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Abstract: Ground-penetrating radar (GPR) has been used for asphalt concrete (AC) pavement density
prediction for the past two decades. Recently, it has been considered as a method for pavement
quality control and quality assurance. A numerical method to estimate asphalt pavement specific
gravity from its dielectric properties was developed and validated. A three-phase numerical model
considering aggregate, binder, and air void components was developed using an AC mixture gener-
ation algorithm. A take-and-add algorithm was used to generate the uneven air-void distribution
in the three-phase model. The proposed three-phase model is capable of correlating pavement
density and bulk and component dielectric properties. The model was validated using field data.
Two methods were used to calculate the dielectric constant of the AC mixture, including reflection
amplitude and two-way travel time methods. These were simulated and compared when vertical
and longitudinal heterogeneity existed within the AC pavement layers. Results indicate that the
reflection amplitude method is more sensitive to surface thin layers than the two-way travel time
methods. Effect of air-void content, asphalt content, aggregate gradation, and aggregate dielectric
constants on the GPR measurements were studied using the numerical model.

Keywords: ground-penetrating radar; asphalt pavement; finite-difference time-domain modeling;
heterogeneous model

1. Introduction

Ground-penetrating radar (GPR) is a nondestructive testing method widely applied
for monitoring and assessing civil structures. In pavement engineering, GPR data are
used to predict pavement density and layer thickness, and to detect anomalies underneath
pavement surfaces [1–3].

For asphalt concrete (AC), pavement, density is a key factor that affects pavement
performance and service life. It is an important indicator of AC quality control and quality
assurance during compaction. Predicting AC density can avoid under or over compaction,
and it ensures the designed density level is achieved. Among available nondestructive
techniques, GPR is deemed to be cost- and time-effective, and could be used to predict AC
density or air void content during compaction [4–7]. Compared with other destructive or
nondestructive test methods, GPR has the advantage of performing potential high-accuracy
measurements, a large-coverage area, and relatively high-speed surveys.

Numerical modeling and simulation of GPR responses can help in better understand-
ing electromagnetic (EM) waves interaction with AC pavements [8]. Compared with
constructing physical AC pavement test mats and performing tests on them, numerical
simulation is time- and cost-efficient. Apart from that, the structure and material properties
of the AC mixture are better controlled with numerical modeling. Finite-difference time-
domain (FDTD) method, a powerful tool for numerical modeling, is an appropriate tool
for EM wave propagation simulation [9]. Although most of the research using the FDTD
method has focused on the detection of underground objects, such as faults and caves,
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tunnel inspections, pipes, and landmines [10–13], this method has recently been applied to
bridge assessment and inspection as well as pavement surface-moisture removal [14–16].
Microstructure and density of AC pavement research using the FDTD method, however, is
still limited.

Civil engineering materials, such as AC mixture, concrete, stone, and bricks, have been
considered homogeneous materials in the GPR numerical modeling application [8,17–20].
This, however, is a simplification of material dielectric properties. On the other hand,
the heterogeneity of a material causes an impact on GPR measurements at two levels.
First, the material properties show variability along space. This arises from the internal
configuration and distribution of particles that compose the material [21]. Second, the
received signals from the material are uncertain as they come from the randomness of
the generated heterogeneous models. Most FDTD simulations of heterogenous material
studies have concentrated on soil, which is achieved by defining a series of dispersive
material properties in the FDTD model [22].

Apart from soil, Benedetto et al. used a random-sequential absorption algorithm to
generate random 2D distributions of the compacted ballast aggregates to assess railway
ballast condition [23]. Lachowicz and Rucka proposed a heterogeneous numerical model
to simulation concrete, and the model was validated through laboratory tests [24]. No
specific method, however, has been proposed for modeling AC mixture as a heterogeneous
material using the FDTD method.

The AC mixture can be viewed as a three-phase material, including aggregate, asphalt
binder, and air voids. Although not yet reported in the FDTD methods, the numerical model
of the AC mixture has been widely used in research using the discrete-element and finite-
element methods [25–27]. Computed tomography (CT) scan reconstruction and random
aggregate generation are two commonly used methods to generate the heterogeneous
microstructure of AC [27]. The CT scan method uses real specimen images either prepared
in the laboratory or cut from constructed pavement. Many specimens are usually needed
to capture the variation of microstructures. The random aggregate generating method
generates the microstructure of AC by randomly distributing aggregates with different
sizes. It is more suitable for batch modeling and parameter control.

In this paper, a three-phase numerical model was developed considering aggregate,
binder, and air void components. The simulation results were compared with results
from theoretical pavement density prediction models, and the model was validated using
field tests. A take-and-add algorithm was further proposed to randomly generate the
non-uniform air-void distribution in the three-phase model. Sensitivity analyses were
performed, and the effect of air-void and asphalt binder contents as well as aggregate
gradation and their corresponding dielectric constants predicted from GPR measurements
were studied. Two methods, reflection amplitude and two-way travel time methods, were
used to calculate the AC dielectric constant from simulation results. The results were then
compared for cases of vertical and longitudinal heterogeneity within an AC pavement layer.

2. Background on AC Pavement Density Prediction
2.1. Pavement Dielectric Constant Calculation

For AC pavement density prediction from GPR data, sent and reflected signals from
the interface of two materials with different dielectric properties are used in the analysis.
The signals can be used to compute pavement dielectric constants, which can then be
related to AC densities through theoretical or empirical formulas. The reflection amplitude
and two-way travel time (TWTT) methods were usually used to calculate the dielectric
constants of pavement. The reflection amplitude method utilizes Fresnel equations, and
it is widely used for the analysis of field test results because it does not need ground
truth (GT) cores [16]. The TWTT method, on the other hand, allows the calculations of the
material’s dielectric constant from the average velocity of EM waves in the material. It is
usually used to back-calculate a pavement layer’s thickness [28].
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2.1.1. Reflection Amplitude Method

In the reflection amplitude method, air-coupled antennas are installed at a specific
distance from the pavement surface (see Figure 1a). EM waves are sent into the ground
by a transmitter antenna, and the reflected waves are received by a receiver antenna.
When the EM wave propagates through the AC pavement, part of its energy is reflected at
interfaces, such as between the air and pavement surface layer (the top of the AC layer)
and between the AC layer and the base layer (see Figure 1). To calculate a pavement’s
dielectric constants using the reflection amplitude method, two GPR surveys need to be
performed. One survey is on the pavement surface, where the amplitude of the EM wave
reflected from the top of the AC layer is recorded as A0. Another survey is performed on a
complete perfect electricity conductor, usually a metal (e.g., copper) plate which covers the
antenna’s footprint. The amplitude of the pulse reflected from the metal plate is recorded
as Ac. The relative dielectric constant, ε, of the pavement surface can be calculated using
Equation (1).

ε =

1 + Ap
Ac

1− Ap
Ac

2

(1)

Figure 1. The ground-penetrating radar (GPR) survey configuration and received signal of GPR from field tests (a) and
reflected signal from interface of layers (b).

2.1.2. TWTT Method

In the TWTT method, the dielectric constant is calculated within the material. The
travel speed of the EM wave in a material is decided by the material’s dielectric property.
The speed of the EM wave can be calculated using the known pavement layer thickness,
h, and the measured time interval, t, of pulses reflected from the top, A0, and bottom
of the pavement layer, A1. The formula of the TWTT method is shown in Equation (2).
Because the TWTT method uses the average speed of the EM wave within the material to
be measured, the dielectric constant measured using this method is the average, or bulk
dielectric constant, of the material

ε =

(
c ∗ h

2t

)2
(2)

Here c is the speed of light.
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2.2. Theoretic EM Mixing Models and Pavement Density Prediction

Once the pavement’s dielectric constant is obtained, it can be related to the AC’s densi-
ties through theoretical equations. Three mixing models, the Al-Qadi-Lahouar-Leng (ALL)
model, complex refractive index model (CRIM), and Bottcher model (see Equations (3)–(5)),
are derived from the EM mixing theory [7,29]. The EM mixing theory relates the dielectric
constant of a mixture, εAC, to the dielectric and volumetric properties of its components.
For dry AC pavement, three phases—aggregate, asphalt binder, and air—are considered in
these models.

εAC − εb
3εAC − 2.3εb

= Vse
εs − εb

εs + 2εAC − 2.3εb
+ Va

εa − εb
εa + 2εAC − 2.3εb

(3)

εAC − εb
3εAC

= Vse
εs − εb

εs + 2εAC
+ Va

εa − εb
εa + 2εAC

(4)

√
εAC = Va

√
εa + Vse

√
εs + Vb

√
εb (5)

Here Vse is effective volume of aggregate, and Va is volume of air. εb is the dielectric
constant of asphalt binder, which is usually set as 3. εa is the dielectric constant of air, which
is usually set as 1. εs is the aggregate dielectric constant, which can be back-calculated
from field cores or obtained from a database.

Substituting equations from the volumetric properties of the AC mixture in Equa-
tions (3)–(5) yields the ALL and modified CRIM and Bottcher specific gravity models
(see Equations (6)–(8)). The bulk specific gravity, Gmb, of the AC mixtures value can be
determined.

Gmb =

εAC−εb
3εAC−2.3εb

− 1−εb
1−2.3εb+2εAC

εs−εb
εs−2.3εb+2εAC

1−Pb
Gse
− 1−εb

1−2.3εb+2εAC
1

Gmm

(6)

Gmb =

√
εAC − 1

Pb
Gb

√
εb +

1−Pb
Gse

√
εs − 1

Gmm

(7)

Gmb =

εAC−εb
3εAC

− 1−εb
1+2εAC

εs−εb
εs+2εAC

1−Pb
Gse
− 1−εb

1+2εAC
1

Gmm

(8)

Here Gmm is the maximum specific gravity of the AC mixture, and Gse is the effective
specific gravity of the aggregates. Pb is the binder content of the AC mixture. These AC
volumetric values can be obtained from the plant prior to pavement compaction. With the
dielectric constant of a mixture, εAC, calculated from Equations (1) or (2), the bulk specific
gravity of the AC mixture, Gmb, can be determined for in-situ AC.

A one-phase pavement model developed by Shangguan and Al-Qadi [8] was used
to simulate AC. The dielectric constants of the AC mixture and base layers are preset;
each as a single value. The one-phase model was successful in simulating EM waves
inside dry AC pavement and studying the effect of surface moisture on the GPR signal.
However, the model simplifies the AC mixture as a homogeneous material, limiting the
relationship between the AC mixture’s dielectric constant and the volumetric properties of
its components. In the proposed three-phase model, the dielectric constant and volumetric
properties of air, asphalt binder, and aggregates in the AC are considered.

3. Methodology
3.1. Finite-Difference Time-Domain Simulation

The finite-difference time-domain (FDTD) simulation in this study was performed
using an open-source GPR simulation program known as GprMax [30]. It has been suc-
cessfully applied to simulate GPR wave propagation in various materials. The FDTD
method, also known as Yee’s algorithm, is a differential equation-based solver that pro-
vides numerical solutions for Maxwell’s equations in complex geometries [31]. The FDTD
method uses the second order accurate derivatives in space and time. It utilizes a mesh
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built from rectangular, or Yee cells, in which field values are updated time-step by time-step
as EM waves propagate through a structure. In this paper, 2D FDTD simulations were
performed considering the computational intensity of 3D simulations. Two-dimensional
FDTD simulation has been proven to have similar results to 3D simulations in the case of
AC pavement [8].

3.2. Generating Three-Phase Structure of Asphalt Mixture Models

In this paper, AC mixture was assumed dry. Asphalt binder, aggregate, and air voids
compose the three-phase heterogeneous AC mixture. Compared with the Computed
tomography (CT) scan method, the random aggregate generating method does not depend
on the microstructure of any existing specimens. Thus, it is more suitable for batch
modeling and parameter control. In this study, coarse aggregates were generated as
circles of different sizes. Considering the cubic meshes in the FDTD method, these circles
were later approximated using unit squares of 0.001 × 0.001 m to acquire the required
level of accuracy. The angularity of particles was not considered in this study because the
angularity of aggregates mainly affects the mechanical properties of the material rather than
its dielectric properties. The three-phase AC mixture generation algorithm is summarized
as follows:

1. Choose a mean size between adjoining sieve sizes as aggregate size in each level.
2. Calculate the number of aggregates in each level from aggregate gradation data.
3. Randomly place the generated particles into a predefined sample with no aggregate

overlapping. The generated circles in each level should not overlap with circles in
other levels.

4. Approximate the generated circles using unit squares and check aggregate gradation.
Complement fine aggregates using unit squares.

5. After all particles are completed, the region within the sample boundary, but not
occupied by aggregate, is set as asphalt binder. Air voids are generated by deleting
the asphalt binder elements randomly. It should be noted that the actual volume of
aggregate is greater than the one used in the model because of the adsorbed portion
of the asphalt binder by the aggregate.

The flowchart of the AC-mixture generating algorithm is shown in Figure 2. The
results are saved as a numerical matrix, and they are further used in GprMax simulation.
The constructed numerical model of an AC mixture contains three phases: aggregate,
asphalt binder, and air voids. An example of the heterogeneous model is shown in Figure 3.

3.3. FDTD Simulation Models

The diagram of the FDTD model in GprMax is shown in Figure 4. Two layers,
including the AC surface layer of height—hAC—and base layer of height—hB, were built
in this model using the AC-mixture generating algorithm. Tx is the transmitter antenna,
and Rx is the receiver antenna. The transmitter antenna sends EM waves into the ground,
and the receiver antenna can receive reflected signals from the interface between the free
space and the AC layer, as well as the interface between the AC layer and the base layer.
The perfect matched layer (PML) is used to cancel out any reflections upon its interface.
The model with PML can simulate the EM wave propagation in an infinite space.
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Figure 2. A flowchart of the three-phase asphalt-mixture generation algorithm.

Figure 3. Example of a three-phase asphalt mixture numerical model.

Figure 4. The finite-difference time-domain (FDTD) simulation model in the GprMax.
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3.4. Generating Heterogeneous Asphalt Mixture Models

Two levels of heterogeneity are discussed in this paper. The first involves a model
given a constant air-void value when it is developed. The second includes air voids set
differently along the model space. In the proposed three-phase AC mixture generation
algorithm, a constant air-void value is given to generate the three-phase numerical models.
Heterogeneity is caused by the variation of the three-phase microstructure inside the model.

The air voids, however, change inside the pavement layer in the field. Previous
studies showed that air voids change along the depth right after AC compaction [32–34].
The air voids could be higher at the top of the AC layer than at its bottom. The air-void
distributions along the depth further change because of the compaction from traffic. In
addition, AC segregation may exist due to several causes including mix design, unevenness
of stockpiling, material mixing, truck loading and unloading, and malfunction of pavers.

To analyze the effect of vertical and longitudinal heterogeneity, a heterogeneous AC,
known as the take-and-add generation algorithm, is developed based on the three-phase
AC mixture generation algorithm:

1. Generate a three-phase AC mixture model in accordance with the proposed three-
phase AC generation algorithm. The air voids of the model can be set at any value
between the maximum and minimum air voids of the heterogeneous model.

2. Divide the model into sections. To analyze the effect of longitudinal heterogeneity,
the model is divided along the distance/traffic direction. To analyze the effect of the
vertical heterogeneity, the model is divided along the pavement depth, as shown in
Figure 5.

3. According to the new AC mixture information, binder-coated aggregates were re-
placed with air void inclusions (i.e., particles) if a higher air void content was required
and vice versa.

Figure 5. Horizontal and vertical heterogeneity in a simulation model.

Another method to generate a heterogeneous AC mixture model is to generate three-
phase AC sections with various air void contents and then concatenate them along the
longitudinal distance or depth. Compared with the proposed take-and-add method, this
method would cause discontinuity at the boundaries of the divided sections [35].

The method for generating a three-phase numerical model with a constant air-void
setting is called the three-phase AC generation algorithm, while the one with different air
voids along the space is called the heterogeneous AC take-and-add generation algorithm.

4. Simulation Results and Discussion
4.1. Comparison between One- and Three-Phase AC Models

A comparison was performed between the one-phase model developed by Shangguan
and Al-Qadi [8] and the proposed three-phase model. Both models have two layers,
including AC surface and base layers. The only difference between the two models is that
in the one-phase model, the dielectric constants of the pavement layers are given as single
values. In the three-phase model, the dielectric constants and volume properties of air,
asphalt binder, and aggregates are given to generate the model.
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The results are shown Figure 6. The first row shows the electric field magnitude of the
one-phase model in different stages and the corresponding received signal. The second
row shows the electric field magnitude of the three-phase model in different stages and the
corresponding received signal. At stage I, part of the EM waves was reflected from the top
of the AC surface layer and the rest transmitted downwards. The reflected waves at stage I
correspond to the first wavelet of the received signals shown in Figure 6. The transmitter
signal experienced another reflection at the interface between the AC surface layer and
the base layer (stage II). This corresponds to the second wavelet on the received signals.
At stage III, the reflected signal from the bottom of the AC surface layer is reflected and
transmitted again at the top of the AC layer. The EM energy, however, so weak because of
multiple-time reflections results in no wavelet being observed on the received signals. In
the one-phase model, specular reflection occurs when the EM waves hit the interface of
two different materials. In the three-phase model, however, the EM waves were scattered
from the surface at different angles rather than at just one angle—as in the case of the
one-phase model. Hence, small fluctuations were observed between the first and second
wavelets in the received signal rather than a constant value of zero, which is observed
from field signals. This suggests that the three-phase AC model is able to capture the wave
distortion caused by the microstructure of the AC mixture—compared with the one-phase
numerical model.

Figure 6. Comparison between the one- and three-phase AC simulation models.

4.2. Field Validation

The proposed simulation method was validated by field tests data. The test site is
a large AC-surfaced parking lot constructed at the Advanced Transportation Research
and Engineering Laboratory of the Illinois Center for Transportation at the University of
Illinois Urbana-Champaign. The site was used to develop the Al-Qadi-Lahouar-Leng (ALL)
model [7]. As shown in Figure 7, five lanes with different AC and asphalt binder types
were built. Each lane is comprised of four sections, each has a different air void content.
A transition section was placed between the adjacent sections to allow compaction level
adjustment. The aggregate gradation of various AC types is shown in Table 1. The same
limestone aggregate was in all AC mixes.
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Figure 7. Test sites for validation (after [7]).

Table 1. Gradation Information of Different Mixture Types (after [7]).

Passing Ratio (%) for Different Sieving Size

Mixture type 1 3/4 1/2 3/8 #4 #8 #16 #30 #50 #100 #200
Limestone surface 100 100 100 98.9 58.9 40.0 29.5 18.5 10.6 7.3 6.0

Gravel surface 100 100 100 97.1 58 41.8 30.8 19.0 10.6 7.2 5.8
Limestone binder 100 98.4 77.2 66.6 47.6 37.1 27.1 16.8 9.5 6.3 5.0

A 2 GHz air-coupled, van-mounted GPR system was used to conduct the GPR surveys
over each test sections (see Figure 7). The dielectric constants of AC were calculated
using Equation (1). The aggregate dielectric constants were back-calculated using 6-in-
diameter cores extracted from each lane [7]. Dielectric constants of the AC mixture were
calculated using three specific gravity models (see Equations (6)–(8)). Numerical models
were constructed with the same air voids, aggregate types, asphalt binder contents, and
aggregate gradation as shown in Figure 7 and Table 1.

The comparisons among the AC dielectric constant ground truth (GT), dielectric
constant calculated using the theoretical specific gravity models, and the ones obtained
from the simulation models are shown in Figure 8. The normalized mean square errors are
calculated using Equation (9).

NMSE =
∑(model result− ground truth)2

ground truth
(9)

Figure 8 suggests that the results from the numerical models are closer to the predic-
tions from the ALL model. The average prediction errors of the complex refractive index
model (CRIM), Bottcher, ALL, and simulation models are 6.4%, 6.04%, 3.0%, and 2.2%. Both
ALL and simulation models have smaller errors compared to the CRIM and Bottcher mod-
els. Compared with the specific gravity models, the proposed numerical model performed
well, and results are the closest to the GT. This suggests that the three-phase numerical
model can be used to describe the relationship between the dielectric constant of the AC
and the dielectric constants and volumetric properties of its components.
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Figure 8. Comparison between ground truth (GT) and results from different models for lanes I–V (a–e) as well as the
normalized mean square error of different models (f).

4.3. Sensitivity Analysis

Sensitivity analysis was performed to analyze the effect of air voids, asphalt contents,
and aggregate gradations on the AC’s dielectric constants using the Monte Carlo method.
The relationship between the dielectric constants and air voids is shown in Figure 9a. One
hundred three-phase simulations with air voids randomly chosen from 2.0% to 25.0% were
generated. The asphalt contents were the same for all 100 simulations. The dielectric
constants were calculated using Equation (1). It was shown that the dielectric constant
decreases with air voids, which is the same conclusion from the theoretical specific gravity
models. The relationship between asphalt contents and AC’s dielectric constants is shown
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in Figure 9b. As would be expected, the higher the asphalt content, the lower the AC
dielectric constant for the same air void.

Figure 9. The relationship between dielectric constant and air void (a) and the relationship between dielectric constant and
asphalt content (b).

For both relationships shown in Figure 9, variations are observed in the AC predicted
dielectric constant given the same air voids or asphalt binder contents. Even for the same
air void or asphalt content, the dielectric constant of the AC may differ by ±3% due to
AC microstructure variation. This variation is expected to increase with air void and/or
asphalt content.

To determine the effect of aggregate gradation on predicted dielectric constant, results
from the generated simulations were compared to those obtained from numerical models.
Three aggregate gradations, dense-, gap-, and open-graded AC mixtures were simulated
in the numerical models. The asphalt content and air void of the three AC mixtures were
kept constant. Mixtures 1, 2, and 3 are dense-graded hot mix asphalt (HMA), gap-graded
stone matrix asphalt (SMA), and open-graded friction course (OGFC) asphalt concrete
mixtures, respectively. The aggregate gradations are shown in Figure 10a. Figure 10b
presents the calculated dielectric constants of the three mixes. No obvious differences
could be observed among the three different aggregate gradations. This confirms that
the AC dielectric constant is mainly affected by its component’s dielectric constants and
relative volumes and is independent of the aggregate gradation. Increasing the aggregate
dielectric constant would increase the AC dielectric constant, which is in agreement with
the sensitivity analysis of the theoretical specific gravity models [7].

Figure 10. Aggregate gradation for various asphalt concrete (AC) mixtures (a) and dielectric constants for various AC
mixtures having different aggregate dielectric constants (b).
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4.4. Effect of Material Heterogeneity
4.4.1. Vertical Air-Void Changing

To study the effect of vertical heterogeneity, vertical air-void distribution obtained
by Masad et al. [32] was used. The air void distributions of two field cores are shown in
Figure 11a as cores 1 and 2. The heterogeneous models were generated using the proposed
heterogeneous AC’s take-and-add generation algorithm, and the air-void distributions are
shown as cores 1 and 2 in Figure 11a. FDTD simulations were performed on the generated
models, and the received signals are shown in Figure 11b. Two different methods were
used to calculate the AC dielectric constants, including the reflection amplitude and TWTT
methods (see Equations (1) and (2)).

Figure 11. Air void distribution along the depth (a) and corresponding received signals from the simulation models (b).

For core 1, the calculated dielectric constant, using the reflection amplitude method, is
4.962, while it is 5.930 using the TWTT method. For core 2, the calculated dielectric constant,
using the reflection amplitude method, is 4.890 while it is 5.887 using the TWTT method.
In the case of varying vertical air voids, the calculated dielectric constants using the two
methods also differ by up to 1.0. In both cases, the results from the reflection amplitude
method are lower than the results from the TWTT method. This could be contributed to the
effect of shallow-depth air voids on the reflection amplitude method. The TWTT method,
however, calculates the average dielectric constants throughout the depth. Both cores have
higher air voids/lower density near the surface compared to the bottom. This suggests
that the TWTT method is more appropriate; especially when the air void content varies
throughout the AC layer depth.

4.4.2. Longitudinal Air-Void Changing

For longitudinal heterogeneity effect, a model was generated with varying air voids
between 6.0% to 10.0% along the GPR survey direction. The generated air-void distribution
was validated at different depths—20 mm, 60 mm, and 200 mm—of AC specimen as shown
in Figure 12a. The variation of air voids within a 60-mm depth shows a similar trend
as the variation of air voids within a 200 mm depth. Air voids within a 20-mm depth,
however, have a higher variation. Although constant air voids along the depth were set
when the model was constructed, air voids within different depths are not the same because
of the variation in the AC microstructure. Comparison between the dielectric constants,
calculated by the reflection amplitude method and the TWTT method, is relatively small
(0.1), as shown in Figure 12b.
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Figure 12. Air void distribution along distance (a) and dielectric constant along distance using the reflective amplitude and
TWTT methods (b).

The trend of dielectric constant along the survey direction varies. For example, at
0.3 m distance, the dielectric constant, calculated using the reflection amplitude method,
increases, but the dielectric constant, calculated using the TWTT method, decreases. The
trend of the dielectric constants, calculated using the reflection amplitude method, is closer
to the inverse of the variation of air voids within 20 mm depth. The relationship between
air voids and calculated dielectric constants is the same as the relationships shown in
Figure 9a. This suggested that dielectric constants using the TWTT method can indicate
an overall air void change in the case of longitudinal heterogeneity. On the other hand,
dielectric constants using the reflection amplitude method focus on the air-void change in
the thin layer close to the pavement surface.

5. Conclusions

This paper discusses the development of a heterogenous numerical model to simulate
ground-penetrating radar (GPR) wave interaction with pavement structure. The numerical
model was used to predict the dielectric constant of asphalt concrete (AC) from dielectric
properties of the mix’s three components. Laboratory experiment data were used to
verify the numerical simulation results. A take-and-add generation algorithm generated
the uneven air void distribution along vertical (depth) or longitudinal (traffic-moving)
directions in AC pavement layers. The effects of vertical or longitudinal heterogeneity
on the reflected signals were discussed. The findings of this study can be summarized
as follows:

1. A three-phase heterogeneous model was introduced to simulate the GPR reflected
signal utilizing the dielectric constant and volumetric properties of the AC compo-
nents: air, asphalt binder, and aggregates. The model predicts the AC density profile,
while capturing the AC heterogeneity and its components’ effects.

2. Sensitivity analysis shows that an increase in AC air voids and/or asphalt content
would decrease the AC’s dielectric constant, similarly when the aggregate dielectric
constant decreases. Aggregate gradation has no effect on the calculated dielectric
constant at the GPR frequency and the aggregate sizes used.

3. The calculated method of AC dielectric constant is important. The proposed numerical
model is able to simulate uneven air-void distribution in the AC pavement layer. For
vertical heterogeneity, the dielectric constant, calculated using reflection amplitude
and two-way travel time (TWTT) methods, can differ by 1. The reflection amplitude
method is more sensitive to AC density in the shallow layer, while the TWTT method,
calculates the average dielectric constants throughout the depth. Hence, the TWTT
method is suitable for thick AC pavement layers.

In future research, the variation of AC density and internal moisture content will be
applied in the numerical pavement model simultaneously to quantify the moisture in AC.
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