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Abstract: The continuous and simultaneous monitoring of physiological parameters represents a
key aspect in clinical environments, remote monitoring and occupational settings. In this regard,
respiratory rate (RR) and heart rate (HR) are correlated with several physiological and pathological
conditions of the patients/workers, and with environmental stressors. In this work, we present and
validate a wearable device for the continuous monitoring of such parameters. The proposed system
embeds four conductive sensors located on the user’s chest which allow retrieving the breathing
activity through their deformation induced during cyclic expansion and contraction of the rib cage.
For monitoring HR we used an embedded IMU located on the left side of the chest wall. We compared
the proposed device in terms of estimating HR and RR against a reference system in three scenarios:
sitting, standing and supine. The proposed system reliably estimated both RR and HR, showing
low error averaged along subjects in all scenarios. This is the first study focused on the feasibility
assessment of a wearable system based on a multi-sensor configuration (i.e., conductive sensors and
IMU) for RR and HR monitoring. The promising results encourage the application of this approach
in clinical and occupational settings.

Keywords: cardio-respiratory monitoring; wearable system; wearable device; smart textile; IMU;
respiratory rate; heart rate

1. Introduction

Continuous, real-time and non-invasive monitoring of vital signs through wearable
devices represents one of the most appealing challenges posed by the modern medicine,
healthcare and occupational health [1,2]. Regarding modern medicine and healthcare,
the use of unobtrusive, lightweight and comfortable wearable devices for collecting phys-
iological signals constitutes a key aspect for improving both the monitoring in clinical
settings and a remote/home monitoring of the patients [3]. In clinical settings, a continuous
monitoring becomes challenging in all those wards hospitalizing patients which require
particular care because they have to be connected to bulky, portable, monitoring devices
and every movement around the hospital becomes thus difficult [3,4]. Outside the clinic,
wearable devices have gained increased attention for the remote monitoring of the patients
and healthcare, due to their intrinsic comfortably, ease of use and reduced costs [3,5-7].
Moreover, the use of wearables to monitor physiological parameters has gained attention
in occupational health as well, due to the increased attention to the workers” health and
safety by monitoring their condition in the era of Industry 4.0 [8]. Indeed, the monitoring
of physiological parameters is beneficial to assessing physiological status, and the activi-
ties and fatigue levels of workers (e.g., muscle-skeletal and cardiovascular disorders) to
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improving their health, well-being and safety and thus meeting the guidelines defined by
ergonomics [6,9,10].

In these scenarios, respiratory rate (RR) and heart rate (HR) have gained broad interest,
since they are strictly related to different physiological and pathological conditions of the
patients/workers (e.g., early detection of critical events) and to different environmental
stressors [6,11,12]. These vital signs can be monitored using many approaches [9,13].

In this work, we present a prototype of a novel wearable device for simultaneous
monitoring of the cardio-respiratory parameters (i.e., RR and HR). The proposed system
uses different sensors with respect to what has been reported in the literature and used in
commercial devices, since it is based on four conductive textiles (for RR monitoring) and
an IMU (for monitoring HR). These sensors were embedded within a highly integrated,
lightweight, comfortable and low-cost wearable device. We have tested the feasibility of the
proposed device in three different scenarios to mimic conditions that can be experienced
in the above-described fields. Specifically, we enrolled eight healthy volunteers and we
monitored their cardio-respiratory activity, in terms of RR and HR estimation, in three
different scenarios: (i) sitting (e.g., it can simulate the occupational settings of a computer
worker), (ii) standing and (iii) supine position (e.g., they can simulate clinical and remote
applications). This work is organized into the following sections: (i) in Section 2 we focus
on the related works; (ii) in Sections 3 and 4 we describe the proposed wearable system
(WS) and the experimental protocol used to assess its feasibility in monitoring RR and HR;
(iii) in Section 5 we describe the techniques of data analysis used to estimate RR and HR
starting from the raw data recorded by the WS; (iv) Section 6 reports the results in terms
of both RR and HR; (v) Section 7 deals with the discussion of the obtained results and
the conclusion.

2. Related Works

The state of the art of wearable systems for RR monitoring consists of techniques
based on the cyclic expansion and contraction of the rib cage during the breathing activity.
Most of these systems directly measure the expansion of the rib cage by means of electrical
elements that change their impedance with strain (i.e., resistive and piezoresistive sensors,
capacitive sensors and inductive sensors) and fiber optic sensors [14-20]. Fiber optic sensors
(e.g., fiber Bragg grating sensors) have some advantages over their electrical counterparts
related to their metrological properties (high sensitivity, good accuracy and short response
time), immunity from electromagnetic interference and small size, and they are most often
used in this field [17,21-24]. However, the interrogation systems are usually bulky and only
recently have there been commercially available portable systems, but these remain quite
expensive solutions (from around 3.000 USD to 40.000 USD). When the application does
not require the use of the system in a harsh environment in terms of electromagnetic field
(e.g., patients monitoring during magnetic resonance scan [23,24]), the resistive, capacitive
and inductive sensors may be valid alternatives due to the low prices of both the sensors
and the front-end electronics, and the possibility to collect the data by wireless transmis-
sion protocol [25,26]. Among others, resistive sensors represent a convenient solution to
implement reliable, accurate and low-cost assessments of breathing activity and RR [9,27].
In addition, they can be manufactured as “smart textiles”; thus, it is possible to design
highly integrated solutions maximizing the comfort and minimizing the encumbrance
of the system itself [28,29]. A commercially available solution for RR monitoring is the
SS5LB by BIOPAC systems Inc., which transduces the chest wall deformations using a
strain gauge. To allow the collection of the transduced signal, an additional component
has to be purchased, increasing both the complexity and costs. Moreover, the device can-
not be used in unstructured and unsupervised environments [30]. As regards HR, many
techniques have been proposed to develop wearable devices. They are mainly based on
electrocardiography (ECG), photoplethysmography (PPG) and the monitoring of the local
mechanical vibrations provided by the heartbeat to the chest wall, in terms of accelerations
(seismocardiography, SCG) [21,31] or local angular rotations (gyrocardiography, GCG) [32,33].
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Specifically, monitoring the cardiac activity using chest wall induced vibrations is an
appealing solution for developing highly integrated wearable systems due to the recent
technological advancements that have been made in micro-electromechanical systems
(MEMSs) for motion tracking that integrate tri-axial accelerometers and gyroscopes into
a miniaturized inertial measurement unit (IMU) [31]. Available commercial devices for
monitoring HR based on a PPG sensor proposed by Polar. Different devices have been
developed to match the needs of subjects (i.e., humans and animals) when monitoring
their HRs during physical activities [34,35]. One of the limitations of these devices which is
crucial for the application of interest is the inability to simultaneously monitor RR and HR.
There are several solutions for monitoring RR and HR by wearable systems; however, the
state of the art of wearable systems for simultaneous monitoring of these two parameters
consists only of a few works. In [36,37] the system was based on electrodes placed in
contact with the subject’s skin to monitor both ECG and breathing-induced variations of
chest wall impedance during the cyclic respiration. In [22] fiber optic sensors were used
for the mentioned purpose. In [38] a piezoelectric sensor was adopted to monitor SCG
and breathing activity. In [26] a wearable belt embedding a capacitive sensor and two
conductive textiles used as electrodes for a single lead ECG were used to monitor RR and
HR simultaneously. Although this system is compliant with the scenarios presented in this
study, it is characterized by a high price and having no feature to cope with sensor damage
or data loss due to the sensor’s failure.

3. Experimental Setup
3.1. Wearable Device

The wearable device, hereinafter referred to as WS, consists of two main components:
the first one uses 2 elastic bands; the second one is a a custom electrical board. The elastic
bands utilizes 2 sensing elements each. The sensing elements are conductive textiles
laser-cut as rectangles (dimensions L x W 50 mm x 10 mm) from an A4 sheet of material
(Eeontex LG-SLPA by Eeonyx Corporation). When these textiles undergo strain, their initial
resistance changes according to the applied strain. In this case, the strain is provided by
the expansion and contraction of the rib cage during ventilation. To retrieve the respiratory
signal on the rib cage, the sensing elements are hand sewed into the elastic bands on the
extremities with silver-coated yarn (mod.235/36 dtex 2-ply HC, Statex Produktions und
Vertieb GmbH, Germany), whose purpose is twofold: (i) to fix the sensing element to the
band and (ii) to provide the electrical contact to retrieve the sensor’s output signal by
connecting it to the electronic board. In addition, the elastic bands are provided with Velcro
to allow the adaptability of the system to different anthropometries.

The custom electrical board has two main functions:

*  To process the signal retrieved by the four conductive sensors. To accomplish this task
it has 4 embedded Wheatstone bridges (1/4 bridge configuration with the sensing
element connected in series with a trimmer of 50 k() with the other resistances of
82.5 k() to transduce the conductive sensors” output (i.e., an electrical resistance) into
a voltage, 2 instrumentation amplifiers (AD8426 by Analog Devices) with a set gain of
6 and a microcontroller (STM32F446RET by STMicroelectronics).

¢ To retrieve the cardiac activity information and the position of the subject by using a
Magneto-Inertial Measuring Unit (M-IMU, LSM9DS1 by STMicroelectronics).

In addition, the board is equipped with a microSD card socket for storage the data
related to respiratory activity (provided by the 4 conductive sensors) and to heart activity
(provided by the IMU). All data were collected at 100 Hz. The electronics are powered by
a 750 mAh Li-Po battery at 3.7 V, which guarantees autonomy of approximately 8 h. The
electronic board along with the battery was placed into a custom 3D-printed TPU casing.

Figure 1 shows a schematic representation of the developed wearable system, the M-
IMU axes’ orientation and the reference system.
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Figure 1. Schematic representations of the proposed wearable system and the reference system,
and their positioning on the rib cage.

The first step was to assess the response of the sensing elements by applying strain of
up to 10%. We repeated 4 quasi-static trials and we calculated the calibration curve and the
sensors’ sensitivity. The output of the sensors (an electrical resistance) was transduced in a
voltage by a voltage divider (61.9 kQ)) powered at +5 V. Therefore, the calibration curve
represents the relationship between the output of the amplification stage and the applied
strain. It is the well represented by a second-order polynomial (y = 0.12 - x> — 3.81 - x +
59.97), as confirmed by the high value of the correlation coefficient (R? > 0.99).

3.2. Reference System

A reference system (Zephyr BioHarness 3.0 by Medtronic) provided the RR (collected
at 25 Hz) and HR (single lead ElectroCardioGram, ECG, collected at 250 Hz).

4. Population and Experimental Protocol

To assess the performance of the proposed wearable system, we enrolled 8 healthy
male volunteers (mean + standard deviation: age—27.8 + 2.7 years old; body mass—75.4
+ 12.2 kg; height—1.74 + 0.08 m). Table 1 shows details regarding the subjects’ ages
and somatotypes.

Table 1. Age, body mass, height and body mass index (BMI) of the 8 volunteers.

Volunteer Age [Years] Body Mass [kgl Height [m] BMI [kg-m 2]
V1 30 72 1.69 25.2
V2 28 76 1.80 235
V3 26 88 1.89 24.6
V4 27 70 1.75 229
V5 28 74 1.75 242
Vé 25 98 1.77 319
V7 25 63 1.65 23.1
V8 33 62 1.63 233

Informed consent was obtained from all subjects involved in the study (protocol code
27.2(18).20 of 15/06/2020), and the principles of declaration of Helsinki and amendments
were followed in all the study’s steps.

Firstly, each volunteer was asked to wear the reference instrument belt on the xiphoid
process line and the 2 elastic belts (one on the nipple line and one on the umbilical line).
Both systems were worn in direct contact with the skin. The electronic board was positioned
on the left side of the upper belt (next to the heart), in order to retrieve the cardiac activity
displacements on the chest wall. Then, the volunteer was asked to perform approximately
10 s of self-paced breathing, a0 s apnea at the end of the inspiratory phase, 3 min of self-
paced breathing and finally a 10 s apnea at the end of the inspiratory phase. The same
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protocol was applied in 3 different positions (i.e., standing, sitting and supine) for a total of
24 trials. The 9-axes M-IMU and the output of the 4 Wheatstone bridges along with the
reference system parameters were collected simultaneously.

Figure 2 shows a graphical representation of the experimental setup and the proto-
cols performed.

10 s self-paced
breathing .

3 min self-paced breathing |

1
| “\‘
AT
T
My “‘\H‘UM\

VIl

- 10 s apnea

k 10 s apnea

Standing Sitting Supine

Figure 2. A schematic representation of the experimental protocol performed. The top trend repre-
sents the respiratory trial performed in the 3 tested scenarios shown in the lower part.

5. Data Analysis

The data analysis aimed at accomplishing two tasks: (i) estimating RR and HR starting
from the trends of the conductive sensors’ output and from the IMU; (ii) assessing the
performance of the proposed wearable system by comparing the values of RR and HR
estimated by the wearable system and the reference one. In this regard, we implemented
both a frequency domain analysis, for estimating average RR during the trials, and a time
domain analysis to estimate RR breath-by-breath) [27].

To estimate HR we considered the signals recorded by the embedded IMU, and we
analyzed them using two approaches: (i) we implemented a frequency domain analysis to
monitor the average HR on the whole trial (it lasted approximately 3 min); (ii) a windowed
frequency domain analysis considering windows of 30 s. This solution allows investigating
how HR behaves over time.

The data analysis was entirely implemented in MATLAB® for each subject and
each protocol.

5.1. Respiratory Activity: Data Analysis

To assess RR we considered the signals recorded by the conductive sensors, which fol-
lowed the breathing-related motions of the subjects’ rib cages (see Section 3.1). Specifically,
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we considered the average in time of the sensors of the four recorded conductive signals,
hereinafter denoted as rys(t). Both the conductive signal and reference signal (r/,¢(t))
were filtered using a third-order Butterworth band-pass filter between 0.05 Hz and 2 Hz
using zero-phase digital filtering implemented through the function “filtfilt” (embedded in
MATLAB®). We selected 0.05 Hz as the low cut-off frequency in order to discard very slow
signal variations from the recorded data; conversely, we selected 2 Hz as the high cut-off
frequency, since RR is hardly above 1.5 Hz [9]. The choice of filtering the RR signals within
the mentioned frequency band (i.e., from 0.05 to 2 Hz) agrees with the results reported
in [27]. We aimed to filter out components not relevant for our applications while avoiding
discarding any useful information recorded by the sensors [9,39].

5.1.1. Frequency Domain Analysis

For the i-th subject we computed the error between the RR estimated using the

spectrum of 7,.¢(t) (Frléjlf ;) and rys(t) (FV%Z;,i) in each scenario as follows:

“RR _ |pRR _ pRR
Fwsi = |Freri — Fwsl 1)

FYIEJI} and FRR correspond to the highest peak in the spectra within the range 0.1-1.5 Hz.
In (1) all terms are expressed in bpm, denoting breaths per minute. The spectra of the
signals were obtained by computing the power spectral density (PSD) considering Welch'’s
overlapped segment averaging estimator over the duration of the trials (180 s). To that
end, we used the MATLAB® function “pwelch.” In addition, we computed the percentage

version of (1) as follows:
RR _ ERR |
FRR ref,i WS,i

WS%,i F RR

ref,i
: FRR FRR FRR FRR :
The averages of subjects for Fyg ; and Fyyg,, ; are denoted as kg and Fyg,,, respectively.

5.1.2. Time Domain Analysis

To implement a breath-by-breath analysis we computed the breath duration (AT, [n])
between two inspiratory peaks both considering rys(t) and r,.¢(t). To that end, we
implemented the following steps [28]:

®  The first step was devoted to the identification of the inspiratory peaks. We used

the MATLAB® function “findpeaks” with the inverse of the average RR (the value
estimated using the frequency domain analysis) as temporal threshold; we used as
amplitude threshold 50% of the RMS of rys(t) during the entire duration of the task,
and concerning 7,,¢(t) we used as the amplitude threshold 40% of its RMS.
We used two different amplitude thresholds to optimize the detection of the peaks.
After this step, we visually inspected the detected peaks and eventually removed
those not related to the end of inspiratory phase. This correction was performed on
the data collected by the reference system and by the wearable system, mainly in the
supine position, and it was needed due to the different morphologies of the signals
which are affected by the position assumed by the subject.

e The second step was devoted to computing the period of each breathing act, ATy, [n].
This parameter was considered as the time elapsed between two consecutive peaks.
This analysis was performed for both the wearable system (AT, ws) and the reference
one (AT, ) (see Figure 3);

e The third step was devoted to computing the RR for the n-th breath as 67? for

ATy [n]”
Tws(t) (fvlsllé [11]) and rref(t) ( rlijl} [Tl])
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Figure 3. A schematic representation of the breathing act period ATy+[n]. The blue line represents

rws(f), and the red circles represent the identified respiratory peaks.

To compare the WS with the reference system in the time domain for the i-th subject
and each protocol, we computed the mean absolute error (MAEys ;) as follows:

1 Nyreaths

Y |fref ] = fS[nll 2

MAEws,; =
’ Npreaths n=1

In (2), Npreatns denotes the number of breaths identified in the i-th subject and the
specific scenario. In addition, we computed the percentage version of (2) as follows:

1 Npreaths |f71§j15 [ﬂ] - Vlillé [7’[”

Nbreaths n=1 ;ZJI} [”]

MAEwso,i =

The averages of MAEys; and MAEys,; over all subjects are denoted as MAEys
and MAEyyge,, respectively.

A method specifically proposed to test the feasibility of a new measuring system
for monitoring physiological parameters has been proposed in this study. Indeed, we
performed Bland-Altman analysis [40] considering all the RR values collected by the
proposed system (i.e., f{%[n]) and by the reference one (i.e., rlgf [n]). This analysis was
performed considering all the 8 volunteers in all the three scenarios. As recommended
in [40], we computed the following parameters:

e frrmean[n], calculated as the average value between frlgf [n] and fRR[n];
*  AfRg, calculated as the difference between 71511} [n] and fRR[n];
e Mean of the differences (MOD), calculated as the mean of the difference between

ref (1] and £y [n];

e Limits Of agreement (LOAs), calculated as MOD =+ (1.96 - STD(AfgrR)).

5.2. Cardiac Activity: Data Analysis
According to Figure 1, to monitor the cardiac activity we considered the following signals:

* s, (t), which denotes the acceleration along x-axis of the M-IMU;
*  s5g (t) denoting the angular rotation around x-axis of the M-IMU;

Firstly, we band-pass filtered the two signals from 0.7 Hz to 20 Hz in order to remove
or minimize bias, breathing activity-related signal and high frequency noise [41]. The choice
of this filtering frequency band allowed preserving the informative content related to SCG [33,42].
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Subsequently, in order to enhance the effect of the heart beat on recorded signals, we
computed the Hilbert transform of s, (t) and sg, (t). It is typically used in SCG and GCG
data analysis [43], and given a generic signal s(t), its Hilbert transform is defined as follows:

5(t) = % / +: ;(_52: az, ®)

The outcome of the Hilbert transform, i.e., §(¢), is a complex signal containing in
its real part the copy of s(f) and in its imaginary part a 90 deg phase shift of s(t) itself.
Assuming that the heart-beat activity (k(t)) is hidden and only its modulation can be
measured, it is possible to model the recorded signal (s(t)) as follows [44]:

s(t) = h(t)cos(2mfot) + €(t) 4)

In (4), cos(27tfot) denotes the modulating term [44], while () denotes additive noise.
Therefore, according to the effect of (3) on the input signal, it is possible to extract 1i(t) as follows:

h(t) = \/(RGE(0))2 + (SG(1))2, (5)

denoting $(5(t)) and J(5(t)) the real part and the imaginary part of §(¢), respectively.
To estimate HR we considered the following signals related to the WS:

* g (), denoting the heart-beat activity estimated considering s, (t);
*  hg,(t), denoting the heart-beat activity estimated considering s, (t);

All the above-mentioned signals were further filtered using a zero-phase shift band-
pass filter from 0.7 to 5 Hz, in order to remove bias and obtain the heart-beat envelope
(<5 Hz) [43].

The ECG signal recorded by the reference system and band-pass filtered from 0.7 to
20 Hz is denoted as /¢ (t).

5.2.1. Frequency Domain Analysis

For the i-th subject we computed the error between the HR estimated using the

spectrum of f,.¢(t) (Fgf]?i) and hyys(t) (FVI\‘}Q ;) in each scenario as follows:

FWSi = |Frefy — FWs,i (6)

Fng and FLIR correspond to the highest peaks in the spectra within the range 0.7-4 Hz
of the signals collected by the reference system and the wearable device, respectively. Thus,
FHR was calculated by considering either hg, or hg,. As for the RR analysis (described in
Section 5.1.1), the spectra of the signals were computed by considering the power spectral
density (PSD) using a Welch’s overlapped segment averaging estimator over the entire
duration of the trials (180 s). In addition, we computed the percentage version of (6) as
follows:

HR HR
|F - PWS,i

PHR L ref,i
WS%,i — FHR

ref,i
The averages of subjects of F); and FJS,, ; are denoted as Fjj§ and Fjj[§ , respectively.

5.2.2. Windowed Frequency Domain Analysis

To further investigate the HR estimation capabilities of the proposed WS, we imple-
mented a new frequency domain analysis, considering 30 s lasting windows to compute
the PSD.

To that end, we considered only /g, (t), being the most reliable according to Section 6.2.2,
and we computed its spectrum by using the the MATLAB® “pwelch” function with a
Hamming window of 30 s with an overlap between segments of 50%.
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Similarly to (6), considering the i-th subject and the k-th window, we computed the
error between the HR estimated using the spectrum of h.¢(t) (FI 7, R.)and hg, (t) (Fglfk) in
each scenario as follows:

fY,lk | ref ik — Fg, (7)

In addition, we computed the percentage version of (7) as follows:
HR HR
|Fref,ik - ng,ik

f %,ik = HR
ref ik

FHR . FHR
The averages of f g 1k and f, 2%,k for windows are denoted as f!/R and f ~o,i» Tespec-

g i
tively; their averages for subjects are denoted as fglj and f FHR %

6. Results
6.1. Respiratory Activity
6.1.1. Frequency Domain Analysis

The frequency domain analysis allowed us to estimate the average RR during the
entire duration for each volunteer in each scenario (i.e., standing, sitting and supine). An
example of a signal spectrum for a representative subject is presented in Figure 4 which
shows the normalized PSD (nPSD), computed by dividing the amplitude of the spectrum
by its maximum peak value, of both the reference system and the WS in all scenarios.

RR - Reference System - sitting RR - SG - sitting
! ‘ [EIRR estimated: 0.2609Hz __— ‘ [ERR estimated: 0.2644Fz
205 205
~ =
0 . . . 0 N . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Frequency [Hz| Frequency [Hz|
RR - Reference System - standlng RR SG - standing
—_ 1 “:|RR estimated: 0.2792H ]| —_— 1f ‘-RR estimated: 0.279111z]|
205 205
< L
0 " . . 0 A | |
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Frequency [Hz| Frequency [Hz|
RR - Reference System - supine RR - SG - supine
— If ‘ [ERRR estimated: 0.2582F1z | — IF ‘ [ERR estimated: 0.2604FLz |
205 205
4 L
0 . . . 0 “ . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Frequency [Hz| Frequency [Hz|

Figure 4. nPSD of r,,.¢ (left) and ryys (right) a representative subjects in each scenario.

Tables 2 and 3 report the values of F&lé ;and FRE, ; in the upper part and their average

along subjects, i.e,, F{R and FRR, , respectively, in the lower part in all three scenarios.
The worst case is related to subject 8 during the scenario “supine,” in which the system
apparently failed in estimating the average RR. This might have been caused by a too low
or absent pre-strain on the sensing elements due to the supine position. However, if such a
value is discarded the average error in the supine scenario is equal to 0.14 bpm.
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Table 2. The absolute error of RR estimated for each volunteer, considering the three scenarios.
The average value of the mentioned error for every subject is also shown.

Volunteer ERR ; [bpm]-Sitting ERR ; [bpm]-Standing ERR ; [bpm]-Supine
1 0.99 0.01 0.01
2 0.06 2.39 0.36
3 0.07 0.06 0.01
4 0.02 0.01 0.03
5 0.04 0.00 0.13
6 0.01 0.01 0.01
7 0.11 0.27 0.34
8 0.04 0.01 22.57
Average 0.17 0.35 2.95

Table 3. The percentage of absolute error of RR estimated for each volunteer, considering the three
scenarios. The average value of the mentioned error for each of the subjects is also shown.

Volunteer ERR, i [%]-Sitting FR%y, i [%]-Standing FR%y, i [%]-Supine

1 6.78 0.05 0.87

2 0.40 25.43 2.16

3 0.95 0.72 0.08

4 0.09 0.10 0.13

5 0.33 0.01 1.19

6 0.06 0.08 0.04

7 0.72 1.47 2.58

8 0.32 0.07 66.94
Average 1.21 3.49 9.25

6.1.2. Time Domain Analysis

The behaviours of 7,.¢() and rys(t) over time are reported in Figure 5 in all scenarios
for a representative subject.

2 x10* RR - Reference System - sitting RR - SG - sitting
eyl TY i :0.25Hz ‘ ‘ ‘
.o RR estimated: 0.25Hz . 2
g 0 MERETS """'-'u.'0.‘0.'00.'--".’0'0’0' % 0.0 ﬂ 1 N ’M hhd MNMMMMM)MM M(
5 2-02] |
<, o
0 50 100 150 200 0 50 100 150 200
time [s] time [s]
by x10* RR - Reference System - standing RR - SG - standing
R * s 1 0y of — 0. 1
5‘ 0 7..000..'..".. o"'-..".. RPN 00 00 P | = 03 |
- O]
£ RR estimated: 0.2525Hz, & 025 [—RR estimated: 0.2466Hz| |
-2 . . _ i -0.4 . . "
0 50 100 150 200 0 50 100 150 200
time [s] time [s]
) x10* RR - Reference System - supine RR - SG - supine
’E‘ I I RR estimated: 0.2646Hz ; 02 I I I
- <)
B F-020 |
<, -
0 50 100 150 200 0 50 100 150 200
time [s] time [s]

Figure 5. 1,7 (left) and ryys (right) plotted over time for all scenarios using a representative subject.
Peaks selected using the method presented in Section 5 were superimposed on the signals (red
circles).
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The values of MAEys; and MAEse, ; in all scenarios are reported in the upper part
of Tables 4 and 5, and their averages for subjects (M AEws and MAEwse,) in the lower part.

Table 4. MAEyg of RR estimated for each volunteer, considering the three scenarios. The average
value of the mentioned error for each subject is also shown.

Volunteer MAEys,; [bpm]-Sitting [bpﬁﬁSEtI;ﬁéing MAEyws,; [bpm]-Supine
1 0.24 0.61 1.16
2 0.30 0.28 1.08
3 0.22 0.39 1.11
4 0.24 0.33 3.14
5 0.11 0.11 1.92
6 0.18 0.25 0.87
7 0.36 0.23 1.78
8 0.05 0.23 0.07
Average 0.21 0.30 1.39

Table 5. MAEyyge, of RR estimated for each volunteer, considering the three scenarios. The average
value of the mentioned error for each subject is also shown.

Volunteer MAEyygs, ; [%]-Sitting MAEsgs, ; [%]-Standing MAEsgs, ; [%]-Supine

1 1.52 3.17 7.72
2 1.44 2.25 741
3 2.56 3.59 9.08
4 1.36 1.89 15.00
5 0.91 0.81 18.09
6 115 1.64 5.65
7 2.25 1.29 12.57
8 0.37 1.93 0.57
Average 1.45 2.07 9.51

Concerning the Bland—Altman analysis, the values of MODs and LOAs estimated for
each scenario are reported in Table 6 and depicted in Figure 6.

Table 6. Results of the Bland-Altman analysis of speed for the three tested scenarios.

Scenario MOD [bpm] LOA-Upper [bpm] LOA-Lower [bpm]
Sitting —0.0039 0.9391 —0.9470
Standing 0.0186 1.6753 —1.6392

Supine —0.2948 4.9264 —5.5160
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6.2. Cardiac Activity
6.2.1. Frequency Domain Analysis

According to Section 5, we have estimated HR considering k,, (t) and hq, (t). The best
results were obtained considering /g, (t), and the standing scenario was the worst case.
The results related to Fﬁg ;and ﬁ%ls{:/" are reported in Tables 7 and 8, respectively.

Table 7. Error between average HR estimated using r,.s and rys from hq, (t) and hg, (£) signals over
subjects (FVvai) for each scenario.

Volunteer ﬁ%gi [bpm]-Sitting F%ISQI [bpm]-Standing F%ISQI [bpm]-Supine
1 0.56 2.92 0.89
2 3.83 0.05 0.18
3 5.19 5.97 0.03
4 0.28 13.07 0.09
5 0.13 1.98 0.06
6 0.30 0.23 0.28
7 0.18 6.20 0.02
8 0.25 0.08 0.80

Average 1.34 3.81 0.29

hax (t)

1 041 32.80 0.06
2 3.83 0.05 0.18
3 8.45 24.55 0.03
4 6.29 0.73 2.23
5 0.13 0.02 0.06
6 3.04 9.93 0.28
7 0.16 36.21 0.02
8 0.25 6.24 0.12

Average 2.82 13.82 0.37

Table 8. Percentage of error between average HR estimated using r,,¢ and ryys from g, (t) and hg, (f)

signals over subjects (F%g% ;) for each scenario.

Volunteer ENS,, ; [%]-Sitting ENE,, ; [%]-Standing ENE,, ; [%]-Supine
hg, (t)
1 0.83 6.44 1.53
2 5.54 0.06 0.28
3 7.96 7.37 0.06
4 041 17.98 0.14
5 0.21 2.69 0.10
6 0.35 0.23 0.37
7 0.31 11.21 0.04
8 0.30 0.09 1.14

Average 1.99 5.75 0.46
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Table 8. Cont.

Volunteer FIR, . [%]-Sitting f%g%li [%]-Standing f%lsz%li [%]-Supine
hux (t)
1 0.61 72.34 0.11
2 5.54 0.06 0.28
3 12.96 30.31 0.06
4 9.16 1.00 3.59
5 0.21 0.03 0.10
6 3.53 9.85 0.37
7 0.28 65.49 0.04
8 0.30 7.01 0.17
Average 4.07 23.26 0.59

An example of the spectra obtained considering /. (t) is presented in Figure 7, which
refers to a representative subject.

HR - Reference System - sitting HR - h,, - sitting
1 o HR estimated: 1.0862Hz 1 ‘ R estimated: 0.9997Hz
A A
n U N
£ £
0 1 2 3 4 5 0 1 2 3 4 5
Frequency [Hz] Frequency [Hz]
HR - Reference System - standing HR - h,, - standing
- 1r P HR estimated: 1.3497Hz | - 1 ‘-HR estimated: 1.4491Hz |
% 0.5 (2] 0.5
= = L
0 0 Lbabitst bt st ity
0 1 2 3 4 5 0 1 2 3 4 5
Frequency [Hz] Frequency [Hz]
HR - Reference System - supine HR - h,, - supine
1! [ HR estimated: 0.9164Hz ! ‘ | mmHR estimated: 0.917Hz
205 a
% %
o Ll . . il
0 1 2 3 4 5 0 1 2 3 4 5
Frequency [Hz| Frequency [Hz]

Figure 7. PSD of I,s (left) and hg, (right) for a representative subject and all scenarios.

6.2.2. Windowed Frequency Domain Analysis
The results obtained for f;ﬁ If (i.e., the error between HR estimated using h,. and hg,

for i-th subject averaged along the 30 s time windows considered to compute the spectra)

and fg Rie, glf averaged along subject) are reported for each scenario in Table 9. Conversely,

results related to gﬁi ; are reported in Table 10.
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Table 9. Values of f gll{ obtained for all subjects in the three experimental scenarios.

Volunteer fg}f [bpm]-Sitting fglilf [bpm]-Standing fglilf [bpm]-Supine

1 5.45 27.27 0.18

2 0.00 27.45 0.67

3 13.45 16.18 1.00

4 8.60 4.60 5.20

5 0.20 0.00 0.00

6 0.20 35.60 28.73

7 0.80 15.20 0.00

8 0.20 0.20 0.40
Average 3.61 15.81 4.52

Table 10. Values of f gORA) ; obtained for all subjects in the three experimental scenarios.

Volunteer fgfg/il %]-Sitting fg%i %]-Standing fg%i %]-Supine

1 8.02 53.99 0.29

2 0.00 16.99 1.08

3 20.96 2091 1.98

4 13.03 6.33 8.01

5 0.31 0.00 0.00

6 0.23 30.01 13.42

7 1.30 22.56 0.00

8 0.29 0.24 0.58
Average 5.52 18.88 3.17

7. Discussion and Conclusions

In this study, we presented a prototype of an unobtrusive and multiparametric wear-
able system for continuous monitoring of RR and HR. The feasibility of the system has
been assessed in different static positions (i.e., sitting, standing and supine), simulating
clinical and remote/home monitoring scenarios, and an occupational setting—specifically,
a computer worker sitting at a desk. Continuously monitoring those parameters can
provide useful information on the health status of an individual, including insights on
upcoming potentially critical conditions, and can improve workers’ conditions in terms of
health, well-being and safety [1-3]. Indeed, although HR is a well established parameter
for evaluating an individual’s critical critical state, RR is mostly neglected. Indeed, RR is
directly affected by the effort made (e.g., physical activity, load handling), the surrounding
environment and the psycho-physical state. Thus, a system capable of jointly monitor-
ing breathing activity and cardiac activity may be beneficial to providing comprehensive
assessments of the mentioned conditions [3,12,45].

As shown in Figure 1, the proposed wearable system embeds four conductive textiles
sewed into two elastic bands located on the chest wall of the user (pulmonary rib cage and
abdomen) for RR monitoring and an inertial measurement unit (IMU) integrated within a
custom and compact PCB (located on the left side of pulmonary rib cage) for retrieving HR
in terms of SCG and GCG.

Concerning the breathing activity, we monitored both average RR, by means of a
frequency domain analysis (Section 5.1.1), and RR breath-by-breath, through a time domain
analysis (Section 5.1.2). In both cases we considered ;¢ (t) band-pass filtered using a zero
phase shift filter and we compared the estimated RR with the one estimated by the reference
system (r.¢(t)). According to Section 6.1.1, the average RR estimated by the proposed
WS can be considered as reliable, since the errors obtained were, on average, fractions
of the breath-per-minute in sitting and standing tasks. The average error was ~3 bpm
when considering the supine task, which corresponds to an average percentage error of
~9%. Such results were confirmed in the time domain analysis (Section 6.1.2). Indeed,
the MAEw;s obtained for sitting and standing are fractions of the breaths per minute.
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Additionally, in the worst case scenario (represented by the supine task) acceptable errors
were obtained (~1.5 bpm, corresponding to a M AEyyge, of ~9.5%). The same behavior was
obtained considering Bland—Altman analysis (see Table 6 and Figure 6). Although the
MOD value was acceptable in all the cases, the LOAs were high especially for the supine
position. A possible explanation for the worse results obtained during supine task may lie
in an undesired interaction between the elastic bands with the support used let subjects
lay down. Probably, in this configuration the elastic band stretched, thereby worsening
the signals recorded by conductive sensors. The use of bands with the rear part being stiff
instead of being elastic might solve this issue. However, this is just a speculation and future
investigations will be devoted to study such aspects.

As regards HR, we considered the signals recorded by IMU. Firstly, we employed
the Hilbert Transform to enhance the contribute of the heartbeat on the recorded signals,
as already used in similar applications [43,44]. This technique allowed us to obtain the
heartbeat envelope relative to the x-axis of the accelerometer (h,,) and the x-axis of the
gyroscope (hg, ). Considering such signals, we implemented a frequency domain analysis to
estimate an average HR during the entire duration of the trials. Afterwards, we estimated
the average HR on 30 s time windows to better assess the capabilities of the proposed
device. In both cases, the results were compared with respect the ECG recorded by the
reference system. Regarding the average HR, estimated considering the entire duration of
the trials, hg, and h,, returned similar results in sitting and supine tasks, while hg, (average
error of 3.81 bpm, corresponding to a percentage error of 5.75%) prominently outperformed
ha, (average error of 13.82 bpm, corresponding to a percentage error of 23.26%) considering
the standing task. This is likely due to the higher sensitivity of the accelerometer to the
body motions, which are higher in standing being the subjects less constrained than in
sitting and supine. As expected, the best results were obtained in the supine scenario
(average error of 0.29 bpm and percentage error of 0.46% considering hg,, while 0.37 bpm
and 0.59% considering &, ), where most of the movements detected by the IMU are due
to heartbeat, once the respiration has been filtered out. Considering the average HR on a
30 s time window, we considered only hgx, on the basis the better results obtained in the
above-mentioned frequency domain analysis, which allowed obtaining error (averaged
along subjects) of ~3.5 bpm (~5.5%), ~4.5 bpm (~3.2%) and ~16 bpm (~18.9%) in sitting,
supine and standing tasks respectively.

A few studies have investigated to simultaneously monitor breathing and cardiac
activities, and the proposed system show error in line with the systems reported in litera-
ture [22,36-38]. Results presented in [22] show errors smaller than ~2% and ~6%; however,
fiber Bragg grating sensors were used, which require more expensive and bulky systems to
retrieve the signals, and above all, the HR were estimated during apnea. In [36], where the
authors used a belt embedding textile electrodes for recording ECG and breathing activity
through impedance variation of the chest wall. They showed errors of ~2% concerning
RR estimation and better results in terms of HR estimation. Despite the very good results
obtained, the main drawback of this solution lays in the contact required between the
electrodes and the skin of the subjects and the need to continue guarantee a low impedance
at the contact points. A similar approach was proposed by [37]; however, no performance
comparisons with a reference system were presented. In [38] the system proposed is based
on a single piezoelectric sensors which allowed the authors to obtain errors of (in aver-
age) ~10% and ~6% for RR and HR respectively. To conclude the comparison, the main
advantage of our solution lays in the ease of use, simple and low cost electronics required
and high wearability and comfort, which does not require direct contact with the skin or
further adjustments of the sensors after they are worn by the user. Moreover, because of
the presence of IMU within the device, it is possible to exploit their sensitivity on body
motion artifacts to further improve the estimation of RR, similarly to [20,46].

The present work is mainly focused on the design of the device and the technology,
rather than implementing or assessing robust and efficient algorithms to remove motion
artifact from recorded signals during the everyday life. However, we reckon that the
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problem of motion artifact removal should be taken into account since in a real-life scenario,
movements of the subjects can occur. To overcome this concern, different solutions have
been proposed for both RR [20,28,47,48] and regarding HR [33,41,49-51]. Future works will
be devoted to defining a tailored approach on our system, by combining the two different
sensor technologies embedded (i.e., textile strain sensors and an M-IMU) to develop a
sensor-fusion algorithm to remove motion artifacts occurring during real life.

Future works will be devoted to further improve the proposed system to enhance its
capabilities of HR and RR estimation. Indeed, in its present version, the sensors are sewed
on two elastic bands which, despite being comfortable for an ease removal, introduce
an additional compliance thus reducing the sensitivity of the conductive sensors. This
contingency does not allow them to reliably catch the SCG activity. Therefore, as a future
work we are planning on sewing the sensors directly onto an elastic t-shirt (i.e., sportswear)
to reduce as much as possible additional compliant elements between the sensors and the
user, aiming at investigating whether conductive sensors allow also reliably and robustly
monitoring HR, as much as they do with respect RR. Moreover, this may lead to a lower
system complexity, to slightly improve its cost and to provide a more comfortable system.
In addition, we will test the improved system on a larger population, including females
and pathological subjects, to evaluate its potential use also in clinical settings. Since we
tested the device on only male subjects, we can just speculate that the use of the proposed
device might not be of any discomfort on female subjects. Taking into account what most
women wear during sport activities (i.e., sport bras), the use of the upper band of the
proposed device should not be of relevant discomfort, since they also allow being regulated
in length thanks to the provided Velcro. We are convinced that with the improved device
this potential discomfort will be avoided. In addition, the respiratory movements will be
hardly detected by the upper band due to the presence of the breast. However, this hurdle
will be overcome thanks to the presence of the second band. Moreover, we will evaluate
the system performances during different daily living activities which result to be more
challenging but represent a typical use of the proposed system. Finally, it is worth noting
that we used basic data analysis techniques; therefore, more sophisticated analyses (e.g.,
based on machine learning methods) may allow improving the estimation of respiratory
and cardiac parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

WS Wearable System

RR Respiratory Rate

HR Heart Rate

PSD Power Spectral Density

nPSD Normalized Power Spectral Density
PCB Printed Circuit Board

ADC Analog Digital Converter

M-IMU  Magneto-Inertial Measurement Unit
IMU Inertial Measurement Unit

BMI Body Mass Index

RMS Root Mean Square

MOD Mean of Difference

LOA Limit of Agreement

ECG Electrocardiography

SCG Seismocardiography

GCG Gyrocardiography
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