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Abstract: Crowdsourcing enables requesters to publish tasks to a platform and workers are rewarded
for performing tasks of interest. It provides an efficient and low-cost way to aggregate data and
solve problems that are difficult for computers but simple for humans. However, the privacy risks
and challenges are still widespread. In the real world, the task content may be sensitive and only
workers who meet specific requirements or possess certain skills are allowed to acquire and perform
it. When these distributed workers submit their task answers, their identity or attribute privacy may
also be exposed. If workers are allowed to submit anonymously, they may have the chance to repeat
their answers so as to get more rewards. To address these issues, we develop a privacy-preserving
task-matching and multiple-submissions detection scheme based on inner-product cryptography
and proof of knowledge (PoK) protocol in crowdsourcing. In such a construction, multi-authority
inner-product encryption is introduced to protect task confidentiality and achieve fine-grained task-
matching based on the attributes of workers. The PoK protocol helps to restrict multiple submissions.
For one task, a suitable worker could only submit once without revealing his/her identity. Moreover,
different tasks for one worker are unlinkable. Furthermore, the implementation analysis shows that
the scheme is effective and feasible.

Keywords: task-matching; anonymous multi-submission detection; inner-product encryption; zero-
knowledge proof

1. Introduction

With the development of network technologies and the popularity of smartphones,
crowdsourcing has become a popular distributed paradigm for problem-solving, which is
applied to address problems that are too complex for computer programs or of high cost for
an organization. An early typical example of crowdsourcing is captcha. ReCAPTCHA [1],
a project initiated by Carnegie Mellon University, uses the wisdom of the masses to help
the digitization of ancient books in the form of crowdsourcing. This project scans the text,
which cannot be recognized by the optical character recognition technology accurately, and
displays it in the captcha question, so that a human can recognize it when answering the
captcha question.

In the era of big data, the amount of data is increasing, and the forms of data are
more diversified, which leads to increasing demand for crowdsourcing and the increasing
forms of tasks. Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) [2],
crowdflower and upwork of Amazon came into being. On these platforms, tens of mil-
lions of workers from more than 100 countries are involved in solving problems. It
has inspired the collective imagination of researchers in numerous fields such as hu-
man–computer interaction, machine learning, artificial intelligence, information retrieval,
database community, etc.
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The openness and sharing of crowdsourcing make it more vulnerable to various
attacks since it allows attackers to join crowdsourcing systems freely as requesters or work-
ers. When task requesters have tasks to crowdsource, they need to set some parameters,
including task pricing, answer time, task worker quality, etc. After that, they can publish
tasks on the crowdsourcing platform, and then the tasks will be assigned to workers. When
a task is answered by a worker, the requester can choose to accept or reject the answer. If
the requester accepts the answer, he/she will pay the worker accordingly. In this process,
combined with the task constraints, task content and worker authentication information,
the attacker may infer the important private information of the participants, including
identity, age, occupation, residence, and so on. If such kind of information cannot be
properly kept, it will reduce the enthusiasm of users to participate in the task and further
affect the completion of the task.

In the process of task release and matching, since different workers have their own
specialties, unsuitable or malicious workers may randomly answer questions to get the
reward, or deliberately submit wrong answers to distort the true value. To ensure the
quality of answers, the requester should set up task constraints for different tasks so as to
match appropriate workers. There are many ways of keyword matching. The flexibility of
accurate matching is poor. The matching method that supports multiple policy expressions
is more in line with diverse requirements, e.g., ((major = (art ∨ artificial intelligence)) ∧ (age
≥ 30)), etc. Under the premise of privacy protection, how to achieve flexible task-matching
has become a thorny issue.

In most previous mutual privacy-preserving task allocation research, the homomor-
phism [3] is adopted to realize multiple types of ciphertext policy matching without
revealing task constraints and workers’ private attributes, which cause the downgrade of
efficiency. Moreover, content confidentiality is closely related to the privacy of participants.
For the privacy of the task content, the proxy re-encryption algorithm or other technologies
is needed. Then the computation and communication cost is further increased. However,
based on inner-product encryption the relevant work [4] considered flexible matching
of encrypted keywords and fine-grained access control of task content simultaneously.
With the expansion of the network scale, it is difficult for a single authentication center
to manage workers’ keys efficiently. The multi-authority model [5] could better adapt
to a large-scale distributed network. However, at this time, there are not only collusion
problems of workers but also collusion or damage problems of some attribute authorities
in the system.

After the task is assigned, the worker will perform the task and submit task data. At
this phase, we should first ensure that it is the right workers who meet the requirements
submit the answers. However, similarly, the workers may not wish to be tracked by
the server. Since the platform is not completely credible, it may expose the worker’s
privacy because of interest-driven. Due to the flexible matching requirements set by
the task requester, an attribute-based signature could be used. It allows signers to sign
a message under policies that satisfying their attributes. In a crowdsourcing system,
the worker obtains the attribute-based private key from the authority. When his/her
attributes satisfy the constraint policy set by the requester, the signature can be verified
to be valid. With anonymous attribute-based signature authentication, it is possible to
prevent inappropriate workers from submitting, while avoiding the leakage of worker’s
privacy. However, dishonest qualified workers may submit multiple answers to a task
for more rewards. Moreover, if a greedy participant submits similar or identical results
with different pseudonyms many times, it will also reduce the diversity and credibility
of the data, and further produce bias to the results that should have been perceived by
numerous participants. Actually, a privacy-preserving submission detection scheme is
needed, which ensures that only qualified workers can participate in answering and cannot
submit repeatedly, and the worker’s identity and history of participating in the task will
not be disclosed.
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In this paper, we first analyze the potential security threats to the privacy and quality
assurance issues of crowdsourcing during the task allocation and task submission phase,
and then propose a security and privacy protection model of the system. After that, a
scheme based on multi-authority inner-product encryption (MIPE) and zero-knowledge
proof protocol, called zk-MIPE, is designed. With MIPE, the scheme can realize secure shar-
ing of task content and the flexible assignment of tasks based on encrypted task constraints
and workers’ attributes. With the repeated submission detection algorithm constructed
by zero-knowledge proof protocol, it ensures that the requester and platform can only
verify that a worker who has submitted an answer about a task meets the corresponding
task constraints but cannot judge his/her specific identity or attribute information. Also,
if the worker performs multiple tasks, no one can link them. At the same time, when
workers submit repeatedly for the same task, they can be identified by association. Under
the premise of protecting the participants’ privacy, the scheme selects suitable workers
to submit an answer honestly with more professional skills, thus further improve the
quality of aggregated task data. In summary, the technical innovation of the proposed
system is: we designed a novel MIPE scheme and a one-time anonymous inner-product
authentication protocol based on zero-knowledge proof, and proved the confidentiality,
one-time authentication, anonymity and unlinkability of the solution. In terms of appli-
cation, we achieved the innovative features in function and security for crowdsourcing
privacy protection: (1). it supports flexible task-matching based on inner-product with
mutual privacy; (2). it supports anonymously inner-product-based authentication and
duplicate submission detection without revealing identity and attributes privacy.

2. Related Work

Crowdsourcing Privacy

Presently, for a variety of data processing and analysis tasks, only relying on machine
algorithms cannot achieve desired results. Fortunately, crowdsourcing provides an efficient
and low-cost paradigm to solve this problem with the advantage of distributed mode. How-
ever, security and privacy issues are still thorny. In past research on privacy-preserving, some
researchers analyzed the privacy threats of the whole crowdsourcing process to propose
an overall security framework [6]. Meanwhile, blockchain is applied to deal with potential
security issues (e.g., single point of failure, sensitive leakage) without a trusted third party,
such as SecBCS [7], MCS-chain [8], CrowdBC [9]. Also, novel fog-based computing framework
is proposed [10] for low latency vehicular crowdsensing networks.

Still, there are researchers in-depth discussing crowdsourcing security threats at
each phase, and designing differentiated privacy protection schemes for specific security
objectives using diversified technologies. Among them, location privacy is the first concern
of researchers. The methods used to solve location privacy include k-anonymity [11],
differential privacy [12,13], game theory [14], commitment [15], machine-learning-based
obfuscation [16,17], encryption [18,19], etc. However, most of them focus on protecting
the workers’ privacy. To provide mutual privacy for both requesters and workers, Liu [3]
proposed a privacy-preserving protocol based on homomorphic encryption with a dual-
server setting. After that, Shu [20] constructs a task-matching scheme over the encrypted
location with a single server by applying searchable encryption. Actually, in the scenes
they mainly concern, the privacy requirements of task content are not high, which are
usually public to all participants. However, the need for content privacy protection still
exists. For some sensitive task content involving address, occupation and purpose, it can
help attackers to further infer participants’ privacy by combining other information. In the
privacy-aware task assignment schemes proposed by Liu et al. [21] and Yuan et al. [22],
attribute-based encryption is applied to protect content privacy and realize fine-grained
access control. Extending to more complex multi-keyword crowdsourcing allocation
scenario, our prior work [4] introduced inner-product encryption (IPE) to support flexible
matching policies without disclosing task privacy and worker privacy. However, as the
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worker scale increases, centralized single authority mode has obvious disadvantages in
efficiency and security.

Moreover, most of these schemes mainly discussed privacy protection in the task
allocation phase. While in the data submission phase, the platform should verify the
identity or attribute information of the participants to evaluate whether the appropriate
workers have performed the task. At this time, if we do not provide effective privacy
protection, the secure closed-loop still cannot be constructed. Based on signature and
other technologies, Ni [23] and Shu [24] presented Sybil detection schemes respectively.
Nevertheless, they are concerned about the deduplication of encrypted data content rather
than the identity privacy of workers. Though Lu [25] proposed a blockchain-based private
and anonymous repetition detection scheme for task submission, the introduction of zk-
SNARK increases the computational overhead of the scheme. Compared with the previous
scheme, we focus on the privacy protection of task releasing and task submission. In the
task releasing stage, the scheme requires privacy of task content and constraint conditions,
and should realize flexible ciphertext task-matching. In the task submission phase, workers
could submit perceptual data anonymously and cannot submit it repeatedly.

Inner-Product Cryptosystems

In 1984, Shamir [26] proposed the concept of ID-based public key cryptography and
constructed the first ID-based digital signature scheme based on the large integer decom-
position problem. However, it was not until 2001 that Boneh and Franklin [27] presented
the first secure and practical ID-based encryption scheme based on elliptic curve bilinear
pairings. After that, Sahai and Waters [28] designed a fuzzy identity-based encryption
scheme based on key sharing theory in 2005, and further proposed the concept of attribute-
based encryption (ABE). Since then, research on ABE has covered privacy protection, richer
access policy types, efficiency, security assumptions, attribute revocation, and other direc-
tions [29–31]. To implement policy hiding, Boneh and Waters [32] introduced a hidden
vector encryption scheme supporting conjunctive, subset and range queries in 2007. Then
Katz [33] raised the concept of IPE for the first time and proved its security under the
standard model in 2008. The scheme allows conjunctive disjunction, polynomial and inner-
product queries. However, the length of ciphertext increases linearly with the increase of
vector dimension. Afterwards, Attrapadung and Libert [34] developed a scheme to reduce
the length of ciphertext to a constant. Furthermore, Okamoto [35] realized a scheme with
constant key length. On the other hand, to reduce the management cost of a single authen-
tication server, Chase [5] presented an encryption scheme that enables the implementation
of the AND access policy in a multi-authority environment. On this basis, to reduce the
complexity of user decryption, Li [36] constructed a multi-authority outsourcing attribute
encryption system based on linear secret-sharing schemes (LSSS). However, the IPE scheme
in multi-authority environment still needs to be proposed. For anonymous authentication,
Yuen [37] adopted k times attribute signature (k-ABS) to restrict access times. The data is
still stored remotely in plaintext. Ning presented an outsourced σ-time attribute-based en-
cryption (σ-ABE) scheme [38], in which users apply attributes as identity without using real
names. Although the server cannot know a user’s identity, it can associate a user’s previous
and subsequent access through the proxy key. Moreover, due to the lack of association be-
tween the attribute-related private key and the validation tags for times, there is a risk that
the attacker will steal the other’s validation tag, and then send his own attribute-related
private key to access the data illegally. Inner-product cryptosystems enables the realization
of flexible and diverse policies. Compared with cryptosystems supporting LSSS policy, it
allows policy hiding. However, presently, neither the IPE encryption for multi-authority
nor the k-time inner-product-based authentication scheme has been proposed. Therefore, in
this article, we intend to solve this problem and apply the design scheme to crowdsourcing
privacy protection.
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3. Preliminary
3.1. System Assumption

As shown in Figure 1, the proposed crowdsourcing system contains the following enti-
ties: central authority CA, multiple attribute authorities AA, the crowdsourcing server CS,
requesters and workers. As a trusted third party, CA initializes the system, generates global
parameters and supervises each AA. Suppose there are m attribute authorities, denoted as
AA1,...,AAm. They are responsible for managing disjoint attribute sets. The requester is an
enterprise or individual who publishes the task on the system platform. The worker is a
user who performs tasks and submits perception data. CS verifies whether workers meet
the requirements and submit repeatedly. Let the sets of vectors ~w = (w1, ..., wm) ∈ Zmn

q
and~z = (z1, ..., zm) ∈ Zmn

q be the task constraint and the worker’s attribute-based vector.
Only if < zj, wj >= 0 holds for all j ∈ [1, m], the worker could decrypt the corresponding
task ciphertext.

For system security, we need at least one attribute authority is honest and secure in
such a system. The requester is also considered to be honest. CS is considered to be honest-
but-curious, i.e., it will honestly execute the protocol and screen out suitable workers, but it
will also be curious about more information, such as task content and participant identity.
The worker is considered to be honest but greedy, i.e., he will execute the protocol honestly
but may submit data multiple times to get more rewards.

CA

AA1

AA2

AAm

Authorities

Worker

Private Key

Data Submission A

Data Submission BData Submission B

Matching and 

Duplicate Detection

Platform

Requester

Task 

ReleasingRe

D

Data

AggregationPr
Registration

 

Figure 1. Framework of the zk-MIPE system.

The specific security objectives of the zk-MIPE scheme are as follows.
(1) Content and constraints privacy. Task content and constraints should be released in

the form of ciphertext. Only suitable workers could learn the corresponding task plaintext.
(2) One-time attribute-based authentication. If the worker’s attributes meet the task

constraints, he/she can provide a valid proof to the CS. If not, he/she cannot forge a
valid proof.

(3) Identity and attribute privacy. Although the CS enables the filtering out of suitable
workers and the restriction of multiple submission, it cannot know the worker’s iden-
tity and attributes, or even associate the previous and subsequent tasks that a worker
participates in.
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3.2. Inner-Product Access Structure

The inner product is a generalization of the concept of point multiplication. In a vector
space, it is a method of multiplying vectors, and the product is a scalar. For a real vector
space, let x1, x2, x3 be vectors and r be a scalar, then the inner product < ·, · > satisfies the
following properties.

(1) < x1 + x2, x3 >=< x1, x3 > + < x2, x3 >;
(2) < rx1, x2 >= r < x1, x2 >=< x1, rx2 >;
(3) < x1, x2 >=< x2, x1 >;
(4) < x1, x1 >≥ 0, and only when x1 = 0 the equal sign holds.

3.3. Bilinear Group

Definition 1. Bilinear Map [27]: A group generator G takes a security parameter λ as input. It
outputs a group ~G = (G1, GT , e, q) of prime order q, where G1 is an additional group and GT is a
multiplication group. Let g be a generator of G1. The bilinear map e has the following properties.

(1) Bilinearity: For random a, b ∈ Zq and x, y ∈ G1, we have e(xa, yb) = e(x, y)ab;
(2) Nondegeneracy: e(g, g) 6= 1;
(3) Computability: For random g, h ∈ G1, there exists an efficient algorithm to com-

pute e(g, h).

Definition 2. Computational Diffie-Hellman (CDH) Problem: A challenger runs G(λ) to generate
~G = (G1, GT , e, q). Then it chooses a random generator g and random a, b ∈ Zq. Given a tuple
(g, ga, gb) as input, we say that the CDH assumption holds if there is no polynomial-time algorithm
can compute the element gab.

Definition 3. Decisional Diffie-Hellman (DDH) Problem: A challenger runs G(λ) to generate
~G = (G1, GT , e, q). Then it chooses a random generator g and random a, b ∈ Zq. Given a tuple
(g, ga, gb) as input, we say that the DDH assumption holds if there is no polynomial-time algorithm
can distinguish gab from a random value with nonnegligible advantage in G1.

Definition 4. q-Decisional Diffie-Hellman Inversion (DDHI) Problem: A challenger runs G(λ)
to generate ~G = (G1, GT , e, q). Then it chooses a random generator g and a random x ∈ Zq.
Given a tuple (g, gx, gx2

, ..., gxq
) as input, we say that the q-DDHI assumption holds if there

is no polynomial-time algorithm can distinguish g1/x from a random value with nonnegligible
advantage in G1.

3.4. Zero-Knowledge Proof Protocol

The zero-knowledge proof (ZKP) protocols have been applied to numerous fields,
including both traditional secure multiparty computation and emerging privacy protection
projects in distributed ledger and blockchain, such as Zcash [39], hawk [40], and so on.

A ZKP system is a protocol between a computationally bounded prover and a verifier.
Let R be an NP relation. Set R(x) = {w : (x, w) ∈ R} and the language L = {x :
∃w, st (x, w) ∈ R}. During the protocol, the verifier is convinced by the prover that x
belongs to L, i.e., there exists a witness w such that (x, w) ∈ R for x. However, in proof
of knowledge (PoK), the prover cannot only prove the exists of some witness but also be
convinced that he/she indeed know a specific witness w.

The main properties of ZKP for a relation R are as follows.
Completeness: Given a witness ω that satisfies (x, ω) ∈ R, the prover could convince

the verifier of his knowledge. i.e.,

Verify(Prove(x, ω))=accept.

Soundness: Given a witness ω that does not satisfy (x, ω) ∈ R, for any polynomial-time
prover, the probability that the verification can be accepted is negligible. i.e.,

Pr[Verify(Prove(x, ω))=accept∧(x, ω) /∈ R]≤ neg(λ).
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Zero knowledge: The interaction between a prover and a verifier is called a view. The
zero-knowledge property could be captured by the existence of a simulator E that could
access to the verifier’s input but not the prover’s: with the assumption x ∈ L, if the
simulated view, i.e., the transcript, is indistinguishable from the original view between
the honest prover and the verifier, whether honest or cheating. We say the ZKP scheme
has the property of zero knowledge. Moreover, in PoK, there exists a knowledge ex-
tractor, which has rewindable access to the prover, and could extract the witness with
nonnegligible probability.

4. Model of zk-MIPE

Definition 5. A privacy-preserving task-matching and multi-submission detection scheme zk-
MIPE is defined by a tuple of the following algorithms:

• CA Setup(λ, m). The algorithm is executed by the central authority CA. It takes a
security parameter λ and several attribute authorities m as inputs. It then publishes a
system public key PK and keeps a system master key SK secretly.

• AA Setup(λ, n). Run by the attribute authorities AAj, the algorithm takes a security
parameter λ and several intra-domain attributes n as inputs. It then outputs a public
key PKj and an attribute-related secret key SKj for each AAj.

• Task Releasing(M, PK, {PKj}j∈[1,m]
, ~w). Executed by the requester, the algorithm

takes the public key, a message and a constraint as inputs. Then it outputs an inner-
product ciphertext C.

• Registration(SK, u, {SKj}j∈[1,m]
,~z). According to the identity u and attributes~z, the

secret key Ku for the registrant is generated by CA and AAj.
• Decryption(C, Ku). Executed by the worker u, the algorithm takes the ciphertext C

and the private key Ku as inputs. It then outputs the message M.
• Matching and Multi-Submission Verification(C, {PKj}j∈[1,m]

, Ku). Executed by CS
and workers, this algorithm takes as inputs the public parameter PKj, the private key
sk j and the ciphertext C. It then runs a zero-knowledge proof to verify the compliance
of attributes and submission times between CS and the worker. It then outputs accept
or reject.

5. zk-MIPE Scheme

Based on the difficult problems of bilinear pairings and a specific zero-knowledge
proof protocol, we propose a zk-MIPE algorithm to deliver task-matching and multiple
data submissions detection services in crowdsourcing. The scheme is roughly described in
Figure 2.

CA Worker

Requester CS

Run zero-

knowledge proof of 

protocol P0

One-time 

Authentication

Encrypted attribute 

Verification

Reject: if the worker is unsuitable 

or repeatedly submitted

Submit identity U

Distribute partial private key 

CKu and Tu

AAj

Distribute attribute-based 

private key AKuj

Release the ciphertext C of the 

task content and constraints 

Return the appropriate data

Figure 2. Overview of the zk-MIPE Scheme.
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For instance, suppose the task content is to collect some physical indicators, and the
task constraint is: male, 48 years old, and suffering from hypertension or arthritis. Let Z1,
Z2, Z3 be three attributes, which represent gender, age and disease. Let z1, z2, z3 be the
specific attribute values for workers. We quantify gender and disease in task constraints,
e.g., for attribute Z1, set male = 1 and female = 2, and for attribute Z3, set hypertension = 1,
arthritis = 2, gastritis = 3. Then the restriction is {Z1 = 1∧ Z2 = 45∧ (Z3 = 1∨ Z3 = 2)}
which could be further denoted as r1(Z1 − 1) + r2(Z2 − 45) + r3(Z3 − 1)(Z3 − 2) = 0 for
r1, r2, r3 ∈ Fq. The worker’s attribute vector~z is defined as (1, z1, z2, z3, z2

3). To make the
equation r1(z1 − 1) + r2(z2 − 45) + r3(z3 − 1)(z3 − 2) = 0 hold if and only if the inner
product < ~w,~z >= 0 is zero, the vector ~w is defined as (−45r1 − r2 + 2r3, r1, r2,−3r3, r3).

Given a task ciphertext encrypted with restriction ~w, if a worker’s attribute is: male,
45 years old, with hypertension, he will be able to decrypt the task ciphertext and be
eligible to participate in the task. In the task submission stage, he could generate a proof
in the form of zero-knowledge and sends it to the CS together with his collected data. In
the process of verification, the CS can verify whether the worker meets the constraints and
whether the submission is repeated, but cannot get the explicit attribute information of
the worker. Each worker could select a random number φ as his identity-based private

key. For each task, he sends the calculated S = e(g, g)
1

φ+H(Ctask) , where H is a one-way hash
function, and the proof of the attribute private key to the CS. Through a zero-knowledge
proof protocol he will prove to the CS that it is the first time to submit, and he is a suitable
worker without disclosing φ,~z, and the private key of~z. The value of S is unique for one
task. If the CS detects the same S, it means duplicate submission. Moreover, if a worker
chooses another random number φ′ as his identity-based private key, since the attribute
private key, generated by the authorities, is bound with the information of φ, he will not be
able to pass the verification of matching attributes and constraints.

Furthermore, a crowdsourcing task usually involves multiple workers. IPE just solves
the problem of one to many. A ciphertext can be decrypted by many users, which is
suitable for multi-user scenarios. Once the crowdsourcing requester encrypts a task, it can
be decrypted by any worker who meets the requirements. For the crowdsourcing server
with mighty computing power, it is also feasible to handle the task requests issued by
multiple requesters in parallel. The introduction of multiple authorities further increases
the scalability of the scheme.

Specifically, the scheme is as follows.

• CA Setup (λ, m). Executed by CA, the algorithm takes a security parameter λ as
input and runs G(λ) to output a symmetric group ~G = (G1, GT) of prime order q.
It picks a random generator g ∈ G1, a random t ∈ Zq and a one-way hash function
H1 : {0, 1}∗ → G1. Then it sets the public key as PK = {g, Y = gt, H1} and the system
master key as SK = {t}.

• AA Setup (λ, n). The attribute authority AAj randomly picks αj, γj1, ..., γjn ∈ Zq

and computes hji = g
γji
1 as the public key for each attribute Attji belonging to AAj.

Then AAj publishes PKj = {e(g1, g1)
αj , hj1, ...hjn} and sets SK j = {αj, γj1, ...γjn} as its

secret key.
• Task Releasing (M ∈ GT , PK, {PKj}j∈[1,m]

, ~w = (w1, ..., wm) ∈ Zmn
q ). The algorithm,

executed by the requester, takes the public key PK, PK j (for j ∈ [1, m]), description
of constraints ~w = (w1, ..., wm) ∈ Znm

q in which wj = (wji) ∈ Zn
q and the message

M ∈ GT as input. It randomly chooses s1, s2, σ1, σ2 ∈ Zp and computes

C0 = M · e(g, g)∑m
j=1 s1αj , C1 = gs1 , C2 = Ys1 , C

′
1 = gs2 , C

′
2 = Ys2 ,

{Cji = hs1
ji · g

σ1wji , C
′
ji = hs2

ji · g
σ2wji}

i∈[1,n],j∈[1,m]
, CT = e(g, g)∑m

j=1 s2αj .

Then it outputs the task ciphertext as

C = (C0, C1, C2, C
′
1, C

′
2, C11, C

′
11, ..., Cmn, C

′
mn, CT).
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• Registration (SK, u, {SKj, zj = (zj1, ..., zjn) ∈ Zn
q }j∈[1,m]

). Users can either register as
requesters or workers. Both CA and AAj are responsible for generating private keys
for registered users by calling the following algorithms.

(1) If a user registers as a worker, he/she first selected a random φ ∈ Zq, computes U = gφ

as the public key, and sends U to CA. Then CA randomly picks βu1 , ..., βum ∈ Zq, sets
βu = ∑m

j=1 βuj and distributes βuj to AAj secretly. In particular, βu corresponds
uniquely with the worker u. Then CA computes

CKu = g
βu
t , Tu = (Ug)

t
βu+t .

After that, CA sends (CKu, Tu) to the worker. For each registered requester, CA sends
the system public key to the requester.

(2) After receiving βuj from CA, AAj chooses a random τuj ∈ Zq and computes Quj = gτuj

for the worker u. Then it creates the secret key about the attribute-based vector zj as

AKuj = gαj−βuj ·Q∑n
i=1 γjizji

uj .

The algorithm outputs the worker secret key as Ku = (CKu, Tu, {AKuj , Quj}j∈[1,m]
).

• Decryption (C, Ku). The algorithm, executed by the worker, takes the ciphertext C
and the secret key Ku as input. It first computes

E1 = e(CKu, C2), E2 = ∏m
j=1

e(AKuj ,C1)

∏n
i=1 e(Q

zji
uj ,Cji)

.

Then it could recover message M by computing M = C0
E1·E2

.
When < ~w,~z >= 0, the computation is correct since

E1 = e(CKu, C2) = e(g
βu
t , gts1) = e(g, g)βus1 ,

E2 = ∏m
j=1

e(AKuj , C1)

∏n
i=1 e(Q

zji
uj , Cji)

= ∏m
j=1

e(gαj−βuj ·Q∑n
i=1 γjizji

uj , gs1)

∏n
i=1 e(Q

zji
uj , hs1

ji gσ1wji )

= ∏m
j=1

e(gαj−βuj , gs1) · e(Q∑n
i=1 γjizji

uj , gs1)

∏n
i=1 e(Q

zji
uj , hs1

ji )e(Q
zji
uj , gσ1wji )

= e(g, g)∑m
j=1 (αj−βuj )s1 ·∏m

j=1

e(Q∑n
i=1 γjizji

uj , gs1)

e(Quj , g)s1 ∑n
i=1 γjizji e(Quj , g)σ1<zj ,wj>

= e(g, g)∑m
j=1 αjs1 · e(g, g)−βus1 .

Thus, C0
E1·E2

= C0

e(g,g)
∑m

j=1 s1αj
= M.

• Matching and Multi-Submission Verification(C, {PKj}j∈[1,m]
, Ku). The algorithm

tasks the system public, the worker secret key Ku and the task ciphertext C as inputs.
In the interaction protocol between the worker and the platform, if < wj, zj >= 0 for

j = [1, m], the worker u first computes S = e(g, g)
1

φ+H(C0) and sends S to CS. Then CS
checks whether S has been used once. If used, CS rejects the request. If not, CS will
allow u to run the following zero-knowledge proof of knowledge protocol P0 with it
to prove the knowledge of (φ, Ku):
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P0{(φ, Ku = (CKu, Tu, {AKuj , Quj}j∈[1,m]
)) :

S = e(g, g)
1

φ+H(C0)∧
e(Tu, g · CKu) = e(Ug, g)∧

e(CKu, C
′
2) ·∏m

j=1

e(AKuj , C
′
1)

∏n
i=1 e(Q

zji
uj , C′ji)

= CT}.

To implement the protocol P0, u will calculate some auxiliary inputs and use some
tricks to convert the protocol equivalently. Specifically, u interacts with CS as follows.
(1) CS randomly picks two generators ĝ, ĥ ∈ G and sends them to u, where the
discrete logarithm of ĥ with respect to ĝ is unknown to u. Then u picks random
κ, δ, µ, ν1, ..., νm, ς11, ..., ςmn ∈ Zq and computes

πT = Tu ĥκ , χT = ĥδ ĝκ , πC = CKu ĥµ, {πAj = AKuj ĥ
νj}

j∈[1,m]
,

{πQji = Q
zji
uj ĥς ji}

j∈[1,m],i∈[1,n]
, ρ1 = κµ, ρ2 = δµ.

After that, u returns auxiliary values (πT , χT , πC, {πAj , πQji}j∈[1,m],i∈[1,n]
) to CS. In this

case, the protocol can be expressed as the following zero-knowledge proof of knowl-
edge protocol P1 to prove the knowledge of (φ, κ, δ, µ, ν1, ..., νm, ς11, ..., ςmn, ρ1, ρ2):

P1{(φ, κ, δ, µ, ν1, ..., νm, ς11, ..., ςmn, ρ1, ρ2) :

χ
−µ
T · ĥ

ρ2 · ĝρ1 = 1G∧

S = e(g, g)
1

φ+H(C0) ∧

e(πT , gπC) = e(πT , ĥµ) · e(ĥκ , gπC) · e(ĥ, ĥ)
−ρ1 · e(Ug, g)∧

e(πC, C
′
2) ·∏m

j=1

e(πAj , C
′
1)

∏n
i=1 e(πQji , C′ji)

= CT · e(ĥ, C
′
2)

µ
·∏m

j=1
e(ĥ, C

′
1)

νj

∏n
i=1 e(ĥ, C′ji)

ς ji
}.

Assume that the auxiliary value calculated by u has been sent to CS. Next, we will
describe the implementation details of the honest-verifier zero-knowledge protocol
P1 below.
(1) Commitment. u picks random ξφ, ξκ , ξδ, ξµ, ξν1 , ..., ξνm , ξς11 , ..., ξςmn , ξρ1 , ξρ2 ∈ Zq
and computes

L1 = ĥξδ ĝξκ , L2 = χ
−ξµ

T · ĥξρ2 ĝξρ1 , L3 = Sξφ ,

L4 = e(πT , ĥ)
ξµ · e(ĥ, gπC)

ξκ · e(ĥ, ĥ)
−ξρ1 · e(g, g) · e(g, g)ξφ ,

L5 = CT · e(ĥ, C
′
2)

ξµ ·∏m
j=1

e(ĥ, C
′
1)

ξνj

∏n
i=1 e(ĥ, C′ji)

ξς ji
.

Then the worker sends these auxiliary values L1, ..., L5 to CS.
(2) Challenge. CS picks a random ε ∈ Zq and sends ε to the worker.
(3) Response. the worker computes the following auxiliary value at first.
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zφ = ξφ − εφ, zκ = ξκ − εκ,

zδ = ξδ − εδ, zµ = ξµ − εµ,

zv1 = ξν1 − εν1, ..., zvm = ξνm − ενm,

zς11 = ξς11 − ες11, ..., zςmn = ξςmn − εςmn,

zρ1 = ξρ1 − ερ1, zρ2 = ξρ2 − ερ2.

Then u sends the sets of (zφ, zκ , zδ, zµ, zv1 , ..., zvm , zς11 , ..., zςmn , zρ1 , zρ2) to CS.
(4) Verification. CS checks whether the following equation holds:

L1 = ĥzδ χε
T ĝzκ , L2 = χ

−zµ

T ĥzρ2 ĝzρ1 ,

L3 = Szφ−εH(C0) · e(g, g)ε,

L4 = e(πT , ĥ)
ξµ · e(ĥ, gπC)

ξκ · e(ĥ, ĥ)
−ξρ1 · e(g, g) · e(g, g)ξφ ,

L5 = CT
1−ε · [e(πC, C

′
2) ·∏m

j=1
e(ĥ, C

′
1)

∏n
i=1 e(πQji , C′ji)

]

ε

· e(ĥ, C
′
2)

zµ ·∏m
j=1

e(ĥ, C
′
1)

zνj

∏n
i=1 e(ĥ, C′ji)

zς ji
.

Through the above interactive process, CS verifies whether the workers meet the
constraints and submit repeatedly. If the verification is valid, CS returns the task
answer submitted by the worker to the requester. As follows, we discuss the soundness
of the protocol.
Soundness of P0: P1 is a 3-move protocol, where the prover sends the commitment, the
verifier chooses a random challenge, and the prover response to the challenge based
on elliptic curve discrete logs. It is straightforward to show that P1 is of soundness,
i.e., there exists an extractor E1, which is given rewindable black-box access to the
prover, could output some witness (φ, κ, δ, µ, ν1, ..., νm, ς11, ..., ςmn, ρ1, ρ2) or a halting
symbol ⊥ to indicate "failure". By running P1 and calling E1, we can construct an
extractor E0. When E1 outputs ⊥, E0 outputs ⊥ and stops. If E1 outputs the witness
(φ, κ, δ, µ, ν1, ..., νm, ς11, ..., ςmn, ρ1, ρ2), the extractor could further output some valid
witness (φ, πT , πC, πA1 , ..., πAm , πQ11 , ..., πQmn) with the same probability. Based on
the outputs of E1, E0 computes

π̂T = πT ĥ−κ , π̂C = πC ĥ−µ, {π̂Aj = πAj ĥ
−νj}

j∈[1,m]
,

{π̂Qji = πQji ĥ
−ς ji}

j∈[1,m],i∈[1,n]
.

We show how these values satisfy the equation relation of P0 as follows.
Due to soundness of P1,

e(πT , g · πC) = e(πT , ĥµ) · e(ĥκ , g · πC) · e(ĥ, ĥ)
−ρ1 · e(Ug, g).

Rearranging the terms, where ρ1 = κµ:

e(πT , gπC) · e(ĥ−κ , gπC) · e(πT , ĥ−µ) · e(ĥ, ĥ)
ρ1 = e(Ug, g).

That is

e(πT , gπC) · e(ĥ−κ , gπC) · e(πT , ĥ−µ) · e(ĥ, ĥ)
ρ1

= e(πT ĥ−κ , gπC) · e(πT ĥ−κ , ĥ−µ) · e(ĥκ , ĥ−µ) · e(ĥ, ĥ)
κµ

= e(π̂T , gπ̂C) = e(Ug, g).

Due to soundness of P1,

e(πC, C
′
2) ·∏

m
j=1

e(πAj
,C
′
1)

∏n
i=1 e(πQji

,C′ji)
= CT · e(ĥ, C

′
2)

µ ·∏m
j=1

e(ĥ,C
′
1)

νj

∏n
i=1 e(ĥ,C′ji)

ς ji .
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Rearranging the terms:

e(πC, C
′
2) ·∏

m
j=1

e(πAj
,C
′
1)

∏n
i=1 e(πQji

,C′ji)
· e(ĥ, C

′
2)
−µ ·∏m

j=1
e(ĥ,C

′
1)
−νj

∏n
i=1 e(ĥ,C′ji)

−ς ji
= CT .

That is

e(πC, C
′
2) ·∏m

j=1

e(πAj , C
′
1)

∏n
i=1 e(πQji , C′ji)

· e(ĥ, C
′
2)
−µ
·∏m

j=1
e(ĥ, C

′
1)
−νj

∏n
i=1 e(ĥ, C′ji)

−ς ji

= e(πC ĥ−µ, C
′
2) ·∏m

j=1

e(πAj ĥ
−νj , C

′
1)

∏n
i=1 e(πQji ĥ

−ς ji , C′ji)

= e(π̂C, C
′
2) ·∏m

j=1

e(π̂Aj , C
′
1)

∏n
i=1 e(π̂Qji , C′ji)

= CT .

Then E0 could output (φ, π̂T , π̂C, π̂A1 , ..., π̂Am , π̂Q11 , ..., π̂Qmn) as the witnesses satisfy-
ing P0. Therefore P0 is of soundness.

6. Security Proof

In this section, we analyze the security of our scheme and show that it has the proper-
ties of task confidentiality, one-time authentication and anonymity.

Assume there exists a PPT adversary A that wins the following games in our scheme,
we can construct a PPT simulator B that solves the CDH problem, DDH problem or the
q-DDHI problem with nonnegligible advantage.

Theorem 1. Assume the DDH assumption holds, then the proposed zk-MIPE scheme is IND-CPA secure.

Proof. Against an adversary who wants to learn task content, the security algorithms are
designed as follows.

Algorithm I

• Init. The challenger sets ~G = (G1, GT) and randomly chooses (g, ga, gb, gc) ∈ G1. It
flips a coin b̄ outside of B1’s view and sets T as follows:
If b̄ = 0, it computes T = e(g, g)abc; otherwise, it chooses a random T ∈ G2. Then
it sends (g, ga, gb, gc, T) to B1. After that, A1 submits the challenge access structure
~w∗ = (w∗1 , ..., w∗m) to B1.

• CA Setup. Given the secure parameter λ, B1 randomly chooses t ∈ Zq and sets Y = gt.
Then it gives the public key PK = {Y, H1} to A1.

• AA Setup. B1 randomly chooses {xj, ηji}j∈[1,m],i∈[1,n] at first. Here, we suppose AA ĵ
is one of the honest attribute authority.

(1) For j 6= ĵ, B1 sets αj = xj, γji = ηji and lets SKj = {αj, γji}i∈[1,n] for AAj. Then it

computes hji = gηji and sends the public key PKj = {e(g, g)αj , hj1, ..., hjn} to A1.
(2) For j = ĵ, B1 sets α ĵ = ab + x ĵ, γji = −w∗

ĵi
b + η ĵi and lets SK ĵ = {α ĵ, γ ĵi}i∈[1,n]

for AA ĵ.

Then it computes h ĵi = g
−w∗

ĵi
b+η ĵi and sends PK ĵ = {e(g, g)α ĵ , h ĵ1, ..., h ĵn} to A1.

• Registration Queries I. A1 repeatedly makes registration queries with respect to
attribute key value~z such that < w∗

ĵ
, z ĵ > 6= 0. Notice that for any other honest AAj,

B1 will also respond the corresponding secret key even if < w∗j , zj >= 0.
A1 chooses a user u and sets U as his/her public key. It sends U to B1. Then B1

chooses random βu1 , ..., βum ∈ Zq, sets βu = ∑m
j=1 βuj and computes CKu = g

βu
t ,

Tu = (Ug)
t

βu+t . After that B1 computes the attribute related secret key as follows.
(1) For j 6= ĵ, B1 chooses a random τuj ∈ Zq and computes
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Quj = gτuj , AKuj = gαj−βuj ·Q∑n
i=1 γjizji .

(2) For j = ĵ, B1 randomly chooses a τu ĵ
∈ Zq and computes

Qu ĵ
= g

a
<w∗

ĵ
,zĵ>

+τuĵ , AKu ĵ
= g

α ĵ−βuĵ ·Q
∑n

i=1 γ ĵiz ĵi
u ĵ

= g
x ĵ−βuĵ

+
a<η ĵ ,zĵ>

<w∗
ĵ

,zĵ>
−bτuĵ

<w∗
ĵ
,z ĵ>+τuĵ

<η ĵ ,z ĵ>

.

• Challenge. A1 submits two challenge messages M0, M1 ∈ GT to B1. B1 flips a coin
b ∈ {0, 1} and computes the ciphertext as follows.
B1 chooses a random (ϕ, s2) ∈ Zq, sets s1 = c + ϕ and computes

C∗0 = Mb · e(g, g)∑m
j=1 s1αj = Mb · T · e(g, g)∑m

j=1 (c+ϕ)xj+abϕ, C∗1 = gs1 = gc+ϕ, C∗2 =

Ys1 = Yc+ϕ, C
′∗
1 = gs2 , C

′∗
2 = Ys2 , C

′∗
ji = hs2

ji gσ2w∗ji = gηjis2+σ2w∗ji , C∗T = e(g, g)∑m
j=1 s2αj .

Then B1 computes C∗ji as follows.

(1) For j 6= ĵ, B1 chooses a random θ ∈ Zq, sets σ1 = θ and computes

C∗ji = hs1
ji · g

σ1w∗ji = gηji(c+ϕ)+θw∗ji .

(2) For j = ĵ, B1 chooses a random θ ∈ Zq, sets σ1 = bc + θ and computes

C∗
ĵi
= hs1

ĵi
· gσ1w∗

ĵi = g
−w∗

ĵi
bϕ+η ĵi(c+ϕ)+θw∗

ĵi .

• Registration Queries II. A1 submits a polynomially bounded number of registration
queries with respect to attribute sets~z1, ...,~zq. B1 responds as it did in Registration
Queries I.

• Guess. A1 outputs a guess b′ of b. If b′ = b, B1 will guess T is a DDH tuple, i.e., b̄ = 0;
otherwise, it guesses T is a random tuple, i.e., b̄ = 1. It indicates that if the adversary
wins this game with nonnegligible advantage, then the simulator will have obviously
advantage in the DDH game.

Theorem 2. Assume the CDH assumption holds, then the proposed zk-MIPE scheme is one-
time authenticate.

Proof. Against an adversary who wants to forge a valid proof for the attributes he/she
does not possess, the security algorithms are designed as follows.

In our scheme, for each task, the value of a tag S = e(g, g)
1

φ+H(C0) submitted by a user
u is different and unique fixed. If submitting a tag twice will be forbidden. Thus, as follows,
we show that it is difficult for unsuitable workers to forge a valid authentication message
based on the CDH assumption.

Algorithm II

• Init. The challenger sets ~G = (G1, GT) and randomly chooses (g, ga, gb) ∈ G1. Then it
sends g, ga, gb to B2. After that,A2 submits the challenge access structure and message
(~w∗, M∗).

• CA Setup. Running the CA setup algorithm, B2 does as in Algorithm I.
• AA Setup. Running the AA setup algorithm, B2 does as in Algorithm I.
• Registration Queries I. Running the registration algorithm, B2 does as in Algorithm I.
• Verification Queries I. A2 submits a series of queries about (Mk, ~wk,~zk) to B2. It

requires that ~wk 6= ~w∗, < ~wk,~zk >= 0 and < ~w*,~zk > 6= 0, and if not, it aborts. B2 runs
matching and detection verification algorithm, interacts with A2, and generates proof
transcript for (Mk, ~wk,~zk).

• Forgery. For the specified (M∗, ~w∗), A2 chooses a worker public key U∗ and an
attribute vector~z∗ such that < ~w∗,~z∗ >= 0. In this algorithm, we will not consider
the privacy of ~w∗. Based on ~w∗, B2 computes ciphertext about message M∗. Then A2
interacts with B2 to generate a transaction of the protocol P0, proving that it has the
private key about a suitable vector. IfA2 outputs a valid forged proof and the protocol
is sound, B2 could then obtain gab from the forgery.
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Theorem 3. Suppose that the q-DDHI assumption holds and the protocol P0 is zero-knowledge,
then the proposed scheme is private and unlinkable.

Proof. To prove the privacy of the scheme, we first summarize the zero-knowledge
of P0.

Zero-knowledgeness of P0. For the implementation of P0, we introduced some auxiliary
inputs (πT , χT , πC, {πAj , πQji}j∈[1,m],i∈[1,n]

) and protocol P1. Based on the Logarithm as-

sumption and the DDH assumption, the zero-knowledge property of P1 is guaranteed for
honest verifier, i.e., there exists a simulator S on imputing a random challenge ε, the simula-
tor could output a transcript for (L1, ..., L5, zφ,
zκ , zδ,zµ, zv1 ,...,zvm ,zς11 ,...,zςmn ,zρ1 ,zρ2). For any adversary, the distribution of the output
is indistinguishable. By invoking S the simulator of protocol P1, protocol P0 could further
prove its zero-knowledge property.

Then we define the game between an adversary A3 and a simulator B3 which is given
a q-DDHI instance as follows.

Algorithm III

• Init. The challenger sets ~G = (G1, GT) and randomly chooses g, gx, gx2
, ..., gxq ∈ G1.

It flips a coin b̄. If b̄ = 0, it computes T = e(g, g)
1
x ; otherwise, it chooses a random

T ∈ GT . After that, A3 submits two challenge users u0, u1 with attribute vector ~z0, ~z1
to B3.

• CA Setup. Given the secure parameter λ, B3 chooses a random t ∈ Zp and sets Y = gt.
Then it gives the public key PK = {Y, H1} to A3.

• AA Setup. B3 randomly chooses {xj, ηji}j∈[1,m],i∈[1,n], sets αj = xj, γji = ηji and lets

SKj = {αj, γji}i∈[1,n] for AAj. Then it computes hji = gηji and sends the public key

PKj = {e(g, g)αj , hj1, ..., hjn} to A3.
• Registration Queries I. B3 sets CKu∗ = gx for a user u∗ and receives the value Tu∗ ,

which may equal to g
1

x+1 or a random element in G1, from the challenger initially. A3
issues registration queries repeatedly. B3 generates the secret key honestly except for
u∗. If ui = u∗, it aborts. Moreover, it is required that A3 does not make secret key
queries for both u0 and u1.

• Challenge. Without loss of generality, B3 assumes u0 = u∗. It flips a coin b ∈ {0, 1}
and runs registration queries to obtain the corresponding Kub . Then, B3 operates
Task Releasing with an attribute vector ~w∗ (with restrictions that < ~w∗, ~z0 >= 0 and
< ~w∗, ~z1 >= 0) to acquire the ciphertext C∗. After receiving C∗,A3 issues Verification
and receives a valid proof from B3 by applying the zero-knowledge protocol P0.

• Registration Queries II. A3 submits a polynomially bounded number of registration
queries repeatedly. B3 responds as it did in Registration Queries I.

• Guess. A3 outputs a guess b′ of b. If b′ = b, B3 will guess T is a q-DDHI tuple,
i.e., b̄ = 0; otherwise, it guesses T is a random tuple, i.e., b̄ = 1. Observe that if H
is a one-way pseudo-random hash function and the q-DDHI assumption holds, the
adversary will know nothing about βu. By the zero-knowledge property of protocol P0,
the information about the identity U, the policy ~w and the attribute~z will not be leaked.
Thus, the algorithm could protect identity privacy and submission unlinkability.

7. Performance Evaluation

In reality, we implement the ZK-MIPE scheme on a Linux desktop with 6-core Intel(R)
Xeon(R) Platinum 8369HC CPU 3.40 GHz processor and 32 GB of RAM. We use the PBC
library to simulate the group operations. The symmetric elliptic curve SS512 is chosen with
embedding degree 2 and a 512-bit base field.

Tables 1 and 2 show the comparison between our scheme and other solutions in
terms of functionality and security. Compared with [24], zk-MIPE supports more flexible
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matching poly and supports worker identity privacy. Compared with [23,25], zk-MIPE
provides privacy for task constraints and worker attributes. As follows, we analyze the
computational complexity of each participant in our scheme and test the running time
to demonstrate scheme’s effectiveness. The notations applied in the proposed scheme
are summarized in Table 3. Ignoring the operations of equality comparison, hash and
multiplication, the communication and computation comparison of the schemes is shown
in Tables 4 and 5.

Table 1. Functional comparison.

Scheme Authority Matching Policy Repetition Detection Multi-Keyword

Fo-SDD Single Unlimited × ×
SybSub Single Range × ×

ZebraLancer Distribute Unlimited × ×
zk-MIPE Multiple Inner-Product × ×

Table 2. Security comparison.

Scheme Task Content Privacy Task Constraint
Privacy Identity Privacy Attribute Privacy

Fo-SDD
√

× × ×
SybSub ×

√
×

√

ZebraLancer × ×
√

×
zk-MIPE

√ √ √ √

Table 3. Notations in Fo-SDD, SybSub, ZebraLancer and zk-MIPE.

Notations Description

E1, ET Exponentiation on G1 and GT respectively
E2 Exponentiation in Paillier encryption
P Pairing on (G1, G1)→ GT

C̃s, C̃a Ciphertext based on AES and public key encryption, respectively
Csc Coding a task into a smart contract

Ẽs, Ẽa, ẼP Symmetric encryption, asymmetric encryption and Paillier encryption
D̃s, D̃a, D̃P Symmetric decryption, asymmetric decryption and Paillier decryption

l1, l2, l3 Bit length of task, attribute and smart contract, respectively
M NP machine used to prove membership of an instance x in a given NP language L

tM, sM Operations and computation space of M for the instance x
poly Universal polynomial

λ Security parameter
N Product of two primes
m Number of attribute authorities
n Dimension of the attribute-based vector
l Number of attributes managed by each authority
k Number of suitable workers

Table 4. Communication cost.

Scheme Requester/Publisher CS/Contract Worker/Subscriber Fog Node

Fo-SDD |G1|+ |G2|+ |C̃s|+ l1 k(|Zq|+ |G2|+ |C̃s|+ l1) 2|Zq|+ 4|G1|+ 2|C̃s| k(|Zq|+ 4|G1|+ |C̃s|+ l1)
SybSub l2 + |ZN2 | l1 2|G1|+ l2 + |ZN2 | -

ZebraLancer l3 k|C̃a| |C̃a|+ sMpoly(λ) -
zk-MIPE (5 + 2nm)|G1|+ |G2| 2k|G1|+ k|Zq| 5|GT |+ (7 + m + nm)(|Zq|+ |G1|) -
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Table 5. Computation cost.

Scheme Requester/Publisher CS/Contract Worker Fog Node

Fo-SDD 2E1 + Ẽs k(E1 + E2 + P + D̃s) 6E1 + 2ET + 2P + D̃s ET + D̃s + k(3E1 + Ẽs)
SybSub lE2 + 2lẼP kl(E1 + D̃P) + l(k + 1)P 3lE1 + 2lẼP + lE2 -

ZebraLancer E1 + Csc + tMpoly(λ) kpoly(λ) Ẽa + tMpoly(λ) -

zk-MIPE (4 + 4nm)E1 + 2ET
5kE1 + (10 + m + nm)kET + (5 +

2m + 2nm)kP
(9 + m + nm)E1 + (4 + n + m)(ET +

P) + 2ET
-

In our scheme, the main overhead on CA and AAj are from system setup and user
registration. In CA setup, the computation complexity of CA is E1. In AA setup, the com-
putation complexity of AAj is nE1 + P. In user registration, the computation complexity of
CA and AAj are 2kE1 and 3kE1, respectively. The total communication complexity of the
authorities for distributing a key to a registered user is m(Zq + 3|G1|).

The main overhead on the requester is from task releasing. In this step, the requester
expresses the task requirements with vector ~w and encrypt the task based on ~w such that
only the suitable worker could decrypt the task content. Meanwhile, the requester is
required to blind the vector ~w for the CS to perform matching verification in the match-
ing and submission verification phase. The computation complexity of the requester is
(4 + 4nm)E1 + 2ET . The total communication complexity of the requester for task releasing
is (5+ 2nm)|G1|+ |G2|. To test the time cost of the requester, we set the number of attribute
authorities as m = 5, and vary the number of attributes n in Figure 3a. In Figure 3b, we set
n = 20 and vary the number of attribute authorities m.
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Figure 3. Time cost on the requester (a) under different values of n where m = 5; (b) under different
values of m where n = 20.

The main overhead on the worker is from registration, decryption and verification.
As shown in Figure 4a, we set m = 5, and vary the number of attributes to test the
time cost on the worker. In Figure 4b, we set n = 20 and vary the number of attribute
authorities. In user registration and decryption, the computation complexity of the worker
is E1 + nmE1 + (m+ n+ 1)P. Although in decryption algorithm, the computing cost for the
worker increases linearly with the number of attributes, most of the computing overhead
can be transferred to the CS by outsourcing computing. In this case, the worker only needs
to carry out a small amount of calculation.
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Figure 4. Time cost on the worker (a) under different values of n where m = 5; (b) under different
values of m where n = 20.

In the stage of submission and verification, the worker and CS achieve privacy-
preserving matching and multi-submission verification through a zero-knowledge proof
protocol. The interactive proof protocol consists of 3 rounds. The total computation and
communication complexity of the worker are (9 + m + nm)E1 + (6 + m + n)ET + (4 + n +
m)P and 5|GT |+ (7 + m + nm)(|zq|+ |G1|) respectively. In Figure 5, we take m = 5, and
vary n as well as the number of workers k to test the time cost of verification for CS. The
total computation and communication complexity of CS are 5E1 + (10+ m + nm)ET + (5+
2m + 2nm)P and 2|G1|+ |zq|, respectively.
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Figure 5. Time cost on CS (a) under different values of n where m = 5 and k = 1; (b) under different
values of k where m = 5 and n = 20.

8. Conclusions

In this paper, we present a novel multi-authorities inner-product encryption and
one-time anonymous authentication scheme to realize privacy-preserving task-matching
and multi-submission detection. In the system, both the user attributes and the number
of submissions will be applied as authorization factors. By combining zero-knowledge
proof technology and our anti-collusion multi-authorities inner-product encryption, the
task confidentiality, worker attribute and unlinkability between different tasks participated
by the same worker are guaranteed simultaneously. Moreover, the security of the scheme
is proved based on bilinear difficulty assumptions and zero-knowledge of the protocol. For
the sake of completeness, we finally analyze the function and efficiency of the scheme and
show that it is practical for crowdsourcing environments. In addition to crowdsourcing
privacy protection, our method could also play its role in the fields of searchable encryption,
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nearest neighbor search, fine-grained access control, electronic voting, electronic payment,
and anonymous authentication.

In future work, we will continue to improve the algorithm itself and try to construct
privacy protection schemes in a distributed crowdsourcing scenario without a trusted third
party. Furthermore, we will study the integration of cryptography and other technologies,
such as machine learning technology, to further improve the flexibility and efficiency of
the solution.
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