both
project and network level investigations worldwide [26,29,30,36].

3.3. Pavement Structure—Ground Penetrating Radar (GPR)

Knowledge of the pavement structure in terms of layer thicknesses provides valuable
information for the assessment of both new and in-service pavements. GPR is the most often
implemented NDT system for the evaluation of thickness profile based on the dielectric
properties of the pavement materials [1,30,41–43]. Moreover, the power of GPR as a sensing
system, covers additional pavement engineering aspects including, among others, density
control during pavement compaction monitoring [44], as well as the assessment of physical
properties and pavement subsurface defects [45,46]. Recent reviews of GPR applications in
transportation infrastructure can be found in [1,47].
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GPR generates high frequency pulsed electromagnetic waves that penetrate the
pavement structure (Figure 3). In particular, a transmitting antenna radiates an electro-
magnetic wave, whose velocity is affected by the electrical properties of the investigated
pavement materials. When the wave reaches a boundary with different electrical prop-
erties, a portion of the energy continues to transmit, while another part is reflected
backwards and a receiving antenna captures the reflected signal. Typically, 1 GHz and
2 GHz air-coupled antennae are most commonly used [44,48], with a typical penetration
depth of approximately 0.5–0.9 m.
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2020 Elsevier).

According to Figure 3, peak amplitudes A0, A1 and A2 indicate pulse reflections at the
pavement layers’ interfaces. Considering, for example, the Asphalt Concrete (AC) layers,
the time interval between peaks A0 and A1 refers to the two-way travel time of the signal
within this layer (tAC). Further, the AC dielectric constant (εAC) can be estimated based on
the surface reflection method [49] as:

εAC =

(
1 + A0

AP

1− A0
AP

)2

(1)

where AP is the amplitude of an incident GPR signal transmitted onto a flat metallic plate
at the pavement surface for calibration purposes. GPR raw data are frequently filtered in
order to achieve signal amplification and remove any noise that may affect signal quality
and thus the accuracy of dielectric constant estimations [50]. In particular, vertical filtering
is applied to deal with local noise and interference removal or random high-frequency
noise acting as a bandpass filter in the time domain [28]. Horizontal filtering corresponds
to the spatial sampling frequency and it is applied to smooth sharp or rapid changes in the
signals. Horizontal scans can be as low as five [28], or as high as 400 to ensure increased
computational efficiency [51]. Thereafter, the AC thickness can be determined as follows (c
is the speed of light in vacuum):

hAC =
c·tAC

2·√εAC
(2)

Obviously, inaccuracies in thickness assessment result in erroneous response analysis
and life expectancy estimation with detrimental financial impact during maintenance
planning [1]. However, there is enough evidence with respect to the increased GPR accuracy
of thickness estimations based on comparison with ground-truth data, or coring [28]. In
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this context, the use of GPR complements pavement condition assessment as a standard
evaluation approach [28,30,46].

4. Test Site and LTPP Data Collection

LTPP data was collected along the total length of an interurban motorway (Figure 4a).
For the purpose of the present research, a 2 km pavement section was selected, located at
both cut areas and (mainly) embankments. Roughness issues were easily detectable from
road users during the whole pavement’s lifespan. However, since no other indications of
surface distresses or deterioration exist, it is believed that the motivation of integrating
multiple NDT systems to assess the pavement condition at this area was even further
strengthened in order to provide the related highway agencies with a practical and cost-
effective monitoring concept.
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The pavement structure shown in Figure 4b consists of AC layers, a base of compacted
crushed stone materials (Unbound Granular Material—UGM base) and a subgrade layer
of natural gravel. With respect to the AC materials, a modified steel slag aggregate
mixture and a 4% styrene-butadiene-styrene (SBS) modified binder with a soft bitumen
base (80/100 Pen) were used in the wearing course. The achieved penetration grade of the
modified binder was 52 Pen and the softening point was 73 ◦C. A non-modified bitumen
with a 50/70 penetration grade and a softening point of 49.5 ◦C was incorporated into
the asphalt base and binder courses. The illustrated thicknesses in Figure 4b refer to the
average thicknesses at the 2 km pavement section as estimated from GPR surveys.

An overview of the LTPP experiment is shown in Figure 5. It includes RSP, FWD
and GPR measurements according to the monitoring periods shown in Table 2. Year 0
refers to data collection shortly after pavement construction, a process that was repeated
once per year for a 7-year monitoring period (years 1–7) in order to assess the pavement
performance annually.

Table 2. Monitoring periods.

NDT
System

Years after Construction Monitoring
Periods0 1 2 3 4 5 6 7

RSP X X X X X X X X 8
FWD X X X X X X X X 8
GPR X 1
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GPR measurements (Table 3) along with sample cores were taken at year 0 to define the
pavement structure. For the GPR data collection, 10 scans/m were recorded continuously
along the right wheel path of the FWD testing along the length of the section (i.e., in the
longitudinal direction). Post-analysis of GPR data included AC and base layer thicknesses
at 10 m intervals. Compared with ground-truth data (i.e., cores), the GPR prediction error
was found to range from 1–8%, which is an acceptable range in accordance with other
relevant studies [28,52].

Table 3. Ground Penetrating Radar (GPR) test conditions.

Test Condition Description

Number or GPR scans (scans/m) 10
Length of each scan (km in one file) 10

Road positioning Right wheel path
Direction of scanning Longitudinal

Pavement surface roughness data was sensed in both lanes (L1 and L2) and wheel
paths. In particular, the sensor system used in this study was a vehicle-mounted profiler
with seven sensors (i.e., lasers, accelerometers, etc.). Roughness was recorded in both wheel
paths as well as along the centerline of the vehicle. The sampling frequency rate of the
profiler was approximately 16 kHz and the calculated IRI values were reported at 10 m
intervals. However, only data from the right wheel path of the right lane was considered
in order to coincide with the FWD measurements at the heavy-duty traffic lane (L2).

Finally, in respect to the FWD tests, surface deflections were recorded in the right
wheel path of L2 by nine sensors at radial distances of 0, 200, 300, 450, 600, 900, 1200, 1500
and 1800 mm from the center of a loading plate. A load of 50 kN (708 kPa) was applied at
several locations at 200 m intervals. In addition, temperature was systematically measured
in the middle of the AC base layer through properly drilled holes within the pavement.
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5. Analysis
5.1. Roughness Data Processing

Following the research objectives, the first step was to identify characteristic IRI
values for those locations where the FWD testing was applied. An overview of the IRI
level along the length of the 2 km section (from chainage +10.0 up to +12.0) is shown
in Figure 6. Only the IRI along the Right Wheel Path (RWP) is shown. As can be seen,
there is an increased variability across the investigation length and higher IRI values
are observed around small and localized areas (Figure 6a). Moreover, there seems to
be a tendency for a progressive increase in roughness level (Figure 6b), which is more
pronounced for the case of higher IRI values. An exception is observed for Y7, where IRI
tends to slightly decrease. This is probably because of a resurfacing that was performed
at localized areas before the measurements of Y7. However, as can be seen, IRI is still at
high levels in comparison to the first years of pavement’s life. This implies that a simple
resurfacing may not fully resolve roughness issues, as has been also mentioned in the
literature [24].
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To further proceed with the integration of roughness and deflectometric data, it was
decided to group IRI values of 200 m length (100 m before and 100 m after the exact
location of FWD test). Eleven distinct subsections were defined, so that the midpoint
of each subsection matches the exact location of the FWD test. Descriptive IRI statistics
(only for RWP) are shown in Figure 7 in the form of boxplots for years 0 and 7. The line
inside each boxplot refers to the median. Increased variability is again observed, even in
the subsections of 200 m, considering the form of boxplots as well as the Coefficients of
Variation (CV) at each subsection, shown in Table 4.
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Table 4. Coefficients of Variation (%) for the IRI at the right wheel path (RWP).

Subsection Reference Location (FWD Test) Year 0 Year 7

1 P1 (+10.0) 27% 33%
2 P2 (+10.2) 43% 55%
3 P3 (+10.4) 53% 44%
4 P4 (+10.6) 36% 37%
5 P5 (+10.8) 46% 34%
6 P6 (+11.0) 69% 44%
7 P7 (+11.2) 38% 44%
8 P8 (+11.4) 47% 27%
9 P9 (+11.6) 26% 53%
10 P10 (+11.8) 40% 43%
11 P11 (+12.0) 45% 55%

As such, an average IRI could not be considered as representative for the whole
subsection. In the same context, neither a median IRI itself, nor a characteristic value
from a distribution fitting analysis could fully reflect the actual roughness levels at each
subsection, due to a lack of information for the higher IRI levels within a subsection. On
the other hand, performing denser FWD measurements so that they could match the actual
IRI locations was deemed to be laborious and ineffective, since no relevant justification
existed for that, due to the absence of other surface deterioration issues (e.g., cracks or
rutting) during the pavement’s lifespan. Thus, FWD measurements followed a network
level assessment strategy during all monitoring periods and, with respect to roughness,
it was decided to select two characteristic IRI values at each subsection to better reflect
the pavement profile condition. These included a median IRI value and an “upper” IRI
value in order to account for the localized irregularities effect on the near vicinity area. The
upper value was defined as:

upper IRI = max
{

90% percentile
IRI at the location of FWD test

}
(3)

Following this approach, both median IRI and “upper” IRI were determined at these
11 subsections for all of the monitoring periods. Two examples of the full pavement profiles,
together with the curves depicting the two characteristic set of values, are given for years 0
and 7 in Figure 8.
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Figure 8. Full pavement profile and characteristic IRI values for (a) year 0, and (b) year 7.

It can be seen that both characteristic values tend to satisfactorily reflect the full
pavement profile. Hereinafter, these two characteristics values (median and “upper”) were
used in conjunction with the pavement deflectometric data for pavement assessment.
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5.2. Deflections

Following the indexes presented in Table 1, an overview of the pavement condi-
tion is shown in Figure 9 considering four typical indexes and three monitoring periods.
From the selected indexes, the D0, SCI, BCI and D1800 were considered to respectively
represent the overall pavement condition, the AC layers condition, the base layer and the
subgrade condition.
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Figure 9. Deflection indexes: (a) D0, (b) Surface Curvature Index (SCI), (c) Base Curvature Index (BCI) and (d) D1800.

All measured deflections were first normalized at the target load of 50 kN and an
additional temperature normalization at the temperature of 20 ◦C was performed for D0
and SCI according to [53]. As such, individual D0 and SCI curves became comparable.
Given this, a slightly progressive deterioration was observed for the overall pavement
condition as well as for the individual layer behaviour. In addition, the evolution trend of
D0 is similar to that of SCI and BCI indexes. Contrariwise, the evolution of the D1800 index
seems to be less reflected in the D0 index. Further, the relationship between roughness
and deflectometric data is presented in Table 5 in terms of the square of the correlation
coefficient (R2) value and in Figure 10, where the evolution of SCI and D1800 indexes is
shown in conjunction with roughness.

Table 5. R2 value between Deflection-Based Parameters (DBPs) and IRI levels.

Pairs Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

D0-IRImedian 0.28 0.21 0.51 0.24 0.10 0.23 0.16 0.24
SCI-IRImedian 0.26 0.19 0.47 0.18 0.10 0.16 0.10 0.21
BCI-IRImedian 0.25 0.13 0.42 0.13 0.04 0.20 0.08 0.17

D1800-IRImedian 0.12 0.77 0.38 0.30 0.35 0.30 0.52 0.88
D0-IRIupper 0.37 0.76 0.87 0.67 0.52 0.60 0.76 0.17
SCI-IRIupper 0.47 0.71 0.80 0.69 0.52 0.71 0.72 0.12
BCI-IRIupper 0.19 0.69 0.88 0.48 0.35 0.54 0.66 0.12

D1800-IRIupper 0.46 0.49 0.18 0.47 0.33 0.15 0.28 0.69
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From the R2 values, it seems that a yearly variance exists amongst the observed
correlations. In particular, D0, SCI and BCI indexes (related to pavement layer condition)
exhibited a better correlation with IRIupper than IRImedian, whereas the D1800 (related to
pavement subgrade condition) exhibited moderate to good correlation with both IRI values.
Moreover, from Figure 10c,d is seems that D1800 and IRI follow a qualitatively similar
evolution trend along the investigation length. Stimulated from these preliminary remarks,
a second-level analysis of FWD data was decided upon in order to further investigate the
potential IRI contribution to the pavement’s structural performance.

5.3. Response Calculations

For pavement response analysis, two separate processes were followed. At first,
deflectometric data was integrated with GPR-based thicknesses (shown in Figure 11) in
order to back-calculate the pavement stiffness profile for all monitoring periods according
to [54]. A typical three-layered system (Model A, as per Figure 4b) was initially considered
following the commonly adopted approach for pavement analysis. Second, the pavement
stiffness profile was used to generate pavement response data (i.e., strains) against loading
according to [55]. Both procedures were based on the Multi-Layer Elastic Theory (MLET),
assuming all material behaviour as linear elastic according to a worldwide-applied as-
sumption [26,30,31,40]. This was further strengthened herein, because of the absence of
any kind of deterioration (e.g., cracks) that could adversely affect the moduli reasonability
or compatibility with continuum mechanics.

Following MLET core principles, seed moduli values are assigned to the individual
pavement materials and a theoretical deflection bowl is calculated. Additional input data
related to field AC temperature, layer thicknesses and layer Poisson’s ratio (assumed to
be 0.35) are important for the analysis. Material moduli are iteratively adjusted until an
acceptable match between the measured and calculated deflection bowls is achieved.
This tolerance level is most commonly controlled through the Root Mean Square (RMS)
value that represents the error between measured and calculated deflections. According
to Table 6, the interquartile range of RMS is 2.3–4.9, which is in general low.
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Table 6. Overview of back-analysis results.

Statistics EAC at 25 ◦C
(MPa) EBASE (MPa) ESUBG

(MPa)
RMS
(%)

Min 1327 83 373 0.6
25% 3095 400 625 2.3

Median 4621 639 778 3.4
75% 5924 908 1021 4.9
Max 16493 2015 1457 12.9

Mean 5180 729 830 3.7
Stand. Dev. 2863 469 281 2.1

CV % 55% 64% 34% 56%

According to the international literature, the tool of [54] has been proved accurate
and consistent in terms of moduli estimation based on frequency distribution plots and
CV of moduli, considering data from three replicate FWD levels [56]. Moreover, previous
relevant experience demonstrated that the use of [54] produced well-correlated moduli
with those predicted with another MLET-based tool [57] and calculated critical strains were
found to be in close approximation irrespective of the utilized tool [31].

Strain calculations were performed for both the raw AC temperatures measured in
the field as well as at a reference temperature of 20 ◦C. AC moduli were normalized to
the reference temperature according to the algorithm proposed in [54]. For the response
calculations, both critical locations were considered, i.e., the bottom of AC layers, related
to fatigue failure, and the top of the subgrade, related to permanent deformation failure. A
uniform circular loading of 708 kPa was considered during the response calculations and
an overview of the resulting horizontal tensile strains (εH) and vertical compressive strains
(εV) at the AC bottom and top of subgrade, respectively, is illustrated in Figure 12 for all
monitoring periods.
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Pavement condition may be roughly characterized as constant in terms of AC strains
(range 40–80 µm/m), apart from the localized deterioration observed through the maxi-
mum tensile strains (either an extreme value or an outlier) that coincides with the observed
peak values in the deflection indexes curves (Figure 9a–c). With respect to the subgrade
condition (strain range 20–60 µm/m), a progressive increase is observed, especially after Y2,
which does coincide with the increase in roughness levels observed in Figure 6b. These pro-
vided the rationale in order to further investigate potential interaction between deflections
and roughness towards strain development through a linear regression analysis.

5.4. Pavement Strain Modelling

As a well-known approach, the use of predictive models for the estimation of pave-
ment strains leads to significant time- and cost-savings within pavement analysis, since the
time-consuming processes of back-analysis and forward analysis for strain calculations
are bypassed [58,59]. Strain modelling enables a rapid screening of pavement structural
condition that can in turn enhance maintenance prioritization and decision-making pro-
cesses [60]. Typically, required inputs for such models include, in most cases, DBPs and, in
some cases, layer thicknesses [31]. In this study, the additional incorporation of roughness
data was attempted and several linear regression models for critical strain prediction were
assessed in terms of both data fit and accuracy evaluation considering the following cases:

• only DBPs used as input (Case I),
• DBPs and median IRI value used as input (Case II),
• DBPs and “upper” IRI value used as input (Case III), and
• DBPs and both characteristic IRI values used as input (Case IV).

Considered DBPs included D0, SCI, BDI BCI, D900 − D1200 and D1800. Both strains and
DBPs were also considered in logarithmic scale following previous relevant studies [31,60].
AC temperature (TAC) was used as an additional input parameter in all cases. Given this,
the following generalized relationship was used as reference during the regression analysis
(a1, . . . a9 are regression constants):

log ε = a1 + a2 log D0 + a3 log SCI + a4 log BDI + a5 log BCI + a6 log(D900 −D1200)
+a7 log D1800 + a7 log TAC + a8IRImedian + a9IRIupper

(4)

In terms of the modelling process, it is noted that data from years 0, 1 and 2 were
used for model calibration (i.e., 37.5% of the total data) and data from years 3–7 (i.e.,
the rest 62.5%) were used for model accuracy evaluation. Through this discrimination,
temperatures covering the full spectrum measured in-situ (i.e., 14–30 ◦C) were taken
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into consideration. The model calibration was evaluated based on the R2 value, whereas
model accuracy was assessed through the Root-Mean-Square-Percentage-Error (RMSPE %),
calculated as follows:

RMSPE(%) =

√√√√∑n
i=1

(
εpred−εcalc

εcalc

)2

n
·100 (5)

where:

• εpred: strains predicted through models (µm/m),
• εcalc: strains calculated through MLET (µm/m), and
• n: observations (i.e., number of deflection basins under consideration).

From a stepwise process, only parameters that were statistically significant (p values
less than 0.05) were considered as strain predictors and the results of the linear regression
models for the estimation of strains are shown in Table 7.

Table 7. Regression analysis results.

Strains Case I Case II Case III Case IV

R2 for εH (AC) at T (◦C) 1.00 1.00 Same as Case I Same as Case II
RMSPE % for εH (AC) at T

(◦C) 2.4 2.3 Same as Case I Same as Case II

R2 for εH (AC) at 20 ◦C 0.97 Same as Case I Same as Case I Same as Case I
RMSPE % for εH (AC) at

20 ◦C 0.9 Same as Case I Same as Case I Same as Case I

R2 for εV (SUBG) at T (◦C) 0.90 0.91 Same as Case I 0.92
RMSPE % for εV (SUBG) at

T (◦C) 9.9 8.2 Same as Case I 7.2

R2 for εV (SUBG) at 20 ◦C 0.75 0.76 Same as Case I Same as Case II
RMSPE % for εV (SUBG) at

20 ◦C 18.0 13.8 Same as Case I Same as Case II

It can be seen that both characteristic IRI values do not affect the AC strains, since no
different models were found for Cases II–IV. Only a negligible improvement in terms of
model accuracy was found in Case II for AC strains at the raw measured temperatures
T (◦C). On the other hand, pavement roughness was found to have a strong impact on
subgrade strains, since in many of the investigated cases a different model was found with
both a better fit and a better accuracy. In particular, the use of both characteristic IRI values
(Case IV) for subgrade strains at the raw measured temperatures T (◦C) led to a model
with increased accuracy (Figure 13) compared to that with the sole use of DBPs (Case I).
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Further, even the addition of the median IRI itself (Case II) led to an improvement in
the subgrade strain prediction accuracy in comparison to Case I. However, the “upper” IRI
value itself (Case III) was not found to affect subgrade strain levels. This coincides with
the lower correlation observed between the D1800 index and the IRIupper compared to the
pair of D1800-IRImedian (as shown in Table 5). Perhaps the IRIupper could affect the subgrade
strains in case of performing FWD tests at the exact localized areas where IRI issues are
more pronounced.

Overall, the remarks initially made for the correlations between deflection indexes
and IRI values were modified during the strain calculations. In particular, AC strains were
found rather insensitive to roughness levels, whereas subgrade strains exhibited some
kind of dependency on roughness. It became feasible to highlight this interaction between
the structural and functional performance of the experimental pavement based on the
integration of multi-sensing data that were applied to prove their interrelationship.

6. Discussion Points and Assessment of Findings

Pavement condition is usually evaluated by measuring the ride quality or roughness,
surface distress, structural adequacy and pavement friction [2,16,30,46,61,62]. Towards this,
different NDT systems are utilized to sense the pavement condition. Since the stand-alone
use of these systems provides limited information, the integration of multiple systems helps
to reach a reliable pavement health monitoring and eventually reliable decision-making
regarding pavement condition.

This study dealt with the potential relationship between roughness issues and pave-
ment structural condition. The focus was on an experimental pavement section, where
roughness issues existed along its length even during the first monitoring period. The
integration analysis of multiple LTPP data, collected through RSP, FWD and GPR, demon-
strated that roughness issues might coincide with pavement subgrade condition, since
IRI levels were found to be predictors of critical subgrade strains. As such, the present
study seems to increase the benefit, supplementary to other research that mainly focuses
on the dynamic impact of roughness on vehicular loading response [20–23], as IRI seems
to affect pavement response even during the consideration of static loading conditions that
are usually adopted in pavement analysis. Related data is in limited availability within the
international literature. Therefore, the present study contributes towards using a practical
framework, according to which pavement response and pavement profile are coupled,
thereby providing the relevant authorities with an integrated screening approach for areas
deserving maintenance focus. To further assess the power of this finding, response analysis
was repeated considering two additional pavement models (as shown in Figure 14).
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In particular, Model B (Figure 14b) was adopted in order to obtain information for
even higher depths. A uniform subgrade layer of 50 cm thickness was assumed along the
length of the experimental pavement, and a unified intermediate layer was considered
including both UGM base and subgrade which was assumed to lay above a natural soil
layer. Thus, the second critical location was now even deeper. In respect to the calculated
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critical strains, AC strains were again found insensitive to pavement profile variations,
whereas vertical strains at the top of the third layer in Model B exhibited the same kind
of dependency on pavement profile (similar to Model A). In this case, AC strains were
calculated with a 5.9% deviation from those calculated through Model A, whereas vertical
strains in the higher depth were reasonably calculated at 40–45% lower than the subgrade
strains in Model A.

The third model (Model C, Figure 14c) was similar to Model A, but the effect of a
stiff bottom layer was also accounted for. In general, this effect might be neglected when
the depth to a stiff layer is greater than 10–12 m [63]. However, this depth is in general
unknown and might be verified, whenever possible, with either NDT or borings [63].
Analyzing the deflection bowl itself through a MLET-based tool [57], an automatically
estimated depth to a stiff bottom was found for the first three locations, which seems
reasonable since these locations were along a cut area. For these locations, back-analysis
and response calculations were performed for a four-layer pavement model (shown in
Figure 14c). Both critical strains (at AC bottom and top of subgrade) were found to be
different from those calculated through Model A, so the impact of a stiff bottom layer on
pavement analysis was shown.

Nevertheless, even in this case, pavement profile was again found to be a statistically
significant predictor of subgrade strains. In particular, the equation fit and the prediction
accuracy for the estimation of vertical strains is shown in Table 8, comparing the results
from all pavement models and investigation cases. Further, an overview of the statistical
significance of all the considered input parameters (as per Equation (4)) is given in Table 9 for
both critical strains. For those variables with p value less than 0.05, statistically significant pre-
dictors are indicated. From Table 9, the AC temperature was excluded, since the comparison
between different pavement response models (A, B and C) was made for strains calculated at
raw temperatures.

Table 8. Comparison of regression analysis results for three pavement models.

Model (Layers) Strains Case I Case II Case III Case IV

A (AC/UGM/SUBG) R2 for εV 0.90 0.91 Same as Case I 0.92
RMSPE % for εV 9.9 8.2 Same as Case I 7.2

B (AC/UGM + SUBG/SOIL) R2 for εV 0.91 0.92 Same as Case I 0.93
RMSPE % for εV 9.8 7.8 Same as Case I 7.4

C (AC/UGM/SUBG or SUBG
+ STIFF SOIL)

R2 for εV 0.90 0.91 Same as Case I 0.92
RMSPE % for εV 11.4 10.8 Same as Case I 9.4

Table 9. Synopsis of stepwise regression analysis for all pavement models.

Variable

Model A
AC/UGM/SUBG

Model B
AC/UGM + SUBG/SOIL

Model C
AC/UGM/SUBG or SUBG + STIFF

SOIL

logεH logεV logεH logεV logεH logεV

t -Value Sig. t-Value Sig. t-Value Sig. t-Value Sig. t-Value Sig. t-Value Sig.

Constant 15.087 0.000 7.778 0.000 10.141 0.000 5.874 0.000 14.712 0.000 1.775 0.080
logD0 −11.301 0.000 −6.183 0.000 −3.821 0.000 0.710 0.480 −11.248 0.000 4.535 0.000
logSCI 19.039 0.000 7.203 0.000 18.277 0.000 6.859 0.000 17.632 0.000 2.053 0.043
logBDI 23.488 0.000 8.672 0.000 14.061 0.000 1.707 0.092 21.817 0.000 1.046 0.299
logBCI 12.064 0.000 2.954 0.004 5.297 0.000 −3.160 0.002 10.779 0.000 0.176 0.861

log(D900–
D1200) 5.675 0.000 1.994 0.050 2.185 0.032 0.261 0.795 5.158 0.000 −0.075 0.941

logD1800 5.893 0.000 12.090 0.000 1.696 0.094 18.918 0.000 6.783 0.000 8.745 0.000
IRImedian 2.110 0.038 6.583 0.000 1.059 0.293 7.282 0.000 2.596 0.011 5.342 0.000
IRIupper −1.278 0.205 −2.983 0.004 0.575 0.567 −3.254 0.002 −1.632 0.107 −3.052 0.003

The values of the regression constants a1, . . . a9 (Equation (4)) are not intentionally
given, since proper recalibration is needed before using any equation elsewhere. Besides,
the purpose of this study was not to generate critical strain predictive equations. It was
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rather to demonstrate an approach on how to correlate sensing data and obtain integrated
information in order to better assess pavement condition and alert agencies for potential
intervention actions. This also justifies the author’s choice at this stage for common
analytical tools (statistics and regression analysis) instead of a more advanced neural
network modelling. To this end, the existence of a predictive equation, even with localized
power, based on pavement historical performance and mechanistic-based analysis could
be useful.

Overall, pavement roughness is a serious issue that could be in the worst cases
related to land subsidence or stability issues. The condition of a pavement-soil system
is usually a matter of concern when managing both primary and secondary roadway
networks (either paved or unpaved) within a nation’s territory. In such cases, the use of
the Synthetic Aperture Radar (SAR) technology could complement the overall process in
terms of subsidence monitoring and provide even more cost-effective solutions considering
limited fund allocation within the transportation agencies before scheduling other kind of
destructive and costly testing. SAR technology has become very popular during the last
two decades and numerous applications exist in the domain of infrastructure engineering
and monitoring [7,64–66].

Nevertheless, even in this case pavement structural performance data should not be
absent (if possible), especially in the case of PPP highways. The use of the stationary FWD
might be counterbalanced by the use of innovative TSDD [27] for rapid health monitoring.
It is believed that the presented methodology could also be applicable for the possible
integration of RSP and TSDD, since TSDD will dominate in the near future.

7. Conclusions

This research study demonstrated a modelling approach according to which multi-
sensing pavement data (i.e., pavement profile, stratigraphy and deflectometric data) was
integrated to illustrate a promising monitoring framework and identify additional issues
that might be hidden but may often occur at areas with pavement profile issues. Analyzing
LTPP data from an experimental pavement with roughness issues along its surface demon-
strated that pavement roughness is a significant predictor of critical subgrade strains. In
particular, following a modelling approach it was found that the prediction accuracy of
subgrade strains was improved when using roughness level as an input additional to
DBPs, since a decrease from around 10% to 7–7.5% was observed for the RMSPE index.
Contrariwise, the impact on AC strains was found negligible. Three different pavement
models that were adopted during the pavement analysis further strengthen the previous
remarks. In other words, there is a quantifiable evidence that structural variation within
the pavement subgrade (or even deeper) can be somehow reflected in the pavement ride
quality. Wherever used as an input parameter for subgrade strain prediction, IRI proved to
be a significant indicator with p values less than 0.05.

Since roughness is an important pavement performance indicator, special care should
be taken along areas with increased roughness levels by additionally sensing pavement
structural performance and better defining the pavement maintenance or rehabilitation
strategy. A smart combination of NDT systems and data integration could result in the
need for planning denser measurements and help in identifying areas with structural
variations, thereby limiting the potential locations that could be subject to other kinds of
destructive testing (e.g., cuts or boreholes).

Overall, the presented approach is an initial cost-effective method serving the purpose
of transportation assets’ health monitoring. Future research is needed considering greater
roadway sections, or sections with additional surface distress issues, such as cracking, in
order to investigate how the presented integration approach could behave under different
circumstances. In addition, the inclusion of more advanced analysis techniques should
be considered for future research (e.g., neural network and machine learning techniques)
provided that higher lengths are investigated. Finally, the well-known Power Spectral



Sensors 2021, 21, 3104 19 of 21

Density (PSD) method might also be incorporated into the analysis, in order to identify
where roughness issues originate in an alternative and more sophisticated way.

Author Contributions: Conceptualization, K.G., A.L. and C.P.; methodology, K.G., A.L. and C.P.;
analysis, K.G.; writing—original draft preparation, K.G.; review and editing, A.L. and C.P.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Plati, C.; Loizos, A.; Gkyrtis, K. Assessment of modern roadways using non-destructive geophysical surveying techniques. Surv.

Geophys. 2020, 41, 395–430. [CrossRef]
2. Liu, H.-H.; Xu, Z.-X.; Zhang, Z.-G.; Liu, B.; Hong-Hai, L.; Zhong-Xin, X.; Zhi-Geng, Z.; Bing, L. Research and verification of

transfer model for roughness conditions of pavement construction. Int. J. Pavement Res. Technol. 2016, 9, 222–227. [CrossRef]
3. Loizos, A.; Plati, C. An alternative approach to pavement roughness evaluation. Int. J. Pavement Eng. 2008, 9, 69–78. [CrossRef]
4. Mubaraki, M. Highway subsurface assessment using pavement surface distress and roughness data. Int. J. Pavement Res. Technol.

2016, 9, 393–402. [CrossRef]
5. Wix, R. Ride quality specifications—Smoothing out pavements. Road Transp. Res. 2004, 13, 33–43.
6. Pomoni, M.; Plati, C.; Loizos, A. How Can Sustainable Materials in Road Construction Contribute to Vehicles’ Braking? Vehicles

2020, 2, 55–74. [CrossRef]
7. Meyer, F.J.; Ajadi, O.A.; Hoppe, E.J. Studying the Applicability of X-Band SAR Data to the Network-Scale Mapping of Pavement

Roughness on US Roads. Remote Sens. 2020, 12, 1507. [CrossRef]
8. Kim, R.E.; Kang, S.; Spencer, B.F.; Al-Qadi, I.L.; Ozer, H. Impact on pavement roughness and deflection on fuel consumption

using energy dissipation. J. Eng. Mech. 2019, 145, 04019080. [CrossRef]
9. Abdelaziz, N.; Abd El-Hakim, R.T.; El-Badawy, S.M.; Afify, H.A. International Roughness Index prediction model for flexible

pavements. Int. J. Pavement Eng. 2020, 21, 88–99. [CrossRef]
10. Drainakis, A.; Pomoni, M.; Plati, C. The importance of maintaining pavement roughness to reduce carbon footprint. In Bearing

Capacity of Roads, Railways and Airfields: Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and
Airfields (BCRRA), Athens, Greece, 28–30 June 2017; Loizos, A., Al-Qadi, I., Scarpas, T., Eds.; CRC Press: Boca Raton, FL, USA, 2017;
pp. 2135–2139.

11. Ghosh, L.E.; Lu, L.; Ozer, H.; Ouyang, Y.; Al-Qadi, I.L. Effects of Pavement Surface Roughness and Congestion on Expected
Freeway Traffic Energy Consumption. Transp. Res. Rec. 2015, 2503, 10–19. [CrossRef]

12. Flintsch, G.W.; Valeri, S.M.; Katicha, S.W.; Izeppi, E.D.D.L.; Medina-Flintsch, A. Probe vehicles used to measure road ride quality:
Pilot demonstration. Transp. Res. Rec. 2012, 2304, 158–165. [CrossRef]

13. Abulizi, N.; Kawamura, A.; Tomiyama, K.; Fujita, S. Measuring and evaluating of road roughness conditions with a compact road
profiler and ArcGIS. J. Traffic Transp. Eng. 2016, 3, 398–411. [CrossRef]

14. Sayers, M.W. On the calculation of international roughness index from longitudinal road profile. Transp. Res. Rec. 1995, 1501, 1–12.
15. Chandra, S.; Ravi Sekhar, C.; Kumar Bharti, A.; Kangadurai, B. Relationship between Pavement Roughness and Distress

Parameters for Indian Highways. J. Transp. Eng. 2013, 139, 467–475. [CrossRef]
16. Fakhri, M.; Dezfoulian, R.S. Pavement structural evaluation based on roughness and surface distress survey using neural network

model. Constr. Build. Mater. 2019, 204, 768–780. [CrossRef]
17. Karballaeezadeh, N.; Mohammadzadeh, D.S.; Moazemi, D.; Band, S.S.; Mosavi, A.; Reuter, U. Smart Structural Health Monitoring

of Flexible Pavements Using Machine Learning Methods. Coatings 2020, 10, 1100. [CrossRef]
18. Park, K.; Thomas, N.E.; Lee, K.W. Applicability of the International Roughness Index as a Predictor of Asphalt Pavement

Condition. J. Transp. Eng. 2007, 133, 706–709. [CrossRef]
19. Mactutis, J.A.; Alavi, S.H.; Ott, W.C. Investigation of relationship between roughness and pavement surface distress based

onWesTrack project. Transp. Res. Rec. 2000, 1699, 107–113. [CrossRef]
20. Bilodeau, J.P.; Gagnon, L.; Doré, G. Assessment of the relationship between the international roughness index and dynamic

loading of heavy vehicles. Int. J. Pavement Eng. 2017, 18, 693–701. [CrossRef]
21. Kakara, S.; Chowdary, V. Effect of Pavement Roughness and Transverse Slope on the Magnitude of Wheel Loads. Arab. J. Sci. Eng.

2020, 45, 4405–4418. [CrossRef]
22. Elnashar, G.; Bhat, R.B.; Sedaghati, R. Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to

road surface excitation. J. Mech. Sci. Technol. 2019, 33, 3115–3125. [CrossRef]
23. Misaghi, S.; Tirado, C.; Nazarian, S.; Carasco, C. Impact of pavement roughness and suspension systems on vehicle dynamic

loads on flexible pavements. Transp. Eng. 2021, 3, 100045. [CrossRef]

http://doi.org/10.1007/s10712-019-09518-y
http://doi.org/10.1016/j.ijprt.2016.05.002
http://doi.org/10.1080/10298430600949894
http://doi.org/10.1016/j.ijprt.2016.10.001
http://doi.org/10.3390/vehicles2010004
http://doi.org/10.3390/rs12091507
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001653
http://doi.org/10.1080/10298436.2018.1441414
http://doi.org/10.3141/2503-02
http://doi.org/10.3141/2304-18
http://doi.org/10.1016/j.jtte.2016.09.004
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000512
http://doi.org/10.1016/j.conbuildmat.2019.01.142
http://doi.org/10.3390/coatings10111100
http://doi.org/10.1061/(ASCE)0733-947X(2007)133:12(706)
http://doi.org/10.3141/1699-15
http://doi.org/10.1080/10298436.2015.1121780
http://doi.org/10.1007/s13369-020-04492-9
http://doi.org/10.1007/s12206-019-0606-5
http://doi.org/10.1016/j.treng.2021.100045


Sensors 2021, 21, 3104 20 of 21

24. Sollazo, G.; Fwa, T.F.; Bosurgi, G. An ANN model to correlate roughness and structural performance in asphalt pavements.
Constr. Build. Mater. 2017, 134, 684–693. [CrossRef]

25. Rada, G.R.; Perera, R.; Prabhakar, V. Relating Ride Quality and Structural Adequacy for Pavement Rehabilitation/Design Decisions;
Report No. FHWAHRT-12-035; Federal Highway Administration: Washington, DC, USA, 2012.

26. Crook, A.L.; Montgomery, S.R.; Guthrie, W.S. Use of falling weight deflectometer data for network-level flexible pavement
management. Transp. Res. Rec. 2012, 2304, 75–85. [CrossRef]

27. Elbagalati, O.; Elseifi, M.A.; Gaspard, K.; Zhang, Z. Implementation of the Structural Condition Index into the Louisiana Pavement
Management System Based on Rolling Wheel Deflectometer Testing. Transp. Res. Rec. 2017, 2641, 39–47. [CrossRef]

28. Plati, C.; Loizos, A.; Gkyrtis, K. Integration of non-destructive testing methods to assess asphalt pavement thickness. NDT E Int.
2020, 115, 102292. [CrossRef]

29. Gkyrtis, K.; Loizos, A.; Plati, C. A mechanistic framework for field response assessment of asphalt pavements. Int. J. Pavement
Res. Technol. 2021, 14, 174–185. [CrossRef]

30. Marecos, V.; Fontul, S.; Antunes, M.L.; Solla, M. Evaluation of a highway pavement using non-destructive tests: Falling Weight
Deflectometer and Ground Penetrating Radar. Constr. Build. Mater. 2017, 154, 1164–1172. [CrossRef]

31. Plati, C.; Gkyrtis, K.; Loizos, A. Integrating non-destructive testing data to produce asphalt pavement critical strains. Nondestruct.
Test. Eval. 2020, 1–25. [CrossRef]

32. Perera, R.; Kohn, S. Effects of Variation in Quarter-Car Simulation Speed on International Roughness Index Algorithm. Transp.
Res. Rec. 2004, 1889, 144–151. [CrossRef]

33. Kumar Singh, D.; Gundaliya, P.J. Flexible pavement evaluation using profilometer for unevenness. Int. Res. J. Eng. Technol. 2018,
5, 1024–1028.

34. Sayers, M.W.; Karamihas, S.M. The Little Book of Profiling; UMTRI: Ann Arbor, MI, USA, 1997.
35. Marecos, V.; Solla, M.; Fontul, S.; Antunes, V. Assessing the pavement subgrade by combining different non-destructive methods.

Constr. Build. Mater. 2017, 135, 76–85. [CrossRef]
36. Smith, K.D.; Bruinsma, J.E.; Wade, M.J.; Chatti, K.; Vandenbossche, J.M.; Yu, H.T. Using Falling Weight Deflectometer Data with

Mechanistic-Empirical Design and Analysis, Volume I: Final Report; Report No. FHWA-HRT-16-009; Federal Highway Administration:
McLean, VA, USA, 2017.

37. Schmalzer, P.N. Long-Term Pavement Performance Program Manual for Falling Weight Deflectometer Measurements; Report No. FHWA-
HRT-06-132; Office of Infrastructure Research and Development, Federal Highway Administration: McLean, VA, USA, 2006.

38. Horak, E. Benchmarking the structural condition of flexible pavements with deflection bowl parameters. J. S. Afr. Inst. Civ. Eng.
2008, 50, 2–9.

39. Kavussi, A.; Abbasghorbani, M.; Moghadas-Nejad, F.; Bamdad-Ziksari, A. A new method to determine maintenance and repair
activities at network level pavement management using falling weight deflectometer. J. Civ. Eng. Manag. 2017, 23, 338–346.
[CrossRef]

40. Georgouli, K.; Pomoni, M.; Cliatt, B.; Loizos, A. A simplified approach for the estimation of HMA dynamic modulus for in
service pavements. In Proceedings of the 6th International Conference on Bituminous Mixtures and Pavements (ICONFBMP),
Thessaloniki, Greece, 10–12 June 2015; pp. 661–670.

41. Leng, Z.; Al-Qadi, I.L. An innovative method for measuring pavement dielectric constant using the extended CMP method with
two air-coupled GPR systems. NDT E Int. 2014, 66, 90–98. [CrossRef]

42. Saarenketo, T.; Scullion, T. Road evaluation with ground penetrating radar. J. Appl. Geophys. 2000, 43, 119–138. [CrossRef]
43. Zhao, S.; Al-Qadi, I.L.; Wang, S. Prediction of thin asphalt concrete overlay thickness and density using nonlinear optimization of

GPR data. NDT E Int. 2018, 100, 20–30. [CrossRef]
44. Shangguan, P.; Al-Qadi, I.L.; Leng, Z.; Schmitt, R.; Faheen, A. Innovative approach for asphalt pavement compaction monitoring

using ground penetrating radar. Transp. Res. Rec. 2013, 2425, 79–87. [CrossRef]
45. Benedetto, A.; Benedetto, F.; Tosti, F. GPR applications for geotechnical stability of transportation infrastructures. Nondestruct.

Test. Eval. 2012, 27, 253–262. [CrossRef]
46. Tosti, F.; Bianchini Ciampoli, L.; D’Amico, F.; Alani, A.M.; Benedetto, A. An experimental-based model for the assessment of the

mechanical properties of road pavements using ground-penetrating radar. Constr. Build. Mater. 2018, 165, 966–974. [CrossRef]
47. Solla, M.; Pérez-Gracia, V.; Fontul, S. A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best

Practices. Remote Sens. 2021, 13, 672. [CrossRef]
48. Solla, M.; Gonzalez-Jorge, H.; Lorenzo, H.; Arias, P. Uncertainty evaluation of the 1 GHz GPR antenna for the estimation of

concrete asphalt thickness. Measurement 2013, 46, 3032–3040. [CrossRef]
49. Maser, K.R.; Scullion, T. Automated pavement subsurface profiling using radar: Case studies of four experimental field sites.

Transp. Res. Rec. 1992, 1344, 148–154.
50. Bianchini Ciampoli, L.; Tosti, F.; Economou, N.; Benedetto, F. Signal Processing of GPR Data for Road Surveys. Geosciences 2019,

9, 96. [CrossRef]
51. Wang, S.; Zhao, S.; Al-Qadi, I.L. Continuous real-time monitoring of flexible pavement layer density and thickness using ground

penetrating radar. NDT E Int. 2018, 100, 48–54. [CrossRef]
52. Maser, K.R. Condition assessment of transportation infrastructure using ground penetrating radar. J. Infrastruct. Syst. 1996, 2,

94–101. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2016.12.186
http://doi.org/10.3141/2304-09
http://doi.org/10.3141/2641-06
http://doi.org/10.1016/j.ndteint.2020.102292
http://doi.org/10.1007/s42947-020-0097-x
http://doi.org/10.1016/j.conbuildmat.2017.07.034
http://doi.org/10.1080/10589759.2020.1834555
http://doi.org/10.3141/1889-16
http://doi.org/10.1016/j.conbuildmat.2017.01.003
http://doi.org/10.3846/13923730.2015.1073173
http://doi.org/10.1016/j.ndteint.2014.05.002
http://doi.org/10.1016/S0926-9851(99)00052-X
http://doi.org/10.1016/j.ndteint.2018.08.001
http://doi.org/10.3141/2347-09
http://doi.org/10.1080/10589759.2012.694884
http://doi.org/10.1016/j.conbuildmat.2018.01.179
http://doi.org/10.3390/rs13040672
http://doi.org/10.1016/j.measurement.2013.06.022
http://doi.org/10.3390/geosciences9020096
http://doi.org/10.1016/j.ndteint.2018.08.005
http://doi.org/10.1061/(ASCE)1076-0342(1996)2:2(94)


Sensors 2021, 21, 3104 21 of 21

53. Molenaar, A.A.A. Structural evaluation and strengthening of flexible pavements using deflection measurements and visual
condition surveys. In Structural Design of Pavements—Part IV; Lecture Notes: San Jose, Costa Rica, 2006.

54. Washington State Department of Transportation. Everseries User’s Guide. Pavement Analysis Computer Software and Case Studies;
Washington State Department of Transportation: Olympia, WA, USA, 2005.

55. BISAR. Shell Pavement Design Method, BISAR PC User Manual; Shell International Petroleum Company Limited: London, UK, 1998.
56. Tarefder, R.A.; Ahmed, M.U. Consistency and accuracy of selected FWD backcalculation software for computing layer modulus

of airport pavements. Int. J. Geotech. Eng. 2013, 7, 21–35. [CrossRef]
57. Irwin, L.; Yang, W.; Stubstad, R. Deflection Reading Accuracy and Layer Thickness Accuracy in Backcalculation of Pavement

Layer Moduli. In Nondestructive Testing of Pavements and Backcalculation of Moduli; Baladi, G., Bush, A., Eds.; ASTM International:
West Conshohocken, PA, USA, 1989; pp. 229–244. [CrossRef]

58. Li, M.; Wang, H. Prediction of asphalt pavement responses from FWD surface deflections using soft computing methods. J.
Transp. Eng. Part B Pavements 2018, 144, 04018014. [CrossRef]

59. Loizos, A.; Gkyrtis, K.; Plati, C. Modelling asphalt pavement responses based on field and laboratory data. In Accelerated
Pavement Testing to Transport Infrastructure Innovation; Chabot, A., Hornych, P., Harvey, J., Loria-Salazar, L., Eds.; Springer: Cham,
Switzerland, 2020; Volume 96, pp. 438–447. [CrossRef]

60. Losa, M.; Bacci, R.; Leandri, P. A statistical model for prediction of critical strains in pavements from deflection measurements.
Road Mater. Pavement Des. 2008, 9, 373–396. [CrossRef]

61. Pomoni, M.; Plati, C.; Loizos, A.; Yannis, G. Investigation of pavement skid resistance and macrotexture on a long-term basis. Int.
J. Pavement Eng. 2020, 1–10. [CrossRef]

62. Plati, C.; Pomoni, M.; Stergiou, T. From Mean Texture Depth to Mean Profile Depth: Exploring possibilities. In Proceedings of the
7th International Conference on Bituminous Mixtures and Pavements (ICONFBMP), Thessaloniki, Greece, 12–14 June 2019; pp.
639–644. [CrossRef]

63. Irwin, L.H. Backcalculation: An overview and perspective. Presented at the 2002 FWD User Group Annual Meeting, Roanoke,
VA, USA, 21–25 October 2002.

64. Alani, A.M.; Tosti, F.; Bianchini Ciampoli, L.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health
monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288. [CrossRef]

65. Fiorentini, N.; Maboudi, M.; Leandri, P.; Losa, M.; Gerke, M. Surface Motion Prediction and Mapping for Road Infrastructures
Management by PS-InSAR Measurements and Machine Learning Algorithms. Remote Sens. 2020, 12, 3976. [CrossRef]

66. Karimzadeh, S.; Matsuoka, M. Remote Sensing X-Band SAR Data for Land Subsidence and Pavement Monitoring. Sensors 2020,
20, 4751. [CrossRef] [PubMed]

http://doi.org/10.1179/1938636212Z.0000000009
http://doi.org/10.1520/STP19810S
http://doi.org/10.1061/JPEODX.0000044
http://doi.org/10.1007/978-3-030-55236-7_45
http://doi.org/10.1080/14680629.2008.9690175
http://doi.org/10.1080/10298436.2020.1788029
http://doi.org/10.1201/9781351063265-86
http://doi.org/10.1016/j.ndteint.2020.102288
http://doi.org/10.3390/rs12233976
http://doi.org/10.3390/s20174751
http://www.ncbi.nlm.nih.gov/pubmed/32842663

	Introduction 
	Aim and Objectives 
	NDT-Based Pavement Sensing 
	Roughness—Road Surface Profiler (RSP) 
	Load Response—Falling Weight Deflectometer (FWD) 
	Pavement Structure—Ground Penetrating Radar (GPR) 

	Test Site and LTPP Data Collection 
	Analysis 
	Roughness Data Processing 
	Deflections 
	Response Calculations 
	Pavement Strain Modelling 

	Discussion Points and Assessment of Findings 
	Conclusions 
	References

