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Abstract: The segmentation of power lines (PLs) from aerial images is a crucial task for the safe
navigation of unmanned aerial vehicles (UAVs) operating at low altitudes. Despite the advances in
deep learning-based approaches for PL segmentation, these models are still vulnerable to the class
imbalance present in the data. The PLs occupy only a minimal portion (1–5%) of the aerial images as
compared to the background region (95–99%). Generally, this class imbalance problem is addressed
via the use of PL-specific detectors in conjunction with the popular class balanced cross entropy
(BBCE) loss function. However, these PL-specific detectors do not work outside their application
areas and a BBCE loss requires hyperparameter tuning for class-wise weights, which is not trivial.
Moreover, the BBCE loss results in low dice scores and precision values and thus, fails to achieve an
optimal trade-off between dice scores, model accuracy, and precision–recall values. In this work, we
propose a generalized focal loss function based on the Matthews correlation coefficient (MCC) or the
Phi coefficient to address the class imbalance problem in PL segmentation while utilizing a generic
deep segmentation architecture. We evaluate our loss function by improving the vanilla U-Net model
with an additional convolutional auxiliary classifier head (ACU-Net) for better learning and faster
model convergence. The evaluation of two PL datasets, namely the Mendeley Power Line Dataset
and the Power Line Dataset of Urban Scenes (PLDU), where PLs occupy around 1% and 2% of the
aerial images area, respectively, reveal that our proposed loss function outperforms the popular
BBCE loss by 16% in PL dice scores on both the datasets, 19% in precision and false detection rate
(FDR) values for the Mendeley PL dataset and 15% in precision and FDR values for the PLDU with a
minor degradation in the accuracy and recall values. Moreover, our proposed ACU-Net outperforms
the baseline vanilla U-Net for the characteristic evaluation parameters in the range of 1–10% for both
the PL datasets. Thus, our proposed loss function with ACU-Net achieves an optimal trade-off for the
characteristic evaluation parameters without any bells and whistles. Our code is available at Github.

Keywords: power lines; semantic segmentation; Matthews correlation coefficient; loss function;
data imbalance

1. Introduction

Unmanned aerial vehicles (UAVs) with vision systems are usually employed for the
automated inspection and maintenance of electrical power lines from aerial images. As
compared to the manual inspection approaches, automated inspection and maintenance is
more efficient because it is effortless, transient, easily accessible in remote areas and yields
consistent inspection results [1,2]. At the heart of such UAV-based inspection systems lie
the power line (PL) detection modules, which detect and localize the power lines from
aerial images effectively so that the UAVs can safely navigate around them during the
automated inspection and maintenance operations.
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PLs are regarded as one of the most dangerous obstacles for UAVs due to their weak
visual appearances and pervasive existence [3]. Hence, PL detection is an extremely
challenging task because the morphologically thin and long PLs only occupy a minimal
portion of the overall aerial image and are therefore difficult to recognize with high accuracy.
Moreover, various lighting conditions (foggy, bright, etc.) and cluttered backgrounds
(leaves, branches and tiles) further add to the difficulty of the detection task at hand [1,4,5].

The recent deep learning-based semantic segmentation networks have been applied
successfully to the PL detection task to detect the PLs at the pixel level [4,6–8]. These
networks frame PL detection as a binary classification problem with the goal of effectively
classifying the PL pixels against the background pixels. However, such networks are
susceptible to the class imbalance problem because PLs are thin, slender and less compact
in nature as compared to the overwhelmingly larger and compact background. PLs only
account for 1–5% of the total image pixels while the rest of the pixels (95–99%) correspond
to the background pixels. This class imbalance introduces a high bias towards the majority
class (background in this case), making it difficult for the deep networks to classify the
foreground class of interest, also known as the minority class (PL in this case) accurately [9].
Studies confirm that class imbalance is significantly detrimental to the performance of deep
classifiers as it not only affects the model convergence during training but also the model’s
generalization capability during testing [9,10].

Amongst the available methods to tackle the class imbalance problem in deep seg-
mentation networks, algorithm-level methods, particularly the novel loss functions, are
most commonly used because they do not affect the training times by altering the data
distributions and require little to no tuning. For a detailed survey on the methods to handle
class imbalance in deep learning classifiers, we direct the interested readers to Johnson, J.M.
and Khoshgoftaar, T.M. [11]. The loss functions shift the focus to the minority class, thus,
allowing it to contribute more to the loss in comparison to the major background class.
Despite the fact that class imbalance affects the PL detection task adversely, only a handful
of PL detection works address the class imbalance problem either via the popular variant of
the binary cross entropy (BCE) loss function, namely the balanced BCE (BBCE) loss [4,7,12],
or via a compound loss function [8] or the attention gated networks [13]. However, other
notable studies on PL detection do not consider the prevalent class imbalance problem
and utilize the vanilla BCE loss function for training the deep semantic segmentation
networks [6,14–16]. Moreover, BCE loss and its variants are also the usual choice for loss
function in the PL detection tasks [4,6,7,12,14–16]. Nevertheless, it has been demonstrated
that other kinds of losses can outperform the popular BCE loss for typical classification
tasks [17,18]. Region-based losses such as the Dice loss (DL) [19], Tversky loss (TL) [20] and
their variants [21–23], have outperformed the BBCE loss for handling the class imbalance
issue in medical image segmentation [24] but these losses have not yet been extended to
other semantic segmentation applications. Medical image segmentation is characterized via
small and compact regions of interest (RoIs) and less severe class imbalance as compared
to the thin RoIs and more severe class imbalance in PL detection. Hence, there is a need to
thoroughly investigate the choice of loss function while considering the prevalent issue of
class imbalance in PL detection so that the PLs with thin RoIs can be identified accurately.

In this research, we empirically investigate various loss functions to tackle the class
imbalance and the subsequent thin RoIs identification problem in PL detection. We propose
a novel focal loss function based on the Phi coefficient (also known as Matthews correlation
coefficient, MCC) to optimize the deep segmentation network for PL detection. Our
proposed loss function outperforms the existing baselines on two benchmark PL detection
datasets by achieving an optimal trade-off for the evaluation parameters. We employ
a U-Net [25]-based architecture as the baseline segmentation network for our empirical
investigation due to its ability to handle vanishing gradients effectively and to incorporate
multi-contextual feature information via skip connections.
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Contributions

The major contributions of this research are four-fold, namely:

1. A novel focal Phi loss (FPL) function for highly imbalanced data and thin RoI segmen-
tation, where we modulate the Phi coefficient (also known as MCC) [26] to achieve an
optimal trade-off between the evaluation parameters with minimal hyperparameter
tuning.

2. Validation of the proposed novel FPL function in terms of characteristic evaluation
parameters (accuracy, sensitivity, specificity, false detection rate (FDR), class-wise dice
scores and precision) on two PL detection benchmark datasets with varying levels of
class imbalance.

3. Empirical analysis of the choice of loss function for PL detection and evaluation of the
proposed novel FPL function with state-of-the-art loss functions for handling class
imbalance.

4. A deeply supervised U-Net, named the auxiliary classifier U-Net (ACU-Net), im-
proved with the simple addition of a convolutional auxiliary classifier for faster model
convergence and better feature representations.

The remainder of this paper is organized as follows. Section 2 of this study briefly
discusses various loss functions for handling the class imbalance issue for semantic segmen-
tation tasks in general and for PL detection in particular. Section 3 proposes the novel FPL
function for highly imbalanced PL detection tasks and thin RoI segmentation along with
the auxiliary classifier U-Net (ACU-Net). Section 4 presents the experimental results and
discussions along with a detailed comparative analysis of the proposed FPL function and
ACU-Net with established baselines. Finally, the conclusion and future work is presented
in Section 5.

2. Related Work and Theoretical Foundation

A deep network tends to learn its desired objective, such as pixel classification, via
the minimization of an appropriate loss function during training. The loss function is
a mathematical formulation of the error between the expected results and the results
predicted by the deep network. Several loss functions have been proposed in the literature
to handle the class imbalance problem in deep semantic segmentation networks. These
loss functions can be fairly divided into three categories: namely, the distribution-based
loss functions, the region-based loss functions and the compound loss functions [27].

2.1. Distribution Based Loss Functions

Distribution-based loss functions stem from the distribution of class labels and tend
to minimize the difference between the predicted and actual probabilities of image pixels
during model training [27]. These include the BCE loss function (also known as the log
loss) [28] and its class imbalance variants [29–31]. The BCE loss is defined as:

LBCE(y,ŷ) = −(y log (ŷ) + (1 − y) log (1 − ŷ)) (1)

Here, y and ŷ specify the actual and predicted probabilities, respectively. In the case
of class imbalance, the BCE loss yields sub-optimal results which are biased towards the
majority class because it weighs all pixels equally during the loss calculation. Hence, the
deep network always receives a low loss, because the background pixels are classified
easily, and the network does not learn the actual objective of classifying the minority class
pixels accurately. This class imbalance is alleviated by assigning weights to either only
the foreground class, i.e., the PLs in our study, as in the case of weighted BCE (WBCE)
loss, or to both the classes in BBCE loss [29]. The WBCE and BBCE are presented in
Equations (2) and (3), respectively.

LWBCE(y,ŷ) = −(β ∗ y log (ŷ) + (1 − y) log (1 − ŷ)) (2)
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LBBCE(y,ŷ) = −(β ∗ y log (ŷ) + (1 − β) ∗ (1 − y) log (1 − ŷ)) (3)

The class weights (β and (1 − β)) are inversely proportional to the number of samples
in the class. Another variant of the BCE loss that addresses the class imbalance problem is
the focal loss (FL) [30] defined in Equation (4).

LFOCAL(pt) = − αt (1 − pt) γ log (pt) (4)

Here, pt is the predicted probability, α is the class weighting parameter while γ is the
modulating factor that shifts the model’s focus on learning hard negatives during training
by down weighting the easy (majority class) examples.

To the best of authors’ knowledge, all the studies on PL detection utilize the BCE
loss [6,14–16] and its class imbalance variants [4,7,12] for segmenting the PLs. Although
BCE loss is easier to optimize with lower training times, it might not always be the best
choice for training deep classification networks [17,18]. Moreover, BCE loss treats each pixel
independently and does not consider the pixel level structural information and inter-pixel
relationships [32]. Class imbalance variants of the BCE loss introduce additional weighting
hyperparameters (α, β, γ) which need to be adjusted carefully. Lastly, experiments of the
BBCE loss with benchmark PL detection datasets (Section 4.3.2) reveal that it achieves
high accuracy and recall values but at the cost of dice scores and precision values. Thus,
it fails to achieve an optimal trade-off between the accuracy, dice scores, precision, and
recall values.

2.2. Region Based Loss Functions

Region-based or overlap metric-based loss functions directly measure the degree of
overlap between the predicted and the actual image regions of the foreground class of
interest only. Hence, region-based losses are usually preferred over BCE losses for handling
skewed data because these losses reflect the segmentation quality in a better manner as
compared to the BCE losses [24]. DL [19] based on the Sorenson–Dice index and TL [20]
based on the Tversky index are the most commonly employed region-based losses for the
semantic segmentation of skewed data. DL and TL are defined by Equations (5) and (6),
respectively.

LDICE = 1 − ((2TP + ε)/(2TP + FN + FP + ε)) (5)

LTVERSKY= 1 − ((TP + ε)/(TP + αFN + βFP + ε)) (6)

TP, FN, and FP signify the true positive, false negative and false positive predictions,
respectively, and ε is the smoothing factor to prevent infinite values. α and β are the hyper-
parameters in TL (Equation (6)) which allow the FNs and FPs to be weighted differently as
opposed to DL, which weighs both quantities equally (Equation (5)). TL simplifies to DL
when α = β = 0.5. Although these weights improve the recall rate for skewed datasets, they
require tuning to perform optimally. It should also be noted that none of these losses penal-
ize the misclassifications of the background information, making it difficult to optimize
them for accurate background predictions [26]. Moreover, these loss functions and their
variants [21–23] have so far been applied to medical segmentation tasks only where the
foreground/minority class is characterized by a small but compact RoI as opposed to PL
detection tasks where the RoIs are thin and more widespread. Lastly, the class imbalance
in PL datasets is more severe, i.e., 2:98 for the minority versus majority class, respectively,
as compared to the medical datasets where the class imbalance levels are of the order of
20:80, approximately. Hence, there is a need to investigate the performance of region-based
losses for thin RoIs and extreme class imbalance in PL detection.

2.3. Compound Loss Functions

Compound loss functions combine the distribution and overlap-based loss functions
to tackle the class imbalance in semantic segmentation problems. These loss functions
also introduce additional weighting parameters to weight the constituent losses and thus,
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require tuning to achieve optimal performance. Furthermore, these losses have also been
applied to medical segmentation tasks only [22,33] where the class imbalance levels are
less severe and RoIs are more small and compact than the PL detection tasks. Apart from
the tuning of weights, the learning rates (LRs) are also difficult to configure and optimize
for the compound losses due to the varying nature of the constituent losses. Empirically,
region-based losses require lower LRs in comparison to the distribution-based losses.

As far as PL detection is concerned, the work in [8] utilizes a compound loss based on
BCE loss and the Jaccard loss [34] with a weighting parameter λ to weight the Jaccard loss.
The study, however, lacks a thorough investigation of the proposed compound loss with
other losses.

In summary, PL detection suffers from a severe class imbalance (2:98, approximately)
problem due to thin RoIs, which adversely affects the detection performance. The current
literature on PL detection largely utilizes the distribution-based BCE loss and its variants
for tackling the class imbalance issue without an investigation of alternate loss functions.
Empirical investigation of the popular BBCE loss (Section 4.3.2) for PL detection task
reveals that it fails to achieve an optimal trade-off for the evaluation parameters. Region-
based losses have demonstrated better performances than distribution-based losses for the
medical segmentation tasks with small RoIs and class imbalance levels of (20:80), approxi-
mately. However, these losses have not been investigated for thin RoIs and more severe
class imbalance levels. Moreover, these region-based losses require a careful adjustment
of additional weighting hyperparameters. Hence, there is a need for an appropriate loss
function which can address the severe class imbalance and thin RoIs for PL detection while
achieving an optimal trade-off for the characteristic evaluation parameters along with
minimal optimization effort.

3. Method
3.1. Focal Phi Loss

The Matthews correlation coefficient (MCC) or the Phi coefficient is widely used in
machine learning and bioinformatics for assessing the quality of binary classifications. It
measures the degree of correlation between the actual and the predicted values and returns
a value in the range of (−1, 1), where −1 and 1 indicate a complete disjoint and a perfect
prediction, respectively [35]. The Phi coefficient is defined by Equation (7).

MCC = ((TP × TN) − (FP × FN))/
√

((TP + FP) (TP + FN) (TN + FP) (TN + FN)) (7)

where TP, TN, FP and FN are the true positive, true negative, false positive and false
negative entries of the confusion matrix, respectively. It can be seen from Equation (7) that
MCC considers all the entries of the confusion matrix in its calculation as opposed to the
Dice coefficient and the Tversky index, which do not consider the true negative values
(TN). The MCC loss [26] can be defined in Equation (8) as:

LMCC = (1 −MCC) (8)

Similar to DL and TL, MCC loss has also been applied to medical image segmenta-
tion with small RoIs and less severe class imbalance [26]. An experimental investigation
(Section 4.3.1) of the MCC loss for our PL detection task, with thin RoIs and more severe
class imbalance, reveals that MCC loss outperforms the baseline BBCE loss in dice scores
(DSC) and precision values but results in low sensitivity (recall) and accuracy values. This
suggests that there is a need to further improve the classification of the hard thin RoI sam-
ples against the easy background samples. Hence, to classify the thin RoIs more accurately
while achieving an optimal trade-off for other evaluation parameters, we modulate the
linear nature of LMCC by introducing an exponent γ. In order to differentiate our proposed
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loss function from LMCC, we name it the focal Phi loss (FPL) instead of the focal Matthews
correlation coefficient loss. We define our Focal Phi Loss (FPL) as:

LFPL = (1 −MCC) γ (9)

where γ lies in the range of (0, 3] and

MCC = ((TP × TN) − (FP × FN) + ε)/
√

((TP + FP) (TP + FN) (TN + FP) (TN + FN) + ε) (10)

It should be noted that unlike LMCC, we incorporate numerical stability to the MCC
metric calculation in Equation (10) by introducing a smoothing factor ε to prevent undefined
values. The focal parameter γ in our FPL (Equation (9)) allows the loss to focus more on the
hard classes that are detected with lower probability. The idea of applying a focal exponent
γ to the loss function is inspired from the works [21,30], which facilitates better control
between easy and hard training examples.

As far as skewness is concerned, our LFPL handles it automatically by assigning the
class sample size ratios of

√
B/A and

√
A/B to TN and TP, respectively, during MCC

calculation, where A and B specify the majority and minority classes, respectively [36].
That is if A = TN + FP and B = TP + FN then FP = A− TN and FN = B− TP, so, Equation (10)
becomes:

MCC = (−
√

AB +
√

B/A TN +
√

A/B TP + ε)/
√

((TP + A − TN) (TN + B − TP) + ε) (11)

Hence, there is no need to assign additional weighting parameters for addressing the
class imbalance issue as is the case in distribution-based losses (Equations (2)–(4)).

3.2. Network Architecture

To achieve an optimal trade-off for the characteristic evaluation parameters and to bet-
ter optimize the learning process, we propose an auxiliary classifier U-Net (ACU-Net) as the
baseline segmentation network and optimize it using our proposed FPL (and other suitable
loss functions for experiments in Section 4.3.2) via error backpropagation. Our proposed
architecture is based on the popular vanilla U-Net [25], which is an encoder–decoder-based
deep segmentation network with characteristic skip connections. The encoder comprises
of a down sampling path to extract representative features from the input image using
3 × 3 convolutions and 2 × 2 max pooling operations. On the other hand, the decoder up
samples the features extracted by the encoder with 2 × 2 up sampling convolutions and
3 × 3 convolutions so that the features comprise of meaningful contextual information for
effective pixel classification. Skip connections between various stages of the encoder and
decoder facilitate the fusion of high-resolution encoder features with low resolution de-
coder features for more semantically complete outputs. Our ACU-Net (Figure 1) improves
the vanilla U-Net [25] by incorporating an additional 1 × 1 convolutional head to the
output of the second last decoding stage in the vanilla U-Net. This additional convolutional
head, termed as the auxiliary classifier head, is used to supervise the backbone feature
learning task with a suitable loss function (our proposed FPL or other loss functions as
discussed in Section 4.3.2). The main task of pixel level PL detection is supervised by the
1 × 1 convolutional decode head, at the end of the last decoding stage, similar to the vanilla
U-Net. Same loss functions are employed for both the heads but are effectively weighted.
The sigmoid activation is applied to the outputs of 1 × 1 decode and auxiliary heads inside
the loss function. Hence, the vanilla U-Net acts as the feature learning backbone network
in our architecture. The addition of an auxiliary classifier and loss weighting for multiple
losses is a deep supervision trick [37,38] that helps to optimize the feature learning process
and improve the model performance. The auxiliary classifier head is only utilized during
training and dropped during the inference phase.



Sensors 2021, 21, 2803 7 of 23

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22 
 

 

feature learning process and improve the model performance. The auxiliary classifier 
head is only utilized during training and dropped during the inference phase. 

 
Figure 1. Proposed auxiliary classifier-U (ACU)-Net architecture with additional auxiliary head for better feature learning 
and model convergence. 

4. Experiments 

4.1. Dataset 
We have utilized two benchmark PL datasets in this study, namely the Mendeley PL 

Dataset [39] and the Power Line Dataset of Urban Scenes (PLDU) [40]. These datasets con-
tain the visual light images of electrical power lines captured by a UAV along with their 
corresponding pixel-wise ground truth (GT) annotations. The Mendeley PL dataset is 
composed of 400 images of size 512 × 512, out of which 200 images contain the PLs while 
the remaining 200 images only contain the background class (Bg) with no PLs in them. 
We split this dataset according to the 80:20 train-validation split so that the training da-
taset contains 320 images while the validation dataset contains the remaining 80 images. 
We employ the stratified sampling method to split the dataset into train-validation sets, 
following which, both the training and the validation sets contain half of the images which 
include the PLs while the remaining half are the pure background images. The class im-
balance level (PL:Bg), denoted by rho ρ, for this dataset is 0.073:99.92. The PLDU dataset 
is already split into 453 training and 120 validation images. The images in this dataset are 
either of size 560 × 360 or of size 360 × 560. The class imbalance in the PLDU dataset is 
1.18:98.82. Thus, the class imbalance in the Mendeley PL dataset is more severe than the 
PLDU dataset. The class imbalance levels are calculated on the entire dataset (training + 
validation) according to the formula [11] defined as: 

ρ = maxi(|Ci|)/mini(|Ci|) (12) 

where Ci is a set of examples in class i, and maxi(|Ci|) and mini(|Ci|) return the maximum 
and minimum class size over all i classes, respectively. The details of the PL benchmark 
datasets discussed are summarized in Table 1. 

Table 1. Detailed information of the power line (PL) detection datasets used in this study. 

S.# Dataset Train Val Image Size Annotation 
Type 

Class Imbalance 
Level (ρ) 

1 Mendeley PL Dataset [39] 320 80 512 × 512 Pixel 0.073:99.92 

2 Power line Dataset of Urban 
Scenes (PLDU) [40] 453 120 560 × 360 or 

360 × 560 Pixel 1.18:98.82 
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and model convergence.

4. Experiments
4.1. Dataset

We have utilized two benchmark PL datasets in this study, namely the Mendeley PL
Dataset [39] and the Power Line Dataset of Urban Scenes (PLDU) [40]. These datasets
contain the visual light images of electrical power lines captured by a UAV along with
their corresponding pixel-wise ground truth (GT) annotations. The Mendeley PL dataset
is composed of 400 images of size 512 × 512, out of which 200 images contain the PLs
while the remaining 200 images only contain the background class (Bg) with no PLs in
them. We split this dataset according to the 80:20 train-validation split so that the training
dataset contains 320 images while the validation dataset contains the remaining 80 images.
We employ the stratified sampling method to split the dataset into train-validation sets,
following which, both the training and the validation sets contain half of the images
which include the PLs while the remaining half are the pure background images. The
class imbalance level (PL:Bg), denoted by rho ρ, for this dataset is 0.073:99.92. The PLDU
dataset is already split into 453 training and 120 validation images. The images in this
dataset are either of size 560 × 360 or of size 360 × 560. The class imbalance in the PLDU
dataset is 1.18:98.82. Thus, the class imbalance in the Mendeley PL dataset is more severe
than the PLDU dataset. The class imbalance levels are calculated on the entire dataset
(training + validation) according to the formula [11] defined as:

ρ = maxi(|Ci|)/mini(|Ci|) (12)

where Ci is a set of examples in class i, and maxi(|Ci|) and mini(|Ci|) return the maximum
and minimum class size over all i classes, respectively. The details of the PL benchmark
datasets discussed are summarized in Table 1.

Table 1. Detailed information of the power line (PL) detection datasets used in this study.

S.# Dataset Train Val Image Size Annotation
Type

Class
Imbalance
Level (ρ)

1 Mendeley PL Dataset [39] 320 80 512 × 512 Pixel 0.073:99.92

2 Power line Dataset of
Urban Scenes (PLDU) [40] 453 120 560 × 360 or

360 × 560 Pixel 1.18:98.82
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Some of the images from these datasets and their corresponding ground truth annota-
tions are illustrated in Figure 2. It should be noted that the thin RoIs in PLDU (Figure 2
last row) are thinner as compared to those of the Mendeley PL dataset (Figure 2 second
row). This is because the thin RoIs in PLDU are specified by precise boundaries while the
area between those boundaries do not contain any PL pixels. Hence, each PL in PLDU
is actually represented by two thin boundary lines. On the other hand, the PLs in the
Mendeley PL dataset are specified by a single line of pixels signifying the thin RoI. Thus, it
is more difficult to segment and localize the PLs in PLDU accurately as compared to those
in the Mendeley PL dataset even though the class imbalance in the Mendeley PL dataset is
higher than PLDU.
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The PL detection task is framed as a binary semantic segmentation problem with
the aim of accurately classifying and localizing the minority class PL pixels against the
majority class background pixels. Since the size of the datasets is rather small for training a
deep segmentation network, the following on the fly data augmentations are applied to
the images in both the training datasets.

• Scaling the images for a ratio range of (0.5, 1.5);
• Random rotation in the range of (45.0, 315.0) with a probability of 50%;
• Horizontal flipping with a probability of 50%;
• Resizing the images to 256 × 256;
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• Random brightness with a delta of 32;
• Random contrast in the range of (0.5, 1.5);
• Random saturation in the range of (0.5, 1.5);
• Random hue with a delta of 0.5;
• Image padding for the resized images with size 256 × 256.

As far as the validation datasets are concerned, only the scaling and flipping data
transforms are applied during the validation phase. We utilize the mmsegmentation frame-
work [41], a Pytorch-based framework, to implement our proposed FPL function along
with the ACU-Net for PL segmentation. The GT mask images are transformed into the
mmsegmentation format with the following class to color palette mapping:

• PL class pixels with a color of (6, 230, 230);
• Bg class pixels with a color of (120, 120, 120).

The network parameters are initialized with zero mean and unit standard deviation
Gaussian distribution. The proposed ACU-Net (Figure 1) is trained with various loss
functions discussed in Section 2, on the two PL datasets (Table 1) for 20K iterations and
a batch size of two images. The same loss functions are employed for the decode and
auxiliary classifier heads, but the loss weights are set to 1.0 and 0.4, respectively. The
Adam optimizer is employed for model training with an initial LR of 1 × 10−3 and a
weight decay of 0.0001 for all the loss functions with the exception of region-based losses
(DL, TL and FTL functions). For region-based losses, lower LRs are required for model
convergence, that is, 5 × 10−5 for the Mendeley PL dataset and 1 × 10−7 for PLDU. The LR
of the decode and auxiliary heads is set to 10 times to that of the backbone to achieve faster
convergence. Validation and model checkpointing is performed after every 200 iterations
during the model training. These parameters are identified via a grid search method. No
transfer learning is applied for training ACU-Net in order to present a fair evaluation of the
proposed ACU-Net and the proposed FPL function against the vanilla U-Net and other loss
functions, respectively. All the experiments are performed using Tesla K80 GPU compute
from Google Colab.

4.2. Evaluation Parameters

To the best of authors’ knowledge, almost all the studies regarding PL detection use
the dice scores (DSC) (also known as the F1-score), precision, true positive rate (TPR) (also
known as recall or sensitivity), false discovery rate (FDR) and accuracy [4,6–8,12–14]. These
evaluation parameters are defined as:

DSC or F1-score = 2TP/(2TP + FP +FN) (13)

Precision = TP/(TP + FP) (14)

TPR or Recall or Sensitivity = TP/(TP + FN) (15)

FDR = FP/(FP + TP) (16)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (17)

where TP, TN, FP and FN represent the true positive, true negative, false positive and false
negative entries of the confusion matrix, respectively. TPR and FDR specify the percentage
of successful and failure detections of the foreground PL class, respectively while DSC and
accuracy are comprehensive indicators of the overall model performance in general. It is
worth noting that none of these evaluation measures assess the performance of the trained
model for the major Bg class separately. Hence, to assess the performance of the major Bg
class in comparison to the minor PL class we suggest monitoring two extra parameters,
namely the true negative rate (TNR) (also known as specificity) [20] and the DSC for the
Bg class defined as:

TNR or Specificity = TN/(TN + FP) (18)
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DSCBg = 2TN/(2TN + FP + FN) (19)

We denote the class-wise DSC by DSCPL (Equation (13)) and DSCBg (Equation (19))
to distinguish the foreground and background PL and Bg classes, respectively. After the
training of all the algorithms, the results of PL detection are compared to the GT pixel
annotations in the light of above evaluation parameters for performance evaluation.

4.3. Experimental Results

We divide the results section into four different parts, that is, (1) proposed FPL function
results with different values of its constituent parameter γ using the proposed ACU-Net,
(2) investigation of various state-of-the-art loss functions for class imbalance to the PL
detection task with the proposed ACU-Net and its comparative analysis with our proposed
FPL, (3) ablation study results of the proposed ACU-Net, and, (4) analysis and deductions
of the obtained results. The best values for each evaluation parameter are written in bold in
the tabular results. The code implementation of all the conducted experiments is available
at the link mentioned in the Supplementary Materials.

4.3.1. Focal Phi Loss (FPL) Results

The results of training the ACU-Net with the proposed FPL for the segmentation of
PLs in the Mendeley PL dataset and PLDU are summarized in Table 2. We experiment
with various values of the focal parameter γ to understand its effect on the proposed FPL
function. γ is increased in uniform steps of 0.5 in the range of (0, 3]. We also experiment
with γ = 0.75 owing to its popular choice in the FTL function [21]. It should be noted that
when γ = 1.0, our proposed FPL is equivalent to the MCC loss [26].

Table 2. Experimental results of the proposed focal Phi loss (FPL) on the Mendeley PL and PLDU validation datasets with
ACU-Net. DSC: dice score; TPR: true positive rate; TNR: true negative rate; FDR: false detection rate.

SN Dataset Focal Parameter DSCPL DSCBg TPR TNR FDR Precision Accuracy

1 Mendeley PL
Dataset

γ = 0.5 63.025 99.65 81.33 99.435 47.965 52.035 90.385
γ = 0.75 58.38 99.57 81.775 99.28 54.275 45.725 90.525
γ = 1.0 58.145 99.56 82.97 99.25 54.855 45.145 91.11
γ = 1.5 59.55 99.595 81.615 99.32 52.67 47.33 90.47
γ = 2.0 60.045 99.61 79.45 99.37 51.235 48.765 89.41
γ = 2.5 60.865 99.63 78.78 99.41 49.8 50.2 89.1
γ = 3.0 60.6 99.61 80.88 99.36 50.835 49.165 90.12

2
Power line
Dataset of Urban
Scenes (PLDU)

γ = 0.5 41.35 98.735 65.72 97.935 68.08 31.92 81.83
γ = 0.75 41.635 98.675 70.325 97.76 69.765 30.235 84.045
γ = 1.0 42.46 98.725 68.905 97.88 68.03 31.97 83.39
γ = 1.5 43.065 98.705 73.615 97.78 69.165 30.835 85.695
γ = 2.0 38.52 98.455 68.435 97.36 71.785 28.21 82.9
γ = 2.5 38.215 98.55 64.035 97.595 70.595 29.40 80.815
γ = 3.0 41.47 99.06 50.97 98.76 62.075 37.925 74.865

A plot of the characteristic evaluation parameters against the training iterations (20K)
with model validation at every 200 iterations is presented graphically in Figures 3 and 4 for
Mendeley PL dataset and PLDU, respectively. Exponential moving average with smoothing
parameter Sα is applied to smooth the graphs and highlight the trend in the data points.
Sα is set to 0.6 and 0.9 for PLDU and Mendeley PL datasets, respectively.
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4.3.2. Investigation of Various State-of-the-Art Loss Functions for PL Detection

In this section, we examine five other state-of-the-art loss functions, commonly used
for class imbalance problems, on the PL benchmark datasets and compare the results with
our proposed FPL function. The five different loss functions evaluated in this study are:
BBCE loss, MCC loss, DL, TL and FTL. The parameters for these loss functions are obtained
after a grid search. To the best of our knowledge, no research work has investigated the
application of different loss functions for the highly imbalanced PL detection task with thin
RoIs. All the studies on PL detection mainly rely on BCE loss [6,14] and its variants [4,7,12]
to handle the class imbalance problem, with the BBCE loss being the baseline in the majority
of these works. The same ACU-Net network architecture is trained with each of these loss
functions and the characteristic evaluation parameters are monitored. The results for the
Mendeley PL dataset and PLDU are summarized in Tables 3 and 4, respectively.

Table 3. Experimental results comparison of various loss functions on Mendeley PL validation dataset with 80 images.

SN Loss Function Parameters Learning
Rate DSCPL DSCBg TPR TNR FDR Precision Accuracy

1
Balanced Cross

Entropy (BBCE) Loss
(baseline) [29]

β = 0.98 (PL class),
1 − β = 0.02 (Bg) 1 × 10−3 46.785 99.23 84.605 98.67 67.48 32.52 91.655

2
Matthews Correlation

Coefficient (MCC)
Loss [26]

γ = 1.0 1 × 10−3 58.145 99.56 82.97 99.25 54.855 45.145 91.11

3 Focal Phi Loss
(FPL) (Ours) γ = 0.5 1 × 10−3 63.025 99.65 81.33 99.435 47.965 52.035 90.385

4 Tversky Loss
(TL) [20] α = 0.3, β = 0.7 5 × 10−5 72.78 99.81 70.60 99.83 24.90 75.10 85.22

5 Dice Loss (DL) [23] α = 0.5, β = 0.5 5 × 10−5 71.37 99.81 66.325 99.85 22.69 77.31 83.09

6 Focal Tversky Loss
(FTL) [21]

α = 0.3, β = 0.7,
γ = 0.75 5 × 10−5 52.67 99.755 37.94 99.955 13.875 86.125 68.945

Table 4. Experimental results comparison of various loss functions on PLDU validation dataset with 120 images.

SN Loss Function Parameters Learning
Rate DSCPL DSCBg TPR TNR FDR Precision Accuracy

1
Balanced Cross

Entropy (BBCE) Loss
(baseline) [29]

β = 0.98 (PL class),
1 − β = 0.02 (Bg) 1 × 10−3 27.145 96.715 91.485 93.745 84.05 15.95 92.615

2
Matthews Correlation

Coefficient (MCC)
Loss [26]

γ = 1.0 1 × 10−3 42.46 98.725 68.905 97.88 68.03 31.97 83.39

3 Focal Phi Loss
(FPL) (Ours) γ = 1.5 1 × 10−3 43.065 98.705 73.615 97.78 69.165 30.835 85.695

4 Tversky Loss
(TL) [20] α = 0.3, β = 0.7 1 × 10−7 3.52 88.47 29.42 80.05 98.13 1.87 54.74

5 Dice Loss (DL) [23] α = 0.5, β = 0.5 1 × 10−7 3.89 93.23 20.06 88.22 97.85 2.15 54.14

6 Focal Tversky Loss
(FTL) [21]

α = 0.3, β = 0.7,
γ = 0.75 1 × 10−7 3.62 89.31 28.35 81.43 98.07 1.93 54.89

A qualitative assessment of our proposed FPL in comparison to the baseline BBCE
loss and the original MCC loss is depicted via the results in Figure 5. Figure 5 presents a
sample image from each PL dataset and its GT annotation, as well as the results of three
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top performing methods according to Tables 3 and 4, that is the baseline BBCE, the original
MCC loss and our proposed FPL.
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(a–e): original, ground truth, balanced cross entropy (CE) loss (baseline), MCC loss, proposed FPL (ours).

We can observe that for both the sample images, the (a) baseline BBCE loss function
results in a high number of FP PL predictions which do not correspond to the actual PL
pixels in the GT annotations. The (b) MCC loss addresses these FPs effectively but has a
lower recall rate and therefore detects PLs with disconnected pixels. The superiority of
our (c) proposed FPL function to other methods can clearly be depicted in these results as
the PL predictions are strongly connected and comprise of little to no FPs. Hence, the PLs
detected with our proposed FPL are closest to the (b) GT annotations.

Supplementary plots of the characteristic evaluation parameters against the training it-
erations (20K) for the mentioned loss functions are presented graphically in Figures 6 and 7
for the Mendeley PL dataset and PLDU, respectively. Exponential smoothing with Sα = 0.6
is applied to the plot results for both the datasets.

4.3.3. Ablation Study

The novel contributions of this study can be divided into two parts: (a) focal Phi loss
(FPL) function for class imbalanced PL detection and thin RoIs segmentation; and (b) U-Net
with auxiliary classifier (ACU-Net) for better feature learning and faster model convergence.
The proposed FPL function results have already been depicted in Sections 4.3.1 and 4.3.2. In
this section, we analyze the effects of the ACU-Net for the PL detection task by conducting
an ablation study and documenting the results for the Mendeley PL dataset and PLDU in
Tables 5 and 6, respectively.
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Table 5. Experimental results comparison of the proposed ACU-Net and vanilla U-Net model with various loss functions on Mendeley PL validation dataset with 80 images.

SN Loss Function Parameters Learning Rate Model DSCPL DSCBg TPR TNR FDR Precision Accuracy

1 Balanced Cross Entropy
(BBCE) Loss (baseline) [29]

β = 0.98 (PL class),
1 − β = 0.02 (Bg)

1 × 10−3

ACU-Net
(Ours) 46.785 99.23 84.60 98.67 67.48 32.52 91.655

Vanilla
U-Net 50.555 99.38 86.38 98.86 64.1 35.9 92.62

2 Matthews Correlation
Coefficient (MCC) Loss [26]

γ = 1.0 1 × 10−3

ACU-Net
(Ours) 58.145 99.56 82.97 99.25 54.85 45.145 91.11

Vanilla
U-Net 56.975 99.585 73.87 99.36 51.67 48.33 86.62

3 Focal Phi Loss (FPL) (Ours) γ = 0.5 1 × 10−3

ACU-Net
(Ours) 63.025 99.65 81.33 99.43 47.965 52.035 90.385

Vanilla
U-Net 56.240 99.525 83.320 99.170 57.250 42.750 91.245

4 Tversky Loss (TL) [20] α = 0.3, β = 0.7 5 × 10−5

ACU-Net
(Ours) 72.78 99.81 70.60 99.83 24.90 75.10 85.22

Vanilla
U-Net 71.815 99.805 68.510 99.840 24.555 75.445 84.175

5 Dice Loss (DL) [23] α = 0.5, β = 0.5 5 × 10−5

ACU-Net
(Ours) 71.37 99.81 66.325 99.85 22.69 77.31 83.09

Vanilla
U-Net 70.720 99.805 65.31 99.860 22.890 77.110 82.590

6 Focal Tversky Loss
(FTL) [21]

α = 0.3, β = 0.7, γ = 0.75 5 × 10−5

ACU-Net
(Ours) 52.67 99.755 37.94 99.955 13.875 86.125 68.945

Vanilla
U-Net 40.110 99.720 26.070 99.975 13.060 86.940 63.020
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Table 6. Experimental results comparison of the proposed ACU-Net and vanilla U-Net model with various loss functions on PLDU with 120 images.

SN Loss Function Parameters Learning Rate Model DSCPL DSCBg TPR TNR FDR Precision Accuracy

1 Balanced Cross Entropy
(BBCE) (baseline) [29]

β = 0.98 (PL class),
1 − β = 0.02 (Bg)

1 × 10−3

ACU-Net
(Ours) 27.145 96.715 91.485 93.745 84.05 15.95 92.615

Vanilla
U-Net 23.245 96.315 82.41 93.115 86.400 13.60 87.76

2 Matthews Correlation
Coefficient (MCC) Loss [26]

γ = 1.0 1 × 10−3

ACU-Net
(Ours) 42.46 98.725 68.905 97.88 68.03 31.97 83.39

Vanilla
U-Net 38.340 98.410 72.905 97.215 73.555 26.445 85.055

3 Focal Phi Loss (FPL) (Ours) γ = 1.5 1 × 10−3

ACU-Net
(Ours) 43.065 98.705 73.615 97.78 69.165 30.835 85.695

Vanilla
U-Net 41.625 98.760 66.720 97.980 69.280 30.720 82.345

4 Tversky Loss (TL) [20] α = 0.3, β = 0.7 1 × 10−7

ACU-Net
(Ours) 3.52 88.47 29.42 80.05 98.13 1.87 54.74

Vanilla
U-Net 2.905 90.865 19.615 84.130 98.430 1.570 51.875

5 Dice Loss (DL) [23] α = 0.5, β = 0.5 1 × 10−7

ACU-Net
(Ours) 3.89 93.23 20.06 88.22 97.85 2.15 54.14

Vanilla
U-Net 3.07 89.64 23.29 82.03 98.35 1.65 52.66

6 Focal Tversky Loss
(FTL) [21]

α = 0.3, β = 0.7, γ = 0.75 1 × 10−7

ACU-Net
(Ours) 3.62 89.31 28.35 81.43 98.07 1.93 54.89

Vanilla
U-Net 2.905 90.865 19.620 84.125 98.430 1.570 51.870
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4.3.4. Analysis and Discussion
Comparison of FPL with MCC Loss

The results in Table 2 depict that an optimal trade-off for the characteristic evaluation
parameters is achieved for the Mendeley PL dataset and PLDU when the focal parameter
γ is equal to 0.5 and 1.5, respectively. The results achieved with our proposed FPL (with
γ = 0.5) on the Mendeley PL dataset are better than those achieved with MCC loss (γ = 1.0)
due to highest class-wise dice scores (~4% and 0.10% higher DSCPL and DSCBg, respec-
tively), highest precision (~7%), highest TNR values (~0.2%) and lowest FDR values (~7%
lower) with a minor degradation of ~1% in the accuracy and TPR values. For PLDU, our
proposed FPL (with γ = 1.5) outperforms the MCC loss (γ = 1.0) with the highest DSCPL
(~1% higher), highest TPR (~5%) and highest accuracy values (~3%), while our FPL (with
γ = 3.0) outperforms MCC loss with the highest DSCBg (~1% higher), highest TNR (~1%),
highest precision (~5%) and lowest FDR values (~5% lower). For PLDU, γ = 1.5 is chosen
as the optimal value for FPL as it yields the highest results for the PL class parameters
as opposed to γ = 3.0 which yields the best results for the Bg class parameters. Table 2
also reveals that for both the datasets, the results obtained for the characteristic evaluation
parameters pertaining to the PL class (DSCPL and TPR) and overall model performance
(accuracy, precision and FDR) are better when γ < 1 while the results of the characteristic
evaluation parameters for the Bg class (DSCBg and TNR) are better with γ > 1. It is also
noteworthy that the overall results of all the evaluation parameters are higher for the
Mendeley PL dataset as compared to PLDU. This is because the thin RoIs in PLDU are
harder to segment (Section 4.1.) as compared to the thin RoIs in the Mendeley PL dataset.

Similar deductions can be made by visualizing the plots of the characteristic evaluation
parameters in Figures 3 and 4 that our proposed FPL, with γ = 0.5 (Mendeley PL dataset)
and γ = 1.5 (PLDU), outperforms the MCC loss (γ = 1.0) by achieving superior values (high
peaks) for (a) DSCPL and (b) TPR for the thin PL class while maintaining acceptable values
for the Bg class, with metrics (b) DSCBg and (f) TNR, for both the datasets. Apart from
these per class results, our proposed FPL also yields an overall better model performance
for both the datasets with higher (c) accuracy, higher (g) precision and lower (c) FDR values
as compared to the MCC loss (γ = 1.0).

Comparative Analysis of FPL with State-of-the-Art Loss Functions

Table 3 reveals that our proposed FPL function outperforms the baseline BBCE loss on
the Mendeley PL dataset by ~16% for DSCPL, ~0.4% for DSCBg, ~1% for TNR and ~19%
for precision and FDR values with a minor degradation in the TPR (~3%) and accuracy
(~1%) values. For PLDU in Table 4, our proposed FPL outperforms the BBCE loss by
~16% on DSCPL, ~2% on DSCBg, 4% on TNR and ~15% for precision and FDR values.
Although, our proposed FPL lags behind the BBCE loss in terms of accuracy (~7%) and
especially TPR values (~18%) for PLDU, it still achieves a better trade-off amongst all
the evaluation parameters as compared to the BBCE loss. Furthermore, the region-based
DL and TL achieve the highest DSCPL (~70%) and DSCBg (~99%) values with lower FDR
(~20%) and the best precision–recall trade-off for the Mendeley PL dataset in Table 3, but
these losses lag behind our proposed FPL in terms of TPR and accuracy values by ~11%
and ~7%, respectively. The FTL yields the best FDR and precision values but falls back on
other evaluation parameters for the Mendeley PL dataset. As far as PLDU is concerned,
the region-based DL, TL and FTL yield extremely poor values for the PL class (DSCPL,
TPR) and the overall model performance (accuracy, precision and FDR) while being biased
towards the major Bg class with higher DSCBg and TNR values. The comparison of the
proposed FPL with the MCC loss has already been discussed in first part of Section 4.3.4.

The TL and FTL region-based losses, as well as the BBCE loss, require the tuning of
multiple hyperparameters (α, β for TL, α, β and γ for FTL and class weights β and 1 − β
for BBCE loss) for model training. Although DL does not require the tuning of additional
hyperparameters (α and β are fixed to 0.5), it tends to ignore the TNs in its calculation
and thus results in low specificity or TNR values. As a result, our proposed FPL is more
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promising for class imbalance and thin RoIs segmentation, as it addresses these issues
effectively. Similar to the FPL results in Table 2, the overall performance of other loss
functions is higher for the Mendeley PL dataset in comparison to PLDU due to the thinner
RoIs in PLDU.

Similar deductions can be made by visualizing the plots in Figures 6 and 7 that our
proposed FPL provides a better trade-off for the evaluation parameters in comparison to
other loss functions on both the PL datasets. Another interesting trend to be noted here is
that in BBCE loss as the accuracy increases, the corresponding DSCPL values decrease for
both the datasets. We deduce that this is due to a higher number of FPs as FDR values for
the BBCE loss are also higher than for other losses. Thus, there is an inverse relationship
between the FDR and DSCPL values and an optimal model must therefore have a lower
FDR in order to perform efficiently on the minority PL class.

Comparative Analysis of Vanilla U-Net with ACU-Net

The results in Tables 5 and 6 reveal that our proposed ACU-Net, which simply adds
an auxiliary classifier head to the vanilla U-Net, outperforms the vanilla U-Net for the
majority of the evaluation parameters in all the loss function experiments, on both the PL
datasets, with the only exception of BBCE loss on the Mendeley PL dataset. The BBCE loss
with the Mendeley PL dataset is the only case where the vanilla U-Net performs better than
our proposed ACU-Net (Table 5). Apart from this exception, a general improvement can be
seen for the majority of the evaluation parameters in Table 5, when ACU-Net is employed
for PL detection instead of vanilla U-Net. The improvement is approximately in the range
of 1–10% for all the losses on both the PL datasets.

5. Conclusions and Future Work

In this study, we examined the PL detection task, with thin RoIs, from the class im-
balance perspective. We proposed a novel focal Phi loss (FPL) function for the thin RoIs
segmentation of PL pixels against the background in two highly imbalanced PL datasets,
i.e., the Mendeley PL dataset and the Power Line Dataset of Urban Scenes (PLDU). The
proposed FPL introduced a focal component to the MCC loss for achieving an optimal
trade-off for the characteristic evaluation parameters. We also provided an in-depth com-
parative analysis of our proposed FPL against the established loss function baselines with
a standardized deep network architecture. Our experiments demonstrate the significance
of the choice of loss function when dealing with class imbalance in the PL detection task.
Moreover, we also improved the vanilla U-Net by incorporating an additional auxiliary
classifier head (ACU-Net) for learning the features of thin PLs effectively and for faster
model convergence. Our proposed FPL and ACU-Net outperformed the baseline BBCE
loss function for class imbalance in PL detection and the vanilla U-Net architecture, respec-
tively, by achieving an optimal trade-off for the characteristic evaluation parameters, with
particularly higher values for the foreground PL class dice scores (DSCPL), precision and
FDR values. Compared to other loss functions, our proposed FPL is simple and effective
as it requires tuning for only a single focal parameter (γ). Since FPL yields remarkable
results for thin RoIs segmentation with class imbalance, its application can be extended
to various research domains where thin RoIs segmentation is of the utmost importance.
These domains include but are not limited to mooring lines monitoring and maintenance
in the marine vessels, road-lane line detection in autonomous vehicles, sperm and bacterial
flagella detection in medicine, automated cracks detection to ensure architectural sustain-
ability, etc. Furthermore, FPL can also pave the way for the design of a generic thin RoIs
detector which can save the cost of acquiring a separate application-specific detector for
various application areas.

Currently, the proposed FPL lags behind the baseline BBCE loss in accuracy values.
We believe that this problem can be alleviated, and the accuracy of FPL can be improved
by combining it with the BCE loss as BCE loss is designed to maximize the accuracy
values. Apart from the proposed improvement of combining the FPL with BCE loss, an
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investigation of the application of FPL for application-specific deep PL detectors, instead
of a standardized generic U-Net architecture, is also to be carried out as part of potential
future work. We also anticipate investigating the choice of alternate auxiliary classifier
head architectures for the proposed ACU-Net and observe their performances for different
application domains.

Supplementary Materials: Open-source implementation along with the reproducible results for all the
experiments in this study is available at https://github.com/rubeea/focal_phi_loss_mmsegmentation
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The following abbreviations are used in this manuscript:

ACU-Net Auxiliary Classifier U-Net
Bg Background
BCE Binary Cross Entropy
BBCE Balanced Binary Cross Entropy
DL Dice Loss
DSC Dice Score
FDR False Detection Rate
FL Focal Loss
FN False Negative
FP False Positive
FPL Focal Phi Loss
FTL Focal Tversky Loss
GT Ground Truth
LR Learning Rate
PL Power Line
PLDU Power Line Dataset of Urban Scenes
RoI Region of Interest
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
TL Tversky Loss
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Notations
The following notations are used in this manuscript:

UAV Unmanned Aerial Vehicles
WBCE Weighted Binary Cross Entropy
A Majority class
B Minority class
(y,ŷ) y as the actual probabilities and ŷ as the predicted probabilities
pt Predicted probabilities in Focal Loss
LBCE BCE Loss
LWBCE Weighted BCE Loss
LBBCE Balanced BCE Loss
LFOCAL Focal Loss
LDICE Dice Loss
LTVERSKY Tversky Loss
LMCC MCC Loss
α,β Class-wise weights
γ F ocal parameter
ε Smoothing factor for loss functions
ρ Class imbalance level
Ci is a set of examples in class i for calculating ρ

Sα Smoothing parameter for exponential moving average
DSCBg Dice score for background class
DSCPL Dice score for power line class
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