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Abstract: In this work, we propose and evaluate a pose-graph optimization-based real-time multi-
sensor fusion framework for vehicle positioning using low-cost automotive-grade sensors. Pose-
graphs can model multiple absolute and relative vehicle positioning sensor measurements and
can be optimized using nonlinear techniques. We model pose-graphs using measurements from
a precise stereo camera-based visual odometry system, a robust odometry system using the in-
vehicle velocity and yaw-rate sensor, and an automotive-grade GNSS receiver. Our evaluation
is based on a dataset with 180 km of vehicle trajectories recorded in highway, urban, and rural
areas, accompanied by postprocessed Real-Time Kinematic GNSS as ground truth. We compare
the architecture’s performance with (i) vehicle odometry and GNSS fusion and (ii) stereo visual
odometry, vehicle odometry, and GNSS fusion; for offline and real-time optimization strategies. The
results exhibit a 20.86% reduction in the localization error’s standard deviation and a significant
reduction in outliers when compared with automotive-grade GNSS receivers.

Keywords: multi-sensor fusion; pose-graph optimization; vehicle localization

1. Introduction

Autonomous driving technologies are evolving rapidly with the ultimate goal of
developing a safe and reliable, fully autonomous vehicle, i.e., SAE level 4 and eventually
level 5 [1]. A real-time, accurate, and robust positioning system is the backbone of a fully
autonomous vehicle and many Advanced Driver Assistance Systems (ADAS). It is the basis
for environment perception, path planning, and autonomous decision making. Global
Navigation Satellite System (GNSS) is most widely used for vehicle positioning (GPS,
GLONASS, Galileo, BeiDou are all examples of GNSS systems). However, these systems
are not always reliable as they are dependent on satellite visibility. Obstruction of GNSS
signals because of trees and large buildings, or GNSS signals that get reflected before
being received by the GNSS receiver (multipath error), severely degrades the receiver’s
performance [2,3]. Researchers have fused inertial measurement unit (IMU) sensor data
with GNSS data to increase its precision and reliability [4,5]. Positioning systems that fuse
IMU and GNSS data are referred to as the Inertial Navigation System (INS). The state-of-
the-art INS uses tactical-grade IMUs with Real-time kinematics (RTK) GNSS receivers to
estimate positions accurately. Their data are often postprocessed to achieve centimeter-level
accuracy. However, these systems are too expensive to be deployed in consumer-grade
vehicles. This article focuses on improving the availability, accuracy, and reliability of the
vehicle positioning system fusing low-cost automotive-grade sensor data.

The most popular approaches to sensor fusion for the purpose of vehicle positioning
are filter-based or graph-based. In filter-based approaches, typically, different Bayesian
filter variants take a recursive approach and usually adopt the Markov assumption. In
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other words, all measurements are summarized by a state that is refined each time a new
measurement arrives. The measurements are then discarded after being processed. This
approach limits computational costs and is particularly popular in real-time settings [6–11].
Graph-based methods, typically pose-graphs, formulate a nonlinear least-squares optimiza-
tion problem using a set of measurements rather than processing them one-by-one [12,13].
Pose-graph consists of nodes that represent the state (position and orientation or pose),
and two nodes are always connected by an edge representing the measurement between
the two. In the optimization process, the state estimates are optimized by considering a set
of measurements rather than relying on a Markov assumption. This approach has been
demonstrated to be more accurate in various problems such as Simultaneous Localization
and Mapping or SLAM [14–17] and bundle adjustment [18,19]. Filter-based solutions
have become much less popular ever since. For a comparison of filter-based methods and
graph-based methods in the context of visual SLAM, we refer to [20].

Figure 1. Multi-sensor fusion for vehicle positioning and mapping using automotive-grade sensors.
The sensor data are used to model a pose-graph, which is then optimized in real-time to estimate the
vehicle’s accurate pose and generate a map.

One major drawback of pose-graph optimization is that it is computationally de-
manding. At best, the optimization time increases linearly with the size of the pose-graph.
Real-time or online execution is possible if the number of nodes and measurements is
limited. To tackle this problem, researchers have proposed sliding-window pose-graph
optimization strategies, which limit the size of the pose-graph by considering a subset
of measurements to make optimization computationally tractable [21–23]. Global opti-
mization requires optimizing over all nodes in the graph. Sliding window pose-graph
optimization techniques optimize the sequence of vehicle poses over the n most recent
nodes only and therefore perform local optimization instead.

The benefit of absolute GNSS positioning, compared to integrating relative positioning
(vehicle odometry and visual odometry), is that the position errors are bounded, whereas
integrating relative positioning will accumulate errors indefinitely (drift). Vehicle odometry
is typically estimated using Micro-electro-mechanical systems (MEMS) gyroscopes, IMUs,
and wheel encoders. Low-cost MEMS IMUs are not accurate and do not exhibit long-term
accuracy, i.e., its accuracy significantly decreases over distances in the order of 1 km. Wheel
encoders are robust, but accuracy degrades with wheel slip and changing tire pressure.
Visual odometry estimates the camera/vehicle’s pose by tracking static visual features
between consecutive image frames taken from single or multiple camera systems [24–27].
These systems have proven to be accurate in low traffic urban scenarios where there are
many static image features to track. It often fails in dark environments, real-world dense
traffic scenarios, and highways, where there are considerably fewer static features to track.
Relative position estimates do not contain direct information on the absolute position.
Instead, they act as soft constraints between absolute poses. If the relative pose estimates
would contain no errors (i.e., act as hard constraints) and if GNSS readings would not be
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correlated in time, then absolute position errors could be reduced with the order of σ/
√

n,
with σ being the standard deviation of the GNSS error and n the number of GNSS readings.
In reality, this model is highly naive because: (1) the relative pose estimates do contain
errors and should only be used as soft constraints and (2) the GNSS readings are highly
correlated in time [28], reducing the statistical information of a single GNSS reading when
fused with other positioning sources.

In this article, we propose and evaluate a pose-graph optimization-based vehicle
positioning and mapping framework using automotive-grade GNSS receiver, stereo camera,
and in-vehicle yaw-rate and velocity sensor data, depicted in Figure 1. In contrast to
SLAM, where loop closure detection is used to compensate for the drift and generate an
accurate map, we fuse absolute GNSS measurements with relative odometry measurements.
The GNSS measurements act as loop closures, which reduces dependency on image-
based landmark and feature detection algorithms. We combine and extend our previous
work [29,30] on pose-graph based vehicle localization. In [29], we propose and evaluate
multiple off-line pose-graph modeling strategies to fuse vehicle odometry and GNSS data
for robust vehicle positioning. In [30], we extended our work in [29] and proposed a real-
time pose-graph generation and optimization framework, "Incremental Hopping Window
pose-graph Optimization" for vehicle positioning. This article extends the framework to
model stereo visual odometry, vehicle odometry, and GNSS measurements into a pose-
graph which is then optimized using the incremental hopping window pose-graph fusion
strategy [30]. We also extensively compare the framework’s performance with (a) vehicle
odometry and GNSS fusion (b) stereo visual odometry, vehicle odometry, and GNSS fusion
for real-time vehicle positioning on large datasets covering more than 180 km in different
scenarios such as urban-canyons and highways. An overview of the framework is depicted
in Figure 4.

The rest of the article is structured as follows. In Section 2, we describe some of
the related works. A brief explanation about pose-graph optimization and pose-graph
structure is provided in Sections 3 and 4, respectively. The pose-graph generation and real-
time optimization process are described in Sections 5 and 6, respectively. The experiments
and results are provided in Section 7 and the conclusion in Section 8.

2. Related Work

A lot of research has been done to enhance vehicle positioning capabilities in urban
scenarios using a GNSS receiver. Hieu et al. [31] present a loosely coupled model for
INS/GPS integration using an extended Kalman filter. They show that accurate positioning
and navigation results are possible from 9 to 14 s of GPS outages with the position errors
spread from 3 to 10 m (Root mean square). Andrew Howard [25] proposes a stereo visual
odometry algorithm for estimating frame-to-frame camera motion from successive stereo
image pairs using a dense stereo matching algorithm. This approach generalized and
simplified the approach described by Hirschmüller [32], which uses feature matching
rather than tracking and employs stereo range data for inlier detection, by introducing
a complete inlier detection scheme (based on the notion of cliques) and simplifying the
point-to-point inlier test to permit faster comparisons. Agarwal et al. [33] proposed a real-
time, low-cost system mobile robot localization system for outdoor environments. Their
system relied on a stereo vision to robustly estimate frame-to-frame motion in real-time.
The motion estimation problem from a stereo camera (visual odometry) is formulated in
the disparity space and used inertial measurements to fill in motion estimates when visual
odometry failed. The motion is then fused with a low-cost GPS sensor using a Kalman
filter. This system was mainly designed low speed outdoor mobile robotics applications.

Rehder et al. [34] present a pose-graph optimization-based approach to estimate the
global pose of a vehicle using stereo-visual odometry which is affected by bias due to
lack of close-range features and very infrequent GPS measurements. They show that the
graph-based state estimation framework is capable of inferring global orientation using
a unified representation of local and global measurements and recovers from inaccurate
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initial estimates of the state. Chiu et al. [35] tackled the real-time pose-graph optimization
problem by combining a long-term smoother and a short-term smoother using the Sliding-
Window Factor Graphs in iSAM2 (Kaess et al. [36]). Indelman et al. [37] use the incremental
smoothing technique from [36] to fuse multiple odometry and pose sources. They choose
a similar graph representation as proposed in this contribution, with the difference that
they keep the full graph in memory over the entire trajectory, making the approach more
memory consuming. Cucci and Matteucci [38] propose the graph-based ROAMFREE
framework for multi-sensor pose tracking and sensor calibration. They keep the size of the
graph bounded by simply discarding older nodes and edges, thus potentially obtaining
overconfident estimates. Merfels et al. [21] propose a pose-graph optimization-based multi-
sensor fusion approach that combines measurements from multiple localization systems
in a plug-and-play manner. They formulate the problem as a sliding window pose-graph
optimization, enabling efficient optimization and providing accurate pose estimates with
high availability. They use a novel marginalization approach that marginalizes information
in the last optimization window into a single prior node before generating a new window.
In this article, our goal is to develop a graph-based real-time vehicle positioning and
mapping framework. We research different pose-graph modeling approaches that model
relative and absolute sensor measurements into a pose-graph. We propose incremental
hopping window pose-graph optimization strategy for real-time vehicle positioning and
perform extensive evaluations on a dataset covering 180 km of vehicle trajectories. Our
proposed approach is conceptually similar to [21] but differs in the following aspect: (a) we
model GNSS measurements considering their uncertainty, whereas they provide constant
weight to all GNSS measurements, (b) we define the size of the optimization window with
respect to the distance travelled, whereas they define it in time, (c) they marginalize the
information of the last optimization window into a single prior node before optimizing a
new window, whereas we use a section of the last optimization window as prior.

3. Pose Graph

In this section and Section 4, we provide a small introduction to pose-graph optimization
and pose-graph structures before explaining the proposed framework in Sections 5 and 6.
The sensor fusion algorithm optimizes a pose-graph that models the vehicle’s motion from
vehicle odometry, visual odometry, and GNSS receiver readings using the least-squares
optimization technique to estimate the vehicle’s pose in real-time. The pose-graph consists
of nodes, denoted by X, which model the absolute vehicle pose by elements of SE(2), i.e.,
Euclidean motions in 2-D, and of edges denoted by Z, which model the relative poses
between nodes, also with elements of SE(2). We have chosen to use SE(2) instead of
SE(3) because the automotive-grade low-cost GNSS receiver can only provide reliable 2D
position estimates, i.e., latitude and longitude. The altitude estimates from these receivers
are unreliable. Each measurement Z is accompanied with uncertainty expressed in the
tangent space of SE(2) using an information matrix denoted with Ω. The edges always
connect two nodes, i.e., the edge Zij denotes a relative pose that moves the node Xi onto
Xj. The error eij between the poses of the nodes Xi and Xj with respect to the measured
relative pose Zij is computed with:

eij = log(Z−1
ij (X−1

i Xj)) , (1)

where log() denotes the logarithmic map from SE(2) to its tangent space, i.e., eij is a three-
dimensional vector consisting of the angular and positional difference between Xi and
Xj, as shown in Figure 2. The goal of graph optimization is to minimize the following
nonlinear objective function:

X∗ = argmin
X

∑
〈i,j〉∈C

eT
ijΩijeij , (2)
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where C represents the set of all index pairs for which measurements are available. This
optimization task can be performed with the usual nonlinear solvers like Levenberg–
Marqaurdt, Gauss–Newton, or Dogleg [39]. In our work, we use the Gauss–Newton solver
contained in the g2o graph optimization framework developed by Kuemmerle et al. [12].

(a) Pose-graph before optimization. (b) Pose-graph after optimization.

Figure 2. A simple graph before (a) and after (b) optimization [29]. The initial node Xi is kept fixed.
The node Xj is at its initial position before optimization. The nodes Xi and Xj are connected by
an edge (measurement) Zij. The black dashed circle visualizes the measured position of node Xj

contained in the edge Zij. The error vector eij before optimization is depicted as a red dashed line.
After the optimization, this error is minimized by moving node Xj to the position according to the
measurement contained in Zij.

In order to explain the graph structure, we use a graphical notation, which is in-
troduced next. Nodes or absolute poses in the graph are visualized using solid circles.
Whenever a node is kept fixed, i.e., its pose is not optimized for, the circle contains a cross.
The edges or relative poses are visualized using arrows. In order to better visualize the
actual measurement contained in an edge and its error w.r.t. the absolute nodes, we visual-
ize the measurement as a dashed circle and the error as a red dashed line. Figure 2 shows
a simple graph before and after optimization. In this example, the error is minimized by
taking node Xj from its initial position to the position corresponding to the measurement
contained in the edge Zij.

4. Pose Graph Structure

We explore three different strategies to model the optimizable pose-graph: G1, G2,
and G3, as shown in Figure 3. The three approaches differ in the manner in which the
GNSS readings are modeled. We note that all the three approaches are intrinsically the
same, i.e., the global minima of their objective functions are located at the same point
in the parameter space. However, due to modeling the GNSS readings differently, their
convergence characteristics can differ, and in our experimental evaluation, the aim is to
research which structure exhibits favorable convergence characteristics.

4.1. Modeling Approach G1

In the first approach, both vehicle odometry and GNSS readings are modeled as
measurements (edges), see Figure 3a. The absolute poses of the vehicle are computed from
the odometry. Hence they initially exactly coincide with the measured relative poses. The
goal of the graph optimization is then to minimize the errors related to the GNSS readings.
This will alter the relative poses between nodes and hence introduce error for odometry
measurements, but this error is compensated for by the reduction in the error related
to the GNSS readings. After convergence, the graph is in an optimal balance between
the errors related to the relative vehicle odometry and the errors related to the absolute
GNSS readings.
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(a) Pose-graph structure G1.

(b) Pose-graph structure G2.

(c) Pose-graph structure G3.

Figure 3. Graph modeling strategies G1, G2, and G3, in (a–c), respectively [29]. The black circles are
the absolute vehicle poses initialized from the odometry, and the black arrows are the corresponding
edges. The blue arrows are the GNSS edges connecting the UTM origin node (black circle with a
cross) with the corresponding nodes. In (a), the black dashed circles represent the GNSS readings,
and the error is depicted by a red dashed line. In (b), the blue circles are the GNSS readings nodes.
The green arrows represent the (virtual) identity edges. In (c), The blue circles with crosses are the
GNSS nodes that are kept fixed during optimization.
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4.2. Modeling Approach G2

In the second approach, GNSS readings are modeled as nodes, and their absolute
positions are optimized for, see Figure 3b. In order to link the poses of the vehicle, initially
provided by the vehicle odometry, to the GNSS readings, we introduce an extra edge
between the GNSS nodes and their corresponding vehicle poses. These are depicted by
the green arrows in Figure 3b. These edges model (virtual) identity measurements, stating
that the particular GNSS poses and the vehicle pose are the same: they act as very strong
soft-constraints. The potential benefit of this approach is that there is more flexibility in
the graph as there are more measurements to optimize for. It can improve convergence
when the vehicle poses suffer from poor initial guess. However, by modeling the GNSS
readings as nodes, we increase the number of nodes that are optimized for (proportional to
the number of GNSS readings) and therefore increase the computational load.

4.3. Modeling Approach G3

In the third approach depicted in Figure 3c, the GNSS readings are also modeled as
nodes, but now they are kept fixed during optimization. The uncertainties of the GNSS
readings are now transferred to the (virtual) identity edges, which no longer act as strong
soft-constraints but as regular edges. G2 and G3 have the same number of nodes; however,
for G3, all GNSS nodes are fixed, which will result in lower computational costs. Compared
to approach G1, this offers an alternative way of modeling the GNSS readings without
optimizing for their position as in approach G2.

5. Pose Graph Generation

The vehicle positioning and mapping framework, depicted in Figure 4, realizes the
in-vehicle multi-sensor fusion process. The framework is composed of four blocks: vehicle
sensors, odometry source selector, front-end pose-graph generator, and back-end pose-
graph optimizer. The odometry source selector block estimates the motion of the vehicle
using a sequence of stereo-camera images, which is validated using the vehicle’s velocity
and yaw-rate sensor. If the difference in motion computed from the two sources is more
than a threshold, the block switches to the velocity and yaw-rate sensor from the stereo-
camera. The selected odometry source and GNSS measurements are used to model a
pose-graph in the front-end Pose-graph Generator block, and the pose-graph is optimized
in real-time in the back-end Pose-graph Optimizer block. The GNSS receiver is used
to estimate the vehicle’s pose in the Universal Transverse Mercator (UTM) coordinate
system. The process of modeling the vehicle sensor data into a pose-graph is explained in
this section.

5.1. Visual Odometry

The process of estimating the relative poses or motion of a camera using a sequence of
images is called visual odometry. In this article, we use a front-facing stereo camera set
up to estimate the motion of the vehicle, commonly referred to as stereo-visual odometry
(SVO). A modified multi-threaded version of the libviso2 library by Geiger et al. [40] is used
for SVO. The motion of the camera is estimated by detecting and matching static image
feature points between the two consecutive stereo-image pairs (previous and the current
stereo images). The feature points are detected using a corner and a blob detector and are
then matched between the four images of the two stereo-image pairs using a Sobel filter
response [40]. Figure 5 shows the “circle” feature matching strategy. First, for all feature
point candidates in the current left stereo-image, we find the best match in the previous
left stereo-image within a M × M search window. The points are then matched with the
previous right stereo-image, the current right stereo-image, and the current left stereo-
image again. When matching candidates between the left and right images, the epipolar
constraint of an error tolerance of 1 pixel is used. The candidate is considered a valid match
if the last feature coincides with the first feature. The valid candidates in the previous
stereo frame are reprojected onto the current stereo frame. The camera motion is then
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estimated by minimizing the sum of reprojection errors. An outlier rejection scheme based
on random sample consensus (RANSAC) is applied before the final motion optimization
step. The obtained motion estimates are then refined using a Kalman filter [40].

Vehicle Posi�oning framework

Odometry Source 

Selector

Vehicle Sensors

Yaw -rate 

Sensor

Velocity

Sensor

GNSS

Front-end Pose-graph 

Generator
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Generator
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Back-end Pose-graph Op�mizer

Graph

Reader

Window

Manager

Batch

Manager

Op�mizer
Vehicle

Pose

Pose-

graph

Stereo-

Camera

Visual 

Odometry

Selector

Module

Figure 4. Pose-graph based sensor fusion framework for vehicle positioning and mapping.

Left Image Right Image

Previous 

Stereo image

Current 

Stereo image

Figure 5. Circle feature matching process. The green boxes represent the matched feature point and the
blue boxes represent the search space. The red arrows represent the sequence of the matching process.
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5.2. Odometry Source Selector

The stereo-visual odometry estimates the motion of the camera/vehicle by matching
static feature points in consecutive frames. In ideal scenarios, it drifts less and is more
accurate than odometry derived using automotive-grade IMUs and odometers. However,
in heavy traffic scenarios, when the camera’s field of view (FOV) is occluded by large
moving objects like trucks or large vehicles, its performance degrades. If most of the
feature points that are matched are on a moving truck, it estimates the motion of the vehicle
relative to the truck. Applying RANSAC is not enough to estimate the exact motion from
such biased data. We use the in-vehicle velocity and yaw-rate sensor data to validate the
motion estimates from the SVO to tackle this issue. Here we assume that the velocity and
the yaw-rate sensor have a small number of outliers compared to SVO. The transformation
estimate between the two consecutive stereo frames is compared with the transformation
estimated by integrating the velocity and yaw-rate measurements for the period. If SVO
and vehicle odometry is similar, SVO is assumed to be more accurate and is therefore
preferred; otherwise, the velocity and yaw-rate sensor measurements are used.

5.3. Edge Generator

The inputs to the front-end pose-graph generator block are velocity and yaw-rate
measurements of the vehicle and its GNSS receiver measurements. It models these measure-
ments into nodes and edges of a pose-graph. The pseudocode of the pose-graph generation
process for the graph modeling approach G2 is given in Algorithm 1. The odometry nodes
are generated using the yaw-rate and velocity measurements from the Odometry source
selector block. We preintegrate the yaw-rate and velocity measurements [41] to compute
the change in heading and the distance traveled by the vehicle. The nodes containing the
vehicle’s pose are generated when there is a change in heading of more than 5 deg (∆athr),
or the vehicle has traveled at-least 1.5 m (∆dthr) or when a GNSS measurement is received.
The edge between the two consecutive odometry nodes is estimated by computing the
transformation matrix between the two poses. The GNSS nodes are generated for each
GNSS fix from the GNSS receiver, operating at 1Hz. The GNSS edge represents the mea-
surement between the origin node (UTM tile origin) and the GNSS receiver antenna. The
identity measurement or edge is generated between the GNSS node and the corresponding
odometry node.

5.4. Information Matrix Determination

The GNSS receiver estimates the expected accuracy of its fix for latitude, longitude,
and altitude at the 95% confidence bound. These expected accuracies are provided in
meters and denoted with epx, epy, epv. These uncertainty values are computed from GNSS
reading Dilution of Precision (DOP). The information matrix values for the UTM-X and
UTM-Y coordinate measurements for each GNSS edge is computed as (epx/2)−2 and
(epy/2)−2, respectively, where we assume that there is no correlation in both directions.

The information matrix for all odometry edges is computed as the inverse of the
covariance matrix of each odometry measurement. The covariance matrix is derived from
the average 1.1% drift of the total distance traveled. We assume that when the velocity is
zero, the vehicle cannot move or rotate from its position. In this case, we give the odometry
a high certainty (1e5 for the corresponding elements in the information matrix) for the
corresponding edges. This prevents the vehicle from having abnormal movements after
pose-graph optimization. For example, the vehicle will not show any lateral displacement
with zero longitudinal displacements.

5.5. Adaptive GNSS Outlier Rejection

So far, we have assumed that the GNSS receiver provides a good estimate for its
uncertainty using the epx, epy, epv values. However, this holds true when there is sufficient
satellite visibility. The accuracy of GNSS receiver is severely degraded when trees and
buildings block the line-of-sight to satellites or multi-path error is induced due to signal
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reflection. The epx, epy, epv values do not necessarily reflect this. Ignoring this will
severely degrade the performance of the fusion framework. We call these erroneous
GNSS measurements with overconfident epx, epy, epv values outliers, and we propose an
approach to detect and ignore them before fusing. This approach is based on the fact that
GNSS readings have low short-term accuracy, but the yaw-rate and velocity sensors in the
vehicle have very high short-term accuracy. Thus the vehicle odometry can be used as an
observer to detect GNSS outliers. We do this by computing relative measurements from
the absolute GNSS readings for each second and compute the difference with respect to
the relative measurements of the vehicle odometry for the same time span. If the error of
change in heading and displacement is below 1.5 deg (∆ghthr) and 3 m (∆gtthr), respectively,
the GNSS reading is incorporated in the pose-graph. We have tuned these thresholds for
high precision, i.e., we try to make sure that all outliers are rejected at the expense of also
rejecting good some measurements.

Algorithm 1: Pose-graph generation
Data: v:Velocity measurement (m/s)

α: Yaw-rate measurement (deg/s)
∆dthr: Distance threshold for node generation (m)
∆athr: Heading threshold for node generation (deg)
G: GNSS reading (Time-position-velocity report)
∆gtthr: GNSS translation outlier threshold (m)
∆ghthr: GNSS heading outlier threshold (deg)

Result: Pose-graph
1 Initialize Front-end;
2 while NEW v and α do
3 COMPUTE the transformation using v and α ;
4 if Displacement ≥ ∆dthr OR Heading change ≥ ∆athr then
5 COMPUTE vehicle pose;
6 COMPUTE information matrix Ω for the measurement from last to present

vehicle pose;
7 GENERATE Vehicle node;
8 GENERATE edge for the measurement;

9 while NEW G do
10 COMPUTE vehicle pose;
11 COMPUTE information matrix Ω for the measurement from last to present

vehicle pose;
12 GENERATE Vehicle node;
13 GENERATE edge for the measurement;
14 COMPUTE transformation from last GNSS fix to current;
15 COMPUTE transformation from the corresponding vehicle pose to current

vehicle pose;
16 COMPUTE difference in translation and heading;
17 if Difference in translation ≤ ∆gtthr OR Difference in heading ≤ ∆ghthr then
18 COMPUTE information matrix Ω for GNSS measurement;
19 GENERATE GNSS node;
20 GENERATE edge for the GNSS measurement;
21 GENERATE identity edge between the GNSS node and the corresponding

vehicle node;
22 else
23 DISCARD GNSS measurement;
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6. Pose Graph Optimization

The pose-graph generated in the front-end pose-graph generator is optimized in the
back-end pose-graph optimizer to estimate the accurate pose of the vehicle. Typically
the most accurate results are obtained when all sensor measurements from the beginning
to the end of a session are modeled into a pose-graph and then optimized. However, it
cannot be used for real-time vehicle positioning, as the size of the pose-graph increases
indefinitely with time. At best, the optimization time and memory requirement increases
linearly with the size of the pose-graph with the use of sparse solvers [12]. This increase in
size also increases the computational cost and, in turn, prevents meeting real-time system
constraints. To achieve real-time performance, pose-graphs are often optimized using
sliding-window pose-graph optimization strategies. Merfels et al. [21] marginalize the
information of the last pose-graph window into a prior of the initial node for the next
pose-graph window. Similar results can be achieved by using a portion of the optimized
pose graph from the last window to generate a new pose-graph window, as is done
in our approach. The overall goal of window-based optimization is to best as possible
approximate global optimization and to obtain close-to similar results. In this section,
we describe our local optimization approach, incremental hopping window pose-graph
optimization, in detail. The pseudocode is given in Algorithm 2.

6.1. Window Manager

The main purpose of this block is to maintain the size of the optimization window.
It limits the size of the optimization window to achieve real-time performance. It also
maintains the list of the optimized vertices that are used from the last optimized window
to generate the new one. Figure 6 provides an explanation of how pose-graph optimization
windows are created. Let w meters be the distance traveled for which a new window
is generated, and l meters be the length of the last optimized pose-graph that is kept
to generate the new window. When the distance traveled by the vehicle in the present
window is greater than w (only considering new measurements), it copies the nodes of the
pose graph from the last l meters of the optimized window to a new optimization window.
All new odometry and GNSS nodes and their edges are added to this new window. The
first node of a window is always kept fixed, i.e., it is not optimized for.

Distance travelled

O
p

ti
m

iz
at

io
n

 w
in

d
o

w
s

w 2w 3w 4w

l

l

l

1

2

4

3

5

l

Figure 6. The red arrows represent a window; a new window is generated at every multiple of w
meters traveled by the vehicle, with all the nodes contained in the last l meters of the last optimized
window, which creates a hopping effect [30].

6.2. Batch Manager

The batch manager block incrementally optimizes the pose-graph for a given batch
size b meters in the optimization window. Figure 7 provides an explanation of incremental
pose-graph optimization, which is an extension of the work by Kümmerle et al. [12]. As
the vehicle moves, edges received from the pose-graph reader are added to the optimizer.
For every b meters traveled by the vehicle, the pose graph is optimized using one Gauss–
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Newton iteration. For a given window size, the number of optimization cycles decreases
with an increase in batch size. The incremental optimization prevents the errors induced
by the integration of vehicle odometry from growing out of proportion. It increases the
optimizer’s stability while providing real-time optimized vehicle poses.

b

2b

3b

4b

l w

Figure 7. The red arrow represents a pose-graph window; the window size increases with every new
measurement and is optimized after the vehicle travels every b meters [30].

Algorithm 2: Incremental Hopping Window [30]
Data: Z(i, j, Ω): Edge from Pose-Graph (SE(2))

w : Window size in meters
b : Batch size in meters
l : Distance to store nodes from last window
s : Set of Edges stored from last window
D : Total distance traveled in window
n : Counter for batch number

Result: Optimized pose-graph
1 Initialize Optimizer;
2 Create first window;
3 n = 1;
4 while NEW Z(i, j, Ω) do
5 COMPUTE D from Z(i, j, Ω);
6 if D ≤ w then
7 ADD Z(i, j, Ω) to optimizer;
8 ADD Z(i, j, Ω) in s;
9 while Distance in s > l do

10 Delete First Z(i, j, Ω) in s;

11 if D ≥ n ∗ b then
12 Optimize Graph for one Gauss-Newton iteration;
13 n = n + 1;

14 else
15 Create new Window;
16 Reinitialize optimizer with edges and optimized vertices in s;
17 n = 1;

7. Experiments and Results

We analyze the performance of the pose-graph based vehicle positioning and map-
ping framework on eight datasets covering more than 180 km of driving distance. The
datasets are recorded with our test vehicle in driving sessions of 30 to 50 min in different
environments like urban canyons, highways, and rural areas around the Eindhoven region
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in the Netherlands. The trajectories of all datasets are shown in Figure 8. We perform the
following experiments for detailed analysis:

1. GNSS data analysis: Evaluation of the quality of GNSS readings from the receiver
with respect to the RTK-GNSS. This sets the baseline for our other experiments.

2. Graph modeling: We compare and discuss the performance of the three graph mod-
eling approaches provided in Section 4.

3. Incremental hopping window performance analysis: We analyze the performance
of the incremental hopping window approach described in Section 6 in terms of
positioning accuracy and robustness for different window sizes, batch sizes, and
processing time.

4. Performance analysis of the proposed framework: We analyze the performance of
the incremental hopping window approach using multiple odometry sources and a
GNSS receiver.

Figure 8. Overview of our eight datasets recorded around Eindhoven, The Netherlands. Each dataset
is depicted in a different color [29].

7.1. Vehicle Setup

Our experimental vehicle is equipped with a stereo camera, a U-Blox GNSS receiver
with PPP, an RTK-GNSS system, and a CAN interface to access the vehicle ECU messages.
The stereo camera has a baseline of 30 cm composed of two PointGrey Firefly cameras. It
captures images of 640 × 480 resolution at 60 Hz. The RTK-GNSS is the industry standard
for accurate GNSS-based positioning and is postprocessed to obtain an accuracy of up
to 0.01 m. The yaw-rate in rad/s and velocity in m/s is received at 25 Hz through the
CAN interface from the vehicle ECU, and the U-Blox GNSS receiver operates at 1 Hz. The
Pulse-per-second (PPS) from the GNSS receiver is used to synchronize the clock of the
computer in the vehicle.

7.2. Performance Metrics

To evaluate the performance of our sensor fusion algorithm, we compare the results
with the post-processed RTK-GNSS using the metrics described below. For both the GNSS
readings and the fusion results, we compute these metrics for the poses corresponding to
the PPS, which we call PPS-Poses.

1. Maximum offset error (Max.) in meters, which is the maximum offset Euclidean
distance error over all PPS-Poses of each dataset computed with respect to the corre-
sponding RTK-GNSS position. It gives an indication of the magnitude of the outliers
in a dataset. It is computed as
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Max. = max
1≤i≤n

√
(X̄i − X̂i)2 + (Ȳi − Ŷi)2 , (3)

where n is the total number of poses in a dataset, X̄, Ȳ and X̂, Ŷ are the corresponding
coordinate values of the positioning system GNSS or GNSS-Odometry fusion, and of
the RTK-GNSS points respectively.

2. (Acc.) in meters, represents the structural offset between the RTK-GNSS and the
positioning system under consideration. It is the Euclidean distance of the point
computed from the average offset error in UTM-X and UTM-Y axes of the UTM
coordinate system for each dataset. It is computed as

Acc. =
√

µ2
X + µ2

Y , (4)

where µX and µY are the mean offset in the considered positioning system, computed as

µX =
1
n

n

∑
i=1

X̄i − X̂i (5)

µY =
1
n

n

∑
i=1

Ȳi − Ŷi. (6)

3. Precision (Prec.) in meters, which is the standard deviation of the distance of each
point from the computed mean offset error for UTM-X and UTM-Y axes for each
dataset. It represents the variation or dispersion of the readings for the considered
positioning system from its mean for each dataset. It is computed as

Prec. =

√
1

n− 1

n

∑
i=1

D2
i , (7)

where Di is the distance of each point from the mean off-set, i.e.,

Di =
√
(X̄i − µX)2 + (Ȳi − µY)2. (8)

For these metrics, we also report the averages over all dataset and the relative per-
centage improvements of the pose-graph fusion with respect to the GNSS. As the relative
information contained in the (visual) odometry cannot contribute to the absolute position in-
formation, we expect that our sensor fusion cannot improve accuracy (which measures the
absolute position) but that it can improve on the maximum offset error and the precision.

7.3. Results

First, we analyze the GNSS receiver’s performance on the dataset against the RTK-
GNSS receiver measurements in Section 7.3.1. It is considered the baseline for which
the improvements in the performance metrics of the proposed framework is estimated.
Secondly, we compare the performance of the three graph modeling approaches to our
dataset and select the best performing in Section 7.3.2. Then, the incremental hopping
window optimization performance on the selected pose-graph model is evaluated to
estimate the correct batch size and optimization window size for real-time application
in Section 7.3.3. Finally, in Section 7.3.4, we analyze the performance of the proposed
framework with (i) vehicle odometry and GNSS fusion and (ii) SVO, vehicle odometry, and
GNSS fusion, using the selected pose-graph model, the batch size, and the optimization
window size.

7.3.1. GNSS Data Analysis

First, we evaluate the quality of the GNSS data from the receiver with respect to
the RTK-GNSS for all datasets. The performance metrics for the GNSS readings and the
characteristic of the environment in which the majority of the datasets are recorded are
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shown in Table 1. The GNSS receiver performs well in a highway and rural environments.
We can see that the precision for different datasets has an order of magnitude of a couple of
meters, as expected. At the same time, we can see the maximum offset error varies a lot.
This is because the GNSS signals suffered from reflection and occlusion in urban canyon
areas and underpass. The accuracy of all the datasets is never close to zero due to a bias
in the GNSS readings. This bias is clearly visible in the error’s scatter plots depicted in
Figure 9. It is evident that over time spans that are relevant for automotive, that is, minutes
to hours, the GNSS error distribution does not exhibit zero-mean behavior and that GNSS
errors are highly correlated in time [29]. The existence of this bias is exactly the reason why
RTK-GNSS base-stations need at-least 24 h or more averaging time to achieve a positioning
accuracy of 2 cm. Fusing odometry measurements with GNSS readings can improve the
precision of the positioning system.However, it cannot remove this bias, and therefore it
cannot improve accuracy, as the vehicle odometry only provides information about the
relative motions [42].
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Figure 9. (a–h) shows the GNNS position errors with respect to the postprocessed RTK-GNSS ground
truth for the eight datasets. The plots with a tile size of 2 × 2 m, clearly show that GNSS errors are
biased and correlated, causing nonzero mean behavior for time spans up to 65 min [29].

Table 1. Performance metrics of GNSS receiver.

Dataset Max. Acc. Prec. Environment

1 66.29 0.489 2.65 Highway, Underpass
2 21.80 0.87 2.49 Urban canyon, Rural
3 49.07 0.72 2.29 Highway, Underpass
4 4.83 1.09 1.03 Rural, Urban
5 16.78 0.68 1.14 Urban canyon, Rural
6 3.67 0.34 0.95 Highway, Rural
7 7.76 0.78 1.18 Urban, Highway
8 18.04 0.81 1.26 Urban

Average 23.53 0.72 1.63
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Table 2. Performance metrics table for Graph model G1, G2, and G3.

Dataset Maximum Offset Error Accuracy Precision

G1 G2 G3 G1 G2 G3 G1 G2 G3

1 9.57 6.28 10.62 0.45 0.46 0.44 1.03 0.96 1.04
2 20.84 14.17 20.08 0.88 0.79 0.86 2.55 2.34 2.38
3 28.51 14.02 27.15 0.71 0.73 0.71 2.01 1.68 1.98
4 16.24 4.85 5.41 1.14 1.09 1.10 1.69 1.13 1.05
5 32.26 4.27 6.84 0.70 0.65 0.66 2.13 1.01 0.99
6 15.50 3.12 3.05 0.31 0.32 0.34 1.17 0.93 0.93
7 6.17 5.30 15.19 0.78 0.80 0.76 1.22 1.30 1.36
8 18.05 5.37 6.76 0.82 0.80 0.80 2.15 1.35 1.28

Average 18.39 7.17 11.89 0.72 0.71 0.71 1.74 1.34 1.38
Improvement w.r.t.

GNSS (%) 21.84 69.53 49.47 0.00 1.39 1.39 −6.75 17.79 15.34

7.3.2. Graph Modeling

The performance metrics of the modeling approaches G1, G2, and G3 are shown in
Table 2. For the first graph modeling approach G1, the average maximum offset error
decreased by 21.84%, but the average precision increased by 6.75%, which is unwanted.
The average accuracy remained the same as the average GNSS accuracy, as expected. It is
observed that out of the eight experiments, only three converged for the approach G1. We
believe this convergence issue is caused by too rigid modeling of the pose-graph, which
hampers convergence when the vehicle poses, initialized from the odometry, are far off
from the GNSS readings.

The pose-graph modeling approach G2 performed much better than G1. The opti-
mization converged for all eight experiments. Table 2 shows the performance metrics for
this approach. The average maximum offset error and precision decreased by 69.53% and
17.79%, respectively. It performed well in both highways and urban-area scenarios. The
improvement with respect to the first model G1 is due to the fact that model G2 has more
flexibility, as the GNSS positions are also optimized. It improves convergence for scenarios
with a challenging initialization when there is a large deviation of the odometry heading to
the GNSS heading.

The pose-graph modeling approach G3 performed well, but the performance was less
than G2. Table 2 shows the performance metrics of this approach. The average maximum
offset error and precision decreased by 49.47% and 15.34%, respectively. Like G1 and G2,
there is no significant change in the average accuracy, as expected.

7.3.3. Incremental Hopping Window Analysis

In the previous experiments, we have optimized the entire pose-graph offline, where
the modeling approach G2 performed best. In this section, we study the performance
achieved when optimizing the pose-graph structure G2 online with the incremental hop-
ping window optimization strategy. It provides valuable insight into the reliability and
real-time applicability of the localization system. We also study the impact of different
window sizes w and batch sizes b on the performance metrics. The incremental hopping
window optimization strategy is evaluated on eight datasets with five different window
sizes (500, 1000, 1500, 2000, and 2500 m). For each window size, we perform optimization
for 16 different batch sizes (5, 10, 20, 25, 40, 50, 66, 100, 111, 125, 142, 166, 200, 250, 333,
and 500 m). The proposed strategy runs on a single CPU core of a multicore Intel CPU
running at 2.3 GHz. Table 3 shows the average of the performance metrics of all datasets
for a window size of 1000 m and a batch size of 5 m. As expected, both precision and the
maximum error are improved significantly with respect to GNSS, but the accuracy is not
improved due to the bias in GNSS errors.

Figure 10a shows the influence of the batch size on the average precision over all
datasets. The incremental hopping window strategy provides the best results when opti-
mizing with a batch size of 5 m for different window sizes. It performs in total 200 Gauss-
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Newton iterations for each window of size 1000 m. The precision is similar for batch sizes
between 5 and 66 m but degrades for larger batch sizes. This shows that the precision of the
system is highly dependent on the batch size rather than the window size. It is observed
that the difference in precision between incremental hopping window optimization and
global optimization is only 1 centimeter, which is in range of the accuracy of the ground
truth. Therefore, in our experiments, both global optimization using all measurements
and local optimization using the proposed framework achieve similar accuracy, as desired.
Figure 10b shows the batch size versus total computation time considering all datasets. The
computation time increases with decreasing batch sizes, and it follows a similar pattern
for different window sizes. This is because the total number of Gauss–Newton iterations
increases with decreasing batch size.

Figure 11 provides the computation times and update rates for different batch sizes to
demonstrate the real-time capability of the hopping-window optimization strategy. Here
we can see that the computation time increases linearly with increase in batch size. Keeping
in mind that the vehicle odometry is provided at 25 Hertz, it can be seen that practically all
batch sizes meet this real-time constraint of 25 Hertz. An optimization window of 1500 m
and a batch size of 40 m provide a good trade-off between precision and computation time.
This configuration is marked with the black dot in Figure 10.
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Figure 10. (a) Batch size vs. average precision plot for different window sizes (500, 1000, 1500, 2000,
2500 in meters) of all datasets [30]. (b) Batch size vs. total time plot for different window sizes. The
configuration with a window of 1500 m and a batch size of 40 m is marked with a black dot [30].



Sensors 2021, 21, 2815 18 of 23

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500

T
im

e 
(s

)

Batch Size (m)

Batch Size vs Time

Average Time

(a)

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

U
p

d
at

e 
F

re
q

u
en

cy
 (

H
z)

Batch Size (m)

Batch Size vs Frequency

Average Frequency

(b)

Figure 11. (a,b) shows the average computation time and the update frequency for one optimization
iteration for different batch sizes, respectively [30].

Table 3. Performance metric table for Window size 1000 m and Batch size 5 m.

Dataset Max. Acc. Prec.

1 6.68 0.44 0.99
2 18.61 0.85 2.37
3 24.36 0.71 1.91
4 5.04 1.10 1.07
5 4.23 0.65 1.03
6 2.93 0.33 0.94
7 4.96 0.79 1.23
8 7.49 0.81 1.28

Average 9.29 0.71 1.35
Improvement w.r.t. GNSS % 60.53 1.43 16.81

7.3.4. Performance Analysis of the Proposed Framework

The previous experiments show that the graph model G2 performs best in our large
dataset. The Incremental hopping window pose-graph optimization with a batch size
of 40 m and a window size of 1500 m provides a balanced configuration for real-time
application. We choose these settings to analyze the performance of the proposed posi-
tioning and mapping framework with (i) vehicle odometry and GNSS fusion and (ii) SVO,
vehicle odometry, and GNSS fusion. The performance metrics of the proposed framework
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are shown in Table 4. GO1 represents offline global optimization, and LO1 represents
incremental hopping window optimization both using vehicle odometry and GNSS data
as input. GO2 represents offline global optimization, and LO2 represents incremental
hopping window optimization both using SVO, vehicle odometry, and GNSS data as input.
We can see that GO1 and LO1 show significant improvement over GNSS data, with GO1
performing marginally better than LO1. GO1 shows a 69.53% improvement in maximum
offset error and 17.79% improvement in the error’s standard deviation when compared
with automotive-grade GNSS receivers. In comparison, LO1 shows a 60.52% improve-
ment in maximum offset error and 17.18% improvement in the error’s standard deviation.
It shows that the incremental hopping window optimization with a batch size of 40 m
and a window size of 1500 m performs similarly with respect to global optimization of
the pose-graph.

Then we perform experiments to fuse SVO, vehicle odometry, and GNSS data. We
see similar trends to the last experiments where both GO2 and LO2 showed significant
improvement over GNSS data, with GO2 performing marginally better than LO2. GO2
shows a 65.49% improvement in maximum offset error and 20.86% improvement in the er-
ror’s standard deviation when compared with automotive-grade GNSS receivers. Whereas
LO2 shows a 65.45% improvement in maximum offset error and 20.25% improvement in
the error’s standard deviation. We also observe that GO2 performed better than GO1 and
LO2 performed better than LO1, which shows that SVO improves the performance of the
positioning system. It also shows that the SVO is more accurate than vehicle odometry, but
vehicle odometry is more robust than SVO. Figur 12 shows some pictures of the results
of all of the fusion approaches projected onto Google maps. Figures 12a,b show that the
GNSS reading represented as a yellow line degraded while the vehicle was traveling under
a bridge. However, all of the fusion approaches handled the situation well and remained
close to the RTK-GNSS reading represented with a red line. Figure 12c shows a similar
situation when the GNSS readings degraded when the vehicle was traveling under trees,
and the fusion algorithms remained close to the RTK-GNSS readings. Figure 12d–f show
the results of the fusion approaches projected onto the Google street view.

Table 4. Performance metrics table for different pose-graph fusion approach: Offline global optimization with vehicle
odometry, and GNSS data (GO1), incremental hopping window optimization with vehicle odometry and GNSS data (LO1),
Offline global optimization with stereo visual odometry, vehicle odometry and GNSS data (GO2), incremental hopping
window optimization with stereo visual odometry, vehicle odometry and GNSS data (LO2).

Dataset Maximum Offset Error Accuracy Precision

GO1 LO1 GO2 LO2 GO1 LO1 GO2 LO2 GO1 LO1 GO2 LO2

1 6.28 6.68 5.99 5.99 0.46 0.45 0.45 0.45 0.96 1.00 0.93 0.93
2 14.17 18.61 16.61 16.54 0.79 0.85 0.84 0.85 2.34 2.37 2.31 2.32
3 14.01 24.36 17.87 17.99 0.73 0.71 0.67 0.67 1.68 1.91 1.73 1.76
4 4.85 5.04 4.72 4.73 1.09 1.10 1.09 1.09 1.13 1.07 1.06 1.05
5 4.27 4.23 3.99 4.00 0.65 0.65 0.65 0.65 1.01 1.03 0.97 0.96
6 3.12 2.93 2.94 2.96 0.32 0.33 0.33 0.33 0.93 0.94 0.95 0.95
7 5.30 4.96 4.53 4.52 0.80 0.79 0.77 0.77 1.29 1.23 1.17 1.17
8 5.37 7.49 8.29 8.28 0.80 0.81 0.81 0.80 1.35 1.28 1.24 1.24

Average 7.17 9.29 8.12 8.13 0.71 0.71 0.70 0.70 1.34 1.35 1.29 1.30
Improvement w.r.t. GNSS % 69.53 60.52 65.49 65.45 1.39 1.39 2.78 2.78 17.79 17.18 20.86 20.25
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(a) (b)

(c) (d)
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Figure 12. (a–c) shows the fusion results projected onto the Google map. (d–f) shows the fusion results projected on to the
Google street view. Where, RTK GNSS (red), GNSS (yellow), Offline Global optimization of vehicle odometry and GNSS
(GO1) in blue, incremental hopping window optimization of vehicle odometry and GNSS (LO1) in green, Offline Global
optimization of SVO, vehicle odometry and GNSS (GO2) in orange, incremental hopping window optimization of SVO,
vehicle odometry and GNSS (LO2) in pink.

8. Conclusions

We have proposed and evaluated a pose-graph based real-time multi-sensor fusion
framework for vehicle positioning and mapping using a stereo camera, vehicle’s yaw-rate,
velocity sensor, and a GNSS receiver. The framework is extensively evaluated on a dataset
with 180 km of vehicle trajectories recorded in highway, urban, and rural areas. It is shown
that the graph model in which the GNSS readings are modeled as optimizable nodes (ap-
proach G3), achieves the best results in our experiments, as it allows for more flexibility and
thereby improves convergences. The precision of incremental hopping window optimiza-
tion is shown to be very similar to that of global optimization. The difference is only 1%,
which indicates that the most valuable information for sensor fusion for vehicle positioning
is contained in sensor readings of the last 500 m of the vehicle trajectory. It is shown that
performing frequent iterations for incremental hopping window strategy by using a small
batch size improves the precision with an increase in the optimization time. A window size
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of 1500 m and a batch size of 40 meters produced a balanced result, in terms of computation
time and positioning precision. We have analyzed the framework’s performance with
(i) vehicle odometry and GNSS fusion, and (ii) stereo visual odometry, vehicle odometry,
and GNSS fusion. The results show that the pose-graph approach, which models stereo
visual odometry (SVO), vehicle odometry, and GNSS data, and which is optimized offline
(approach GO2), performs overall best in our dataset. It showed a 20.86% improvement in
precision when compared to a GNSS receiver, whereas the accuracy remains the same. This
is expected as the accuracy of the positioning system is bounded by the accuracy of the
GNSS receiver. We can conclude that the stereo visual odometry improves the precision
of the positioning system when compared to vehicle odometry and GNSS fusion, and the
incremental hopping window pose-graph optimization (approach LO1 and LO2) performs
similar to offline global optimization (approach GO1 and GO2) in our dataset.
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10. Kwok, C.; Fox, D.; Meilă, M. Real-time particle filters. In Proceedings of the IEEE; MIT Press: Cambridge, MA, USA, 2004;

pp. 469–484.
11. Falco, G.; Pini, M.; Marucco, G. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban

Scenarios. Sensors 2017, 17, 255. [CrossRef] [PubMed]
12. Kuemmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g2o: A General Framework for Graph Optimization.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011;
pp. 3607–3613. [CrossRef]

13. Dubbelman, G.; Browning, B. COP-SLAM: Closed-Form Online Pose-Chain Optimization for Visual SLAM. IEEE Trans. Robot.
2015, 31, 1194–1213. [CrossRef]

14. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM system. In Proceedings
of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1691–1696.
[CrossRef]

http://doi.org/10.3390/s150408685
http://www.ncbi.nlm.nih.gov/pubmed/25875191
http://dx.doi.org/10.1179/1752270615Y.0000000032
http://dx.doi.org/10.1007/s10291-006-0050-8
http://dx.doi.org/10.1016/j.inffus.2004.07.002
http://dx.doi.org/10.1109/MPRV.2003.1228524
http://dx.doi.org/10.1109/70.760343
http://dx.doi.org/10.1109/78.978396
http://dx.doi.org/10.3390/s17020255
http://www.ncbi.nlm.nih.gov/pubmed/28146058
http://dx.doi.org/10.1109/ICRA.2011.5979949
http://dx.doi.org/10.1109/TRO.2015.2473455
http://dx.doi.org/10.1109/ICRA.2012.6225199


Sensors 2021, 21, 2815 22 of 23

15. Eade, E.; Drummond, T. Monocular SLAM as a Graph of Coalesced Observations. In Proceedings of the 2007 IEEE 11th
International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [CrossRef]

16. Wilbers, D.; Merfels, C.; Stachniss, C. A Comparison of Particle Filter and Graph-Based Optimization for Localization with
Landmarks in Automated Vehicles. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC),
Naples, Italy, 25–27 February 2019; pp. 220–225.

17. McDonald, J.; Kaess, M.; Cadena, C.; Neira, J.; Leonard, J. Real-time 6-DOF multi-session visual SLAM over large-scale
environments. Robot. Auton. Syst. 2013, 61, 1144–1158. [CrossRef]

18. Bender, D.; Schikora, M.; Sturm, J.; Cremers, D. A Graph Based Bundle Adjustment for Ins-camera Calibration. In Proceedings of
the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Rostock, Germany, 4–6
September 2013.

19. Agarwal, S.; Snavely, N.; Seitz, S.M.; Szeliski, R. Bundle Adjustment in the Large. In Computer Vision—ECCV 2010; Daniilidis, K.,
Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 29–42.

20. Strasdat, H.; Montiel, J.M.M.; Davison, A.J. Real-time monocular SLAM: Why filter? In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2657–2664. [CrossRef]

21. Merfels, C.; Stachniss, C. Pose fusion with chain pose graphs for automated driving. In Proceedings of the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3116–3123. [CrossRef]

22. Lim, S.; Lee, T.; Lee, S.; An, S.; Oh, S. Adaptive Sliding Window for hierarchical pose-graph-based SLAM. In Proceedings of the
2012 12th International Conference on Control, Automation and Systems, Jeju, Korea, 17–21 October 2012; pp. 2153–2158.

23. Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J.J.; McDonald, J. Real-time large-scale dense RGB-D SLAM with
volumetric fusion. Int. J. Robot. Res. 2015, 34, 598–626. [CrossRef]

24. Buczko, M.; Willert, V. Flow-Decoupled Normalized Reprojection Error for Visual Odometry. In Proceedings of the 19th IEEE
Intelligent Transportation Systems Conference (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016.

25. Howard, A. Real-time stereo visual odometry for autonomous ground vehicles. In Proceedings of the 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3946–3952.

26. Liu, Y.; Chen, Z.; Zheng, W.; Wang, H.; Liu, J. Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable
Initialization. Sensors 2017, 17, 2613. [CrossRef] [PubMed]

27. Núñez, P.; Vázquez-Martín, R.; Bandera, A. Visual Odometry Based on Structural Matching of Local Invariant Features Using
Stereo Camera Sensor. Sensors 2011, 11, 7262–7284. [CrossRef] [PubMed]

28. Santamaría-Gómez, A.; Bouin, M.N.; Collilieux, X.; Wöppelmann, G. Correlated errors in GPS position time series: Implications
for velocity estimates. J. Geophys. Res. Solid Earth 2011, 116, B01405. [CrossRef]

29. Das, A.; Dubbelman, G. An Experimental Study on Relative and Absolute Pose Graph Fusion for Vehicle Localization. In Pro-
ceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 630–635. [CrossRef]

30. Das, A.; Dubbelman, G. Incremental Hopping-Window Pose-Graph Fusion for Real-Time Vehicle Localization. In Proceedings of
the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–7.
[CrossRef]

31. Hieu, L.N.; Nguyen, V.H. Loosely coupled GPS/INS integration with Kalman filtering for land vehicle applications. In Proceed-
ings of the 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), Saigon, Vietnam, 26–29
November 2012; pp. 90–95.

32. Hirschmuller, H.; Innocent, P.R.; Garibaldi, J.M. Fast, unconstrained camera motion estimation from stereo without tracking and
robust statistics. In Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, ICARCV 2002,
Singapore, 2–5 December 2002; Volume 2, pp. 1099–1104.

33. Agrawal, M.; Konolige, K. Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS. In Pro-
ceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; Volume 3,
pp. 1063–1068. [CrossRef]

34. Rehder, J.; Gupta, K.; Nuske, S.; Singh, S. Global pose estimation with limited GPS and long range visual odometry. In Proceedings
of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 627–633.

35. Chiu, H.; Williams, S.; Dellaert, F.; Samarasekera, S.; Kumar, R. Robust vision-aided navigation using Sliding-Window Factor
graphs. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May
2013; pp. 46–53.

36. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the
Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

37. Indelman, V.; Williams, S.; Kaess, M.; Dellaert, F. Factor graph based incremental smoothing in inertial navigation systems.
In Proceedings of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 2154–2161.

38. Cucci, D.A.; Matteucci, M. A Flexible Framework for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration. In Pro-
ceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, Reykjavík, Iceland, 29–31 July
2013; Volume 1, pp. 361–368. [CrossRef]

39. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives.
Comput. J. 1964, 7, 155–162. [CrossRef]

http://dx.doi.org/10.1109/ICCV.2007.4409098
http://dx.doi.org/10.1016/j.robot.2012.08.008
http://dx.doi.org/10.1109/ROBOT.2010.5509636
http://dx.doi.org/10.1109/IROS.2016.7759482
http://dx.doi.org/10.1177/0278364914551008
http://dx.doi.org/10.3390/s17112613
http://www.ncbi.nlm.nih.gov/pubmed/29135966
http://dx.doi.org/10.3390/s110707262
http://www.ncbi.nlm.nih.gov/pubmed/22164016
http://dx.doi.org/10.1029/2010JB007701
http://dx.doi.org/10.1109/IVS.2018.8500512
http://dx.doi.org/10.1109/VTCSpring.2019.8746464
http://dx.doi.org/10.1109/ICPR.2006.962
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.5220/0004484703610368
http://dx.doi.org/10.1093/comjnl/7.2.155


Sensors 2021, 21, 2815 23 of 23

40. Geiger, A.; Ziegler, J.; Stiller, C. StereoScan: Dense 3D Reconstruction in Real-time. In Proceedings of the 2011 IEEE Intelligent
Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011.

41. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. IMU preintegration on manifold for efficient visual-inertial maximum-a-
posteriori estimation. In Robotics: Science and Systems; SAGE: Newbury Park, CA, USA, 2015.

42. Kaplan, E.D. Understanding GPS: Principles and Applications, 2nd ed.; Artech House: Boston, MA, USA, 2006.


	Introduction
	Related Work
	Pose Graph
	Pose Graph Structure
	Modeling Approach G1
	Modeling Approach G2
	Modeling Approach G3

	Pose Graph Generation
	Visual Odometry
	Odometry Source Selector
	Edge Generator
	Information Matrix Determination
	Adaptive GNSS Outlier Rejection

	Pose Graph Optimization
	Window Manager
	Batch Manager

	Experiments and Results
	Vehicle Setup
	Performance Metrics
	Results
	GNSS Data Analysis
	Graph Modeling
	Incremental Hopping Window Analysis
	Performance Analysis of the Proposed Framework


	Conclusions
	References

