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Abstract: In intelligent technical multi-sensor systems, information is often at least partly redundant—
either by design or inherently due to the dynamic processes of the observed system. If sensors are
known to be redundant, (i) information processing can be engineered to be more robust against
sensor failures, (ii) failures themselves can be detected more easily, and (iii) computational costs
can be reduced. This contribution proposes a metric which quantifies the degree of redundancy
between sensors. It is set within the possibility theory. Information coming from sensors in technical
and cyber–physical systems are often imprecise, incomplete, biased, or affected by noise. Relations
between information of sensors are often only spurious. In short, sensors are not fully reliable. The
proposed metric adopts the ability of possibility theory to model incompleteness and imprecision
exceptionally well. The focus is on avoiding the detection of spurious redundancy. This article
defines redundancy in the context of possibilistic information, specifies requirements towards a
redundancy metric, details the information processing, and evaluates the metric qualitatively on
information coming from three technical datasets.

Keywords: redundancy analysis; possibility theory; multi-sensor systems; information fusion

1. Introduction

Multi-sensor systems exhibit redundancy inherently. This is especially true for intelli-
gent technical or cyber–physical systems (CPS)—such as industrial production systems,
power plants, transportation vehicles, or even technical mobile devices [1,2]. Sensors are
either intentionally designed to be redundant or redundancy inherently emerges due to
interrelated dynamic processes. For example, temperature, electric current, and frequency
characteristics of an electric motor may all be affected by damages to the motor’s bearing
and, thus, may provide redundant information in the context of the motor’s condition.
Redundancy allows a multi-sensor system to be more robust against sensor defects, en-
vironmental influences, or outlier measurements. It acts as a fail-safe to ensure that a
system remains continuously and fully operational. Redundancy comes with a cost—both
computationally and regarding the complexity of models. Knowing which sensors are
redundant or at least partly redundant allows to explicitly exploit the redundancy to make
a system more robust or to actively avoid computational costs. Determining which sensors
are redundant as well as quantifying the degree of redundancy is in large multi-sensor
systems no trivial task. This task of redundancy analysis is addressed both in information
fusion and machine learning methods.

Information fusion aims at reducing uncertainties by aggregating information from
multiple sensors or sources [3,4]. In addition to reducing uncertainty, redundant infor-
mation allows a fusion system both to increase its robustness and to identify unreliable,
drifting, or malfunctioning sensors [5–8]. Designing an information fusion system involves
the decision of which sensors are to be fused at which stage in the information processing.
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Sensors are usually grouped manually by their information quality, spatial proximity, or
semantic proximity such as in [9–11]. More generally, sensors are grouped by their expected
redundant behaviour. In modern systems consisting of large amounts of sensors and other
information sources, a manual approach is not feasible. Identifying redundant sensors
automatically from training data benefits information fusion system design. In machine
learning, redundancy is either taken advantage of implicitly, for instance random forests,
or identified (and removed) explicitly, such as in the field of feature selection. In feature
selection, redundant information is conceived as unnecessary burden for the training of
the machine learning model. Redundant features increase computational costs and diffi-
culty of the learning task without providing new information [12]. Thus, quantifying the
redundancy between features is beneficial in this field also.

Intelligent technical or cyber–physical systems make it particularly challenging to
identify redundancies. In these systems, sensors may be unreliable and information
is often affected by aleatoric and epistemic uncertainties. Aleatoric uncertainties are
characterized by non-deterministic, random processes which can be modelled statistically,
such as noise. Epistemic uncertainties stem from a lack of information, imprecision, or bias.
Such incomplete information manifests itself at two levels:

• At the level of single sensor measurements, lack of information, e.g., about the sensor’s
detailed characteristics, tolerances, or physical limits, results in imprecise readings.
Thus, a sensor is only able to give an approximate measurement. As a result of this,
information is often provided in intervals, fuzzy intervals, or uncertainty distributions
(either probabilistic or possibilistic) [13].

• Furthermore, during training, the monitored process may only by observable in
specific states. For example, a production machine may create a lot of training data,
but these data often originate from the same machine state, that is, data about states of
failure are rare. This leads to ambiguous and fuzzy classes [14] as well as premature
detection of interrelations (such as redundancy) between sensors. The risk of detecting
spurious correlations [15] is greatly amplified in intelligent technical or cyber–physical
systems. Two examples of premature detection of variable interrelation are shown
in Figure 1.

x1

x2

(a)
x1

x2

population data
sample data

(b)

Figure 1. Examples of variables x1, x2 ∈ R showing (a) similar behaviour which is not apparent in the sample data and
showing (b) non-similar behaviour although sample data indicate otherwise (which is an example of spurious correlation).
These kinds of biased or skewed sample data commonly occur, for example, in production systems. Production systems
execute tasks repetitively in a normal (as in functioning properly) condition. In this case, data are not sampled randomly
and do not match the population distribution.
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This contribution proposes a metric for quantifying redundancy intended for the
application in technical or cyber–physical multi-sensor systems. It is a continuation and
extended work of a conference contribution published in [16]. To cope with incomplete
information, the proposed redundancy metric is embedded in the framework of possibility
theory. Possibility theory is specifically conceived to represent and handle imprecise in-
formation. In this article, it is presented and discussed how possibilistic measures, such
as similarity, specificity, or consistency, fit in and contribute to a possibilistic redundancy
metric. A focus is on avoiding premature detection of spurious relations. Only if sufficient
evidence is available that the information does not originate from the same repetitive pro-
cess state, does the metric indicate redundancy so that further data processing algorithms
are not impeded negatively. Otherwise, machine learners would be deprived of crucial
information and information fusion systems would detect reliable sensors as unreliable.

In the remainder of this contribution, single pieces of information are referred to
as information items which are provided by an information source (nomenclature after
Dubois et al. [4]).

Definition 1 (Information Item). Consider an unknown entity v and a non-empty set of possible
alternatives XA = {x1, . . . , xn} with n ∈ N>0. An information item models information in the
form of plausibilities or probabilities about v regarding XA. An information item can, e.g., be a set,
an interval, a probability distribution, or a possibility distribution. Consequently, an item may be
expressed with certainty (v = x or, assuming A ⊂ XA, v ∈ A), may be affected by uncertainty
(v is probably x or v is possibly x), or may be expressed imprecisely (x1 < v < x2).

Definition 2 (Information Source). An information source S provides information items. It is
an ordered concatenation of information items S = {I1, I2, . . . , Im} with m ∈ N>0. Each Ij
represents an information item at instance j ∈ {1, . . . , m}. In case of multiple information sources,
indexing is applied as follows: Let Si with i ∈ N>0 be an information source, then its information
items are indexed with Ii,j. An information source may be, for example, a technical sensor, a variable,
a feature, or a human expert.

The following Section 2 reviews definitions of redundancy in the state-of-the-art and
gives an overview of how redundancy is quantified in related work. Section 3 recaptures
the fundamentals of possibility theory and discusses both differences and advantages with
regard to probability theory. The proposed possibilistic redundancy metric is then detailed
in Section 4. In Section 5, the redundancy metric is implemented on several technical
datasets and qualitatively evaluated. A conclusion and an outlook are given in Section 6.

2. Redundancy in Related Work

In order to be able to quantify redundancy between sources, a precise definition of
redundancy is required first. The use of the term redundancy across scientific works and
literature of different fields carries often slight variations in meaning (partly due to the
vague linguistic use of the term redundancy). Although the focus of related work is often
on actively reducing redundancy in sets of features, variables, data, or sensors, redundancy
itself is often only referred to implicitly, e. g., in [12,17,18]. Only rarely is redundancy
defined explicitly. One of the earliest and fundamentally important explicit definitions of
redundancy is given within the information theory [19] in which redundancy is defined as
the difference between the maximum possible information content in a transmission and
its actual transmitted content [20]. Redundancy occurs, here, due to transmitted symbols
which carry information already present in the message.

In further scientific works and fields, two slightly different interpretations of redun-
dancy can be distinguished. In their paper regarding fuzzy rule systems, Lughofer and
Hüllermeier [21] touch the issue of two interpretations and state that redundancy can either
be reflected by “inclusion” or “similarity”. Inclusion means that a piece of information is
deemed as redundant if, and only if, it does not contribute or add new information to an
already existing state of knowledge—it is included in already known information. The
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notion of similarity refers to information items or sources which are exchangeable with
each other.

Works focusing on knowledge bases, fuzzy rule bases, or association rule mining
often define redundancy with respect to inclusion. Dubois et al. [22] define redundancy
in the context of fuzzy knowledge bases. According to their work, an information item,
represented by a fuzzy set or possibility distribution, is regarded as redundant iff an
already known information item is not changed by combining both items. Similarly,
Dvořák et al. [23] present an example of a redundant fuzzy rule stating that a rule is
redundant if their antecedent is covered (included) by another rule (and both rules have the
same consequences). Bastide et al. [24] and Díaz Vera et al. [25] specify within association
rule mining that a rule is redundant “if it conveys the same information—or less general
information—than the information conveyed by another rule”. Zhang et al. [26] define in
the context of document analysis that a document is redundant if all relevant information
is already covered in previous documents. From these considerations, it can be gathered
that the first type of redundancy is directional dependent, i.e., if an information item
is redundant with regard to a second item, then it does not follow that the second one
is redundant with regard to the first item. In the following, this form of redundancy is
referred to as Redundancy Type I.

Similarity as a measure of redundancy can often be found in works regarding informa-
tion fusion or feature selection. In information fusion as well as sensor fusion, redundant
information results from information sources monitoring the same objects, concepts, or
features in an environment [1,17]. By perceiving or measuring the same properties indepen-
dently, sources provide similar pieces of information. In [10,11,27], condition monitoring
fusion systems applied to technical machines are manually orchestrated and designed so
that sensors are fused which observe the same parts of a machine. In this way, the emerging
redundancy is exploited to handle conflicts between sensor readings. Interpreting redun-
dancy as similarity between information sources is also dominantly found in the field of
feature selection. For example, Auffarth et al. [28] write that “redundancy measures how
similar features are”. Chakraborty et al. [29] and Pfannschmidt et al. [30,31] argue that
features or variables include redundancy if not all relevant features are required for a target
application, that is, there exists no unique minimum feature set to solve a given task. This
kind of redundancy, based on similarity of information, is in this work hereafter referred to
as Redundancy Type II.

There have been multiple approaches proposed to determine or measure the redun-
dancy of information sources based on their similarity—extensively within the probability
theory. Multiple works state that redundant information sources are highly correlated [32,33].
Yu and Liu [34] report furthermore that it is widely accepted that information sources are
regarded as redundant if they are perfectly linearly correlated. Thus, Hall [33] makes use
of the Pearson’s correlation coefficient to measure the redundancy between information
sources. The term correlation-based feature selection goes back to the doctoral dissertation
of Hall. Several papers build upon the correlation-based feature selection to improve
implementations and fasten the search for redundancies in sets of sources such as [35,36].
More recent applications of correlation as a redundancy measure can be found in [8,37–39].
Goswami et al. [37] cluster features based on their redundancy determined using the
Pearson’s correlation coefficient. In [38,39], redundant features are eliminated based on
correlation coefficients for applications in biology, whereas Berk et al. [8] determine re-
liability and redundancy of sensors in an automated driving scenario. However, there
has been some debate in the feature selection community about the appropriateness of
using correlation-based metrics. Guyon et al. [12] argue that correlation does not imply
redundancy. They give simple examples where two features are highly correlated but both
are clearly required to solve a classification task.

Another popular method to measure Redundancy Type II probabilistically is mutual
information (MI) based on the information theory. Battiti et al. [40] apply MI both as
a measure for redundancy as well as relevance of features. Of particular note is the
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minimum redundancy–maximum relevance selection algorithm proposed by Ding and
Peng [18,41] which incorporates mutual information for quantifying redundancy. MI is
more recently applied as a redundancy measure in [42] and extended to work with multi-
label feature selection [43,44] or non-linear data [45]. Mutual information is based on the
entropy of a random variable and requires knowledge about the underlying probability
distribution of data. This knowledge is in technical systems often hard to obtain. Mutual
Information, unlike Pearson’s correlation coefficient, does not assume a linear correlation
between features, i.e., it is able to detect redundancy if data are non-linearly correlated.
However, both the correlation coefficient and MI assume that information is available as
precise singleton values. They are not readily applicable to information which is imprecise
or vague such as information modeled with an uncertainty distribution—probabilistic
or possibilistic.

Works which address redundancy between information sources outside the probability
framework are comparatively rare. Methods that come closest to quantifying redundancy,
such as [5,46–48], identify non-redundancy in a group of information sources. These
methods assume that sources are at least partly redundant and, based on this assumption,
aim to detect unreliable sources which are characterized by non-redundant behaviour
such as inconsistencies. Both Ricquebourg et al. [46,47] and Ehlenbröker et al. [5] monitor
streaming data to identify unreliable sources either by quantifying (i) their degree of conflict
based on the Dempster–Shafer theory or (ii) their degree of inconsistency based on the
possibility theory. Since both methods only identify non-redundant behaviour, they cannot
readily be considered as redundancy metrics.

In the remainder of this paper the focus is on Redundancy Type II (based on similar-
ity of information) since multi-sensor systems for machine analysis exploit this kind of
redundancy—as described or applied in [1,10,11,17,27]. Nonetheless, Redundancy Type
I (information is evaluated against already known information) is discussed wherever
necessary or appropriate.

3. Possibility Theory

The possibility theory (PosT) was introduced by Zadeh [49] in 1978 motivated by
the observation that probability theory (ProbT) handles epistemic uncertainty only in-
sufficiently. Zadeh defines PosT as an extension of fuzzy sets in the sense that possibility
distributions allow uncertainties (meaning as a statement of confidence or lack thereof)
within fuzzy information of natural language [50]. Therefore, fuzzy set theory has the
same relation to PosT as the measurement theory to ProbT, that is, crisp sets and random
variables are the natural variables of ProbT while fuzzy sets and fuzzy numbers are the
natural variables of PosT [51]. Since its first introduction, the possibility theory has been
extensively advanced by Dubois and Prade (e.g., in [4,13,52–55]) and Yager (e.g., in [56–60]),
among others. In the following, we assume a numerical, real-valued representation of
possibility scales because we focus on measurements in multi-sensor systems (cf. [4] for an
overview of qualitative and numerical possibility scales).

3.1. Basics of Possibility Theory

Let X be a set of mutually exclusive and exhaustive alternative events, i.e., the en-
tirety of possible events, then X is referred to as the universe of discourse or frame of
discernment [61]. Let v ∈ X be an existing but unknown or imprecisely known element—
the true value of v is unknown. Then a possibility distribution is a mapping

πv : X → [0, 1]. (1)

If πv(x) > πv(x′), then v = x is more plausible than v = x′. A possibility of πv(x) = 0
means that it is impossible that v = x. The case of πv(x) = 1 is interpreted that there is
no evidence preventing v = x, i.e., x is a completely plausible value for v = x. Possibility
distributions allow to model two extreme cases of knowledge. Total ignorance exists if
nothing is known about v—all alternatives are fully possible, i.e., ∀x ∈ X : πv(x) = 1. The
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other extreme situation in which only a single unique alternative x0 is completely possible
and all other alternatives are impossible, i.e., π(x0) = 1 and ∀x ∈ {X \ x0} : π(x) = 0 is
referred to as complete knowledge. A possibility distribution is said to be normal if, for a
subset A ⊆ X, ∃x ∈ A : πv(x) = 1.

There exists a special relationship between possibility distributions and membership
functions of fuzzy sets (µ : X → [0, 1]) [49]. A membership function can readily serve
as a possibility distribution although the interpretation of both is different [62]. Fuzzy
membership functions convey a degree of truth, whereas possibility distributions convey a
degree of certainty (confidence) [50]. This is helpful in practical implementations because
mathematical operations defined in the context of fuzzy sets—such as similarity measures
or t-norms—can often be applied to possibility distributions.

An example of a possibility distribution is given in Figure 2. Note that outside of this
section, the shortened notation π(x) = πv(x) is used.

0 1
0

0.5

1

x

π

B

A

Figure 2. A possibility distribution πv. For any element x ∈ B, v = x is fully plausible; for
x ∈ (A∩ Bc), v = x is only partially plausible; and for x ∈ Ac, v = x is impossible. The accompanying
possibility and necessity measures for A, B are: Π(A) = 1, N(A) = 1 and Π(B) = 1, N(B) = 0.5.

Based on possibility distributions, the possibility and necessity of a crisp set can be
determined by two dual possibilistic set functions. Given two crisp sets A, B ⊆ X and the
complement set Ac, the possibility measure and necessity measure are defined by

Π(A) = sup
x∈A

πv(x), N(A) = 1−Π(Ac) = inf
x/∈A

(1− πv(x)),

respectively [52]. Possibility theory is then defined axiomatically as an independent
theory by

Π(∅) = 0,

Π(X) = 1, (2)

and the maxitivity axiom

Π(A ∪ B) = max(Π(A), Π(B))

in contrast to the additivity axiom of probability theory.

3.2. Possibility Theory in Comparison to Probability Theory

The main difference between possibility theory and probability theory is that ProbT
models random phenomena quantitatively whereas PosT models incomplete information
qualitatively. Possibility theory is specifically designed to handle epistemic uncertainties
such as missing, imprecise, or sparse information [63]. On the other hand, the presence
of only incomplete information is precisely the situation in which the probability of an
event is ill-known [62]. This argument motivates the proposition of this paper: to embed
a redundancy metric which functions in poorly informed scenarios. Specifically, our
contribution draws upon advantages of PosT over ProbT such as:
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• The application of PosT does not require statistical data to be available. Consequently,
it is easier and takes less effort to construct sound possibility distributions than
probability distributions (cf. [54] for methods to construct possibility distributions).

• In contrast to ProbT, both imprecision and confidence can be modelled distinctly
within a possibility distribution. Imprecision is modeled by allowing multiple alter-
natives to be possible, e.g., it may be known that v ∈ A, but not which value v takes
within A precisely. Confidence is expressed by the degree of possibility assigned to
a value x, i.e., if 0 < πv(x) < 1, it is uncertain if v = x is fully possible. It follows
directly that confidence is also represented in the duality measure of Π and N as can
be seen in the three extreme epistemic situations [50]: (i) if v ∈ A is certain, Πv(A) = 1
and Nv(A) = 1, (ii) if v /∈ A is certain, Πv(A) = 0 and Nv(A) = 0, and (iii) in case of
ignorance, Πv(A) = 1 and Nv(A) = 0.

Nonetheless, as pointed out by Dubois et al. in [63], PosT is a complementary alter-
native to ProbT but not a general substitute. If sound statistics are available—which is in
technical systems often not the case—then probabilistic approaches are to be preferred.
Even if probabilistic uncertainty distributions are available, possibilistic methods can still
be applied with the help of probability-possibility transforms [53,64–67]. Since possibilistic
representations are inherently imprecise, they convey less information than a probability
distribution. It follows that in a transform information is lost. In applying probability-
possibility transforms it has to be kept in mind that, because of this loss of information,
there is no inverse transformation.

3.3. Fusion within Possibility Theory

Consider several information sources {S1, . . . , Sn} which all provide an information
item in the form of πi, i ∈ {1, . . . , n} about the same unknown element v in the same frame
of discernment X. Information fusion is then carried out by a function fu : [0, 1]n → [0, 1].
The aim of information fusion in general is to produce information of higher quality [2]. In
the context of possibility theory, fusion is driven by the minimum specificity principle, i.e.,
any hypothesis which is not explicitly known to be impossible must not be rejected [50].

In PosT, there are several approaches towards the fusion of possibility distributions [61,63].
Deciding which method is the most appropriate depends on the consistency of information
in {πi}, the reliability of the available information, and the knowledge which specific
Si is not reliable. Consistency within a group of possibility distributions is formally
defined [13] as

h(π1(x), . . . , πn(x))) = max
x∈X

(
min

i∈{1,...,n}
(πi(x))

)
. (3)

The different approaches, then, are:

• Conjunctive fusion modes implement the principle of minimal specificity most
strongly. By applying a triangular norm (t-norm),

π(fu) = fu(π1(x), . . . , πn(x)) = t(π1(x), . . . , πn(x)),

conjunctive fusion reduces the information to alternatives all sources can agree on.
An overview of t-norms, and their counterpart s-norms (also referred to as t-conorms),
can be found in [68]. If at least one source is inconsistent with the remaining sources,
i.e., the sources cannot agree on a fully plausible alternative, then the fused possibility
distribution is subnormal (max

(
π(fu)

)
< 1) or even empty. This violates the axiom (2)

of PosT that at least one alternative in X must be fully plausible. A renormalisation

π(fu) =
t(π1(x), . . . , πn(x))
h(π1(x), . . . , πn(x))

(4)

prevents subnormal fusion results, but is numerically unstable if at least one source is
fully inconsistent, i.e., h(π1(x), . . . , πn(x)) = 0.
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• In case of fully inconsistent possibility distributions at least one information source
must be unreliable. Assuming it is not known which source is unreliable, disjunctive
fusion modes apply s-norms so that as much information is kept as possible:

π(fu) = s(π1(x), . . . , πn(x)). (5)

Disjunctive fusion is generally not desirable because the fusion does not result in
more specific information.

• Adaptive fusion modes combine conjunctive and disjunctive fusion methods. These
modes switch from conjunctive to disjunctive aggregation depending on which of
the alternatives the sources are inconsistent for. An adaptive fusion mode, proposed
in [69], is

π(fu) = max
(

t(π1(x), . . . , πn(x))
h(π1(x), . . . , πn(x))

, min(1− h(π1(x), . . . , πn(x))), s(π1(x), . . . , πn(x))
)

. (6)

Thus, fusion results in a global level of conflict (1− h(·)) for all alternatives the sources
cannot agree on. Otherwise the adaptive fusion reinforces by conjunction.

• A majority-guided fusion searches for the alternatives which are supported by most
sources. This is similar to a voting style consensus. Majority-guided fusion requires
the identification of a majority subset—usually the subset with highest consistency
and maximum number of sources. The possibility distributions of this subset are fused
conjunctively. Information outside of the majority subset is discarded which violates
the fairness principle postulated in [4]. Applications of majority-guided fusion can be
found in previous works of the authors of this contribution [6,7].

Conjunctive, disjunctive, and adaptive fusion are exemplary shown in Figure 3.

0 1
0

1

x

π

(a)
0 1

0

1

x

π

(b)

0 1
0

1

x

π

π1
π2

π(fu)

(c)

Figure 3. Different fusion approaches in possibility theory. Part (a) shows conjunctive fusion (4) using the minimum
operator as t-norm, (b) illustrates disjunctive fusion (5) using the maximum operator as s-norm, and (c) shows the adaptive
fusion rule (6) presented in [69] (also relying on minimum and maximum operators).

4. Quantifying Redundancy within the Possibility Theory

Redundancy metrics, such as Pearson’s correlation coefficient or mutual information,
are not able to handle epistemic uncertainty or incomplete information intrinsically. In
this section, possibilistic redundancy metrics for information sources as well as informa-
tion items are proposed which fill this gap. These metrics are designed (i) to be able
to process imprecise data affected with uncertainty distributions and (ii) to not detect
spurious redundancy. They are intended to be favourable in applications in which in-
formation is systemically scarce, incomplete, or biased, such as in intelligent technical
multi-sensor systems.
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Since the redundancy of information sources is based on the redundancy of their
information items, the latter are formalized first in Section 4.1. Following this, it is presented
in Section 4.2 how the single redundancy assessments of items are combined to an overall
redundancy metric. The two types of incomplete information, as introduced in Section 1,
are addressed in this two step procedure. Lack of information at the sensor measurement
level (uncertainty distributions) is covered on information item level, whereas incomplete
information caused by biased or skewed data (see Figure 1) is dealt with on information
source level. In addition to incomplete information, the effects of unreliable information
on the redundancy metric are discussed. Especially in large multi-sensor systems, it
is likely that unreliable information sources are present. It is, therefore, advantageous
for a redundancy metric if it is robust against such unreliable or sporadically unreliable
information sources (similar as fusion methods consider unreliable sources as described
in Section 3.3).

4.1. Redundant Information Items

Information items can either be type I or type II redundant (see Section 2). Redundancy
Type I and Redundancy Type II are defined and discussed separately. In the following,
information items are provided as possibility distribution, i.e., I = π.

Definition 3 (Redundancy Type I). An information item is type I redundant if the carried
information is already included in previously known information. Given an information item I
and an unordered set of information items {I1, . . . , In} with n ∈ N>0, a possibilistic redundancy
metric r(I)(I, {I1, . . . , In}) quantifies the degree of redundancy of I towards {I1, . . . , In}. A metric
for Redundancy Type I satisfies the following properties:

• Boundaries: Information items can be minimally and maximally redundant. Therefore, r(I)

is minimally and maximally bounded: r(I) ∈ [0, 1].
• Inclusion (Upper Bound): An information item I1 is fully redundant in relation to I2 if it

encloses (includes) I2.
• Lower Bound: An information item is non-redundant if it adds new information. Addition-

ally, an item I1 is fully non-redundant in relation to I2 if I1 and I2 disagree completely on the
state of affairs, i.e., in terms of possibility theory h(π1, π2) = 0.

• Identity: Two identical information items are fully redundant, i.e., r(I)(I, I) = 1.

Redundancy Type I is not bidirectional or symmetric, i.e., if r(I)(I1, I2) > 0 6=⇒ r(I)(I2, I1) > 0.

Definition 4 (Redundancy Type II). Information items are type II redundant if they convey
similar information with regard to a given task. This given task can be solved relying on any
one of the information items. Let I be a set of unordered information items and P(I) all possible
combinations of information items, then Redundancy Type II is a function r(II) : P(I) → [0, 1].
Similarly to r(I), r(II) is required to satisfy the properties of boundaries and identity as defined in
Definition 3. Additionally, it has the following properties:

• Symmetry: A redundancy metric r(II) is symmetric in all its arguments, i.e., r(II)(I1, I2, . . . , In)

= r(II)
(

Ip(1), Ip(2), . . . , Ip(n)

)
for any permutation p on N>0.

• Non-Agreement (Lower Bound): Information items are fully non-redundant if they disagree
completely on the state of affairs, i.e., they do not agree on at least one alternative in the frame
of discernment to be possible, i.e., h(π1, π2) = 0.

4.1.1. Redundancy Type I

An information item represented by a possibility distribution π1 is completely type
I redundant iff it includes the previously known information π2 [22]. This notion stems
originally from the fuzzy set theory. In this context, a fuzzy set A includes another set B iff



Sensors 2021, 21, 2508 10 of 36

B ⊆ A. Relying on the mathematical closeness between fuzzy memberships and possibility
degrees (µ = π), complete redundancy is then determined as follows:

r(I)(π1, π2) =

{
1 if and only if ∀x ∈ X : π2(x) ≤ π1(x),
0 otherwise .

(7)

This formalization of a Redundancy Type I measure determines whether an informa-
tion item is completely redundant or not at all (r(I) = 1 or r(I) = 0). As soon as a possibility
distribution does not completely include the already known distribution, it is regarded as
completely non-redundant. For practical purposes in information fusion and multi-sensor
systems, it is helpful to determine grades of redundancy. In the following a metric of type I
is proposed which uses the real-valued, continuous space [0, 1].

This metric is based on the notion that information is altered (preferably: gained)
by considering and fusing an additional possibility distribution. Due to the additional
consideration of π1, the fused possibility distribution obtained by fu(π1, π2) has a different
uncertainty than π2. It is more or less specific. The specificity of a possibility distribution
is a measure of its information content. The more specific π, the more information is
contained in π [61]. Specificity has been addressed by Zadeh [49], Dubois et al. [53], and
Mauris et al. [66] as a relative quantity between two information items (π1 is more specific
than π2 if ∀x ∈ X : π1(x) < π2(x)). Measures which determine specificity quantitatively
have been proposed by Yager [57,58,60] and Higashi and Klir [70,71].

According to Yager, a specificity measure spec(π) ∈ [0, 1] has to satisfy four conditions:

1. spec(π) = 0 in case of total ignorance, i.e., ∀x ∈ X : π(x) = 1.
2. spec(π) = 1 iff in case of complete knowledge, i.e., only one unique event is totally

possible and all other events are impossible.
3. A specificity measure de- and increases with the maximum value of π(x), i.e., let πk

be the kth largest possibility degree in π(x), then dspec(π)
dπ1

> 0.

4. ∀k > 2 : dspec(π)
dπk

≤ 0, i.e., the specificity decreases as the possibilities of other values
approach the maximum value of π(x).

An uncertainty measure u(π) ∈ [0, 1] is then an order reversing one-to-one mapping
of spec with u(π) = 1 if spec(π) = 0. In [70] the reverse mapping is obtained by u(π) =
1− spec(π). These measures of possibilistic uncertainty and possibilistic specificity are the
counterpart of Shannon’s probabilistic entropy [50,70].

Based on [71], the gain of information g : [0, 1]2 → [0, 1] when a possibility distribution
π2 is replaced by π1 is

g(π1, π2) = u(π2)− u(π1). (8)

The information gain quantifies the loss of uncertainty or gain in specificity. If
g(π1, π2) < 0, then by replacing π2 with π1 uncertainty is increased.

Measures of possibilistic uncertainty interpret possibility distributions as fuzzy sets
and make use of fuzzy set α-cuts. Let A ⊆ X and the set Aα be the crisp subset of A
which contains all elements x for which π(x) ≥ α with α ∈ [0, 1]. In this way, an α-cut
operator reduces a fuzzy set to a crisp set. An uncertainty measure for discrete frame of
discernments based on [71] is

u(π) =
1

log2(|X|)
·
∫ αmax

0
log2(|Aα|)dα

in which |A| denotes the cardinality of set A and αmax = maxx∈A(π(x)). A measure of
specificity for real-valued, continuous frame of discernments is given in [57,58,60]:

spec(π) = αmax −
1

(xb − xa)
·
∫ αmax

0

(
max
x∈Aα

x− min
x∈Aα

x
)

dα, (9)
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with xa and xb being the borders of X (X = [xa, xb]). For (9), it is proven in [57,58,60] that
the measure satisfies the four requirements for specificity measures. The integral in (10) is
equivalent to the area under A [56]. Therefore, (9) is equal to

spec(π) = αmax −
1

(xb − xa)
·
∫ xb

xa
π(x)dx

= max
x∈X

π(x)− 1
(xb − xa)

·
∫ xb

xa
π(x)dx.

(10)

Relying on the specificity measure in (10), the information gain defined in (8) is the
basis of the proposed Redundancy Type I measure so that

r(I)(π1, π2) = (1− |g(fu(π1, π2), π2)|) · h(π1, π2), (11)

i.e., the gain of information by fusing π1 and π2 is the basis of r(I). The operator | · | means
in this case the absolute value. The multiplication with h(π1, π2) is necessitated by cases in
which inconsistent possibility distributions would otherwise be deemed redundant. Con-
sider (11) without consistency (1− |g(fu(π1, π2), π2)|) and take, for example, two triangular
possibility distributions π1, π2 with spec(π1) = spec(π2) and 0 < h(π1, π2) < 1. Let the
distributions π1, π2 be positioned on the frame of discernment so that spec(fu(π1, π2)) =
spec(π1) = spec(π2). In this example, no information is gained by fusing π1 and π2 and so
1− |g(fu(π1, π2), π2)| = 1. Information is definitely changed. This needs to be reflected in
a type I redundancy metric. As a result of this, (11) is upper bounded by h(π1, π2).

Figure 4 shows examples of possibility distributions and their type I redundancy levels.

xa xb
0

1

x

π

(a)
xa xb

0

1

x

π

(b)

xa xb
0

1

x

π

π1
π2

π(fu)

(c)

Figure 4. Possibility distributions and their fusion results as examples for the proposed type I redundancy metric. In
(a), r(I)(π1, π2) = 1 and 0 < r(I)(π2, π1) < 1. Subfigure (b) shows a case in which both possibility distributions are not
redundant, i.e., 0 < r(I)(π1, π2) < 1 and 0 < r(I)(π2, π1) < 1. Although the fusion result is less specific (more uncertain) in
(c) due to renormalisation, both π1 and π2 are not redundant (similar to (b)).

The degree of redundancy determined by (11) is dependent on how much the fusion
changes the possibility distribution. Therefore, it is obvious that the choice of the fusion
operator affects the redundancy measure. For the following propositions and proofs,
it is assumed that fusion is carried out by applying the conjunctive fusion rule (4) if
h(π1, π2) > 0 and by applying the disjunctive fusion rule (5) if h(π1, π2) = 0. The t-
norm used for fusion is the minimum operator. Furthermore, possibility distributions are
assumed to be normal.

Proposition 1. The metric r(I) (11) satisfies the boundaries property of Definition 3, i.e., it is
bounded by [0, 1].
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Proof. The redundancy r(I) is based upon the information gain g (8) and the consistency
of possibility distributions h (3). Both g and h are defined to be in [0, 1]. It follows that
r(I) ∈ [0, 1].

Proposition 2. The metric r(I) (11) satisfies the inclusion (upper bound) property of Definition 3,
i.e., r(I)(π1, π2) = 1 if and only if ∀x ∈ X : π2(x) ≤ π1(x).

Proof. For r(I)(π1, π2) = 1, g(π1, π2) = 0 and h(π1, π2) = 1. As a result that π1
and π2 are assumed to be normal and π1(x) ≥ π2(x) ∀x ∈ X, h(π1, π2) = 1. If
h(π1, π2) = 1, then g(π1, π2) = 0 is only possible if either fu(π1, π2) = π1 or fu(π1, π2) =

π2. Since h(π1, π2) = 1, fu(π1, π2) = minx∈X(π1(x),π2(x))
h(π1,π2)

= minx∈X(π1(x), π2(x)). If
π1(x) ≥ π2(x) ∀x ∈ X, then minx∈X(π1(x), π2(x)) = π2. The information gain is then
g(fu(π1, π2), π2) = g(π2, π2) = 0, which implies that r(I)(π1, π2) = 1 iff ∀x ∈ X : π2(x) ≤
π1(x).

An example of a fully redundant possibility distribution is shown in Figure 4a. If at
least π2 is subnormal or if other t-norms than the minimum operator are used, then
fu(π1, π2) 6= π2. In this case the inclusion property is not strictly satisfied because
r(I)(π1, π2) � 0 instead of r(I)(π1, π2) = 1. In practical implementations it is still rea-
sonable to apply other t-norms than the minimum operator, because the type I redundancy
is still close to one.

Proposition 3. The metric r(I) (11) satisfies the lower bound property of Definition 3, i.e.,
r(I)(π1, π2) = 0 if h(π1, π2) = 0. Additionally, r(I)(π1, π2) = 0 if π2 models total ignorance
and π1 complete knowledge.

Proof. For r(I)(π1, π2) = 0 to be true, g(fu(π1, π2), π2) = 1 or h(π1, π2) = 0. Therefore,
it is straightforward that r(I)(π1, π2) = 0 if h(π1, π2) = 0. For g(fu(π1, π2), π2) = 1, it
needs to be true that u(π2)− u(fu(π1, π2)) = 1 and spec(fu(π1, π2))− spec(π2) = 1. This
is only true if (i) spec(fu(π1, π2)) = 1 and (ii) spec(π2) = 0 because spec ∈ [0, 1]. The latter
requirement can be proven with (9). For spec(π2) = 0,

∫ αmax
0 (maxx∈Aα

x−minx∈Aα
x)dα =

αmax · (xb − xa). This is only true if Aαmax = X which is total ignorance. The first require-
ment can only be true if fu(π1, π2) represents complete knowledge per definition. The
fusion of π1 and π2 can only result in complete knowledge if either π1 or π2 model com-
plete knowledge. As a result that π2 cannot represent both total ignorance and complete
knowledge, spec(π1) = 1.

Proposition 4. The metric r(I) (11) satisfies the identity property of Definition 3, i.e., r(I)(π1, π2) = 1
if π1 = π2.

Proof. If π1 = π2, then g(π1, π2) = 0 and h(π1, π2) = 1. It follows that r(I)(π1, π2)= 1.

As defined in Definition 3, a redundancy metric should also yield meaningful results
when more than two information items are involved, for instance if an information item
is compared to a set of known information items. In such cases the fusion result is input
into (11) instead of the single information items. Consider two sets of (unordered) informa-
tion items I1 = {I1,1, I1,2, . . . , I1,n} and I2 = {I2,1, I2,2, . . . , I2,m} represented by possibility
distributions. A set of information items I is different from an information source insofar
that it is unordered. The items in the set I could be, for example, coming from several
sources at the same instance. Given the sets I1 and I2, the redundancy is determined by

r(I)(I1, I2) = r(I)(fu(I1), fu(I2)).

For the design of information fusion systems, it is of interest which sensors or infor-
mation sources form clusters with high internal redundancy. Identifying such clusters



Sensors 2021, 21, 2508 13 of 36

may be highly computational complex in large-scale multi-sensor systems. Given a large
number of information sources, the following propositions may be helpful in reducing
computational efforts. The proofs for these propositions are given in Appendix A.1. It is
assumed that (i) fusion is carried out conjunctively (4) if h(π1, π2) > 0 and disjunctively (5)
if h(π1, π2) = 0, (ii) that minimum and maximum operator fill the roles of t-norm and
s-norm, and (iii) that all possibility distributions are normal.

Proposition 5. If r(I)(π1, π2) = 1 and r(I)(π2, π3) = 1, then r(I)(π1, π3) = 1.

Proposition 6. Let π1 and π2 to be two possibility distributions which are fully consistent
(h(π1, π2) = 1). If r(I)(π3, π1) = 1 and r(I)(π3, π2) = 1, then r(I)(π3, {π1, π2}) = 1.

Corollary 1. r(I)(π3, {π1, π2}) = 1 does not imply r(I)(π3, π1) = 1 or r(I)(π3, π2) = 1.

Proposition 7. If r(I)(π1, π3) = 1 and r(I)(π2, π3) = 1, then r(I)({π1, π2}, π3) = 1.

4.1.2. Redundancy Type II

Redundancy Type I has been derived from the notion of fuzzy subsets and the change
of specificity if new information items are considered. Redundancy Type II is more strict in
the sense that information items are only considered to be redundant if they are similar, i.e.,
they convey the same information content. They are replaceable with each other without
losing information in the process. In this respect, a set of information items is strictly
similar if, in case of relying only on any single item, no information is lost at all and highly
similar if only a small amount of information is lost.

Consequently, a type II redundancy measure which is set within possibility theory
should be based on possibilistic similarity measures. Properties of such similarity measures
have been given in [61,72,73], which define similarity to be a measure between only two
possibility distributions. A definition adapted to sets of possibility distributions is proposed
as follows:

Definition 5 (Possibilistic Similarity Measure). Let p = {π1, π2, . . . , πn} be an unordered
set of possibility distributions defined on the same frame of discernment X. Then a possibilistic
similarity measure is a function sim : π(x)n → [0, 1] satisfying the following properties:

• Boundaries: It is reasonable to assume that possibility distributions can be minimally and
maximally similar. The measure sim(·) is therefore bounded. It is normalized if sim(p) ∈
[0, 1].

• Identity relation (upper bound): A set of possibility distributions is maximally similar if
they are identical, i.e., sim(π, π, . . . , π) = 1 for any π. The reverse is not necessarily to
be true. A set of possibility distributions with sim(p) = 1 does not imply that all π ∈ p
are identical.

• Non-agreement (lower bound): The non-agreement property defines that any set of possi-
bility distributions which cannot agree on a common alternative x to be possible are maximal
dissimilar, i.e.,

sim(p) = 0 if h(p) = 0.

• Least agreement: A set of possibility distributions p is at most as similar as the least similar
pair (π, π′) ∈ p:

sim(p) ≤ min
(π,π′)∈p

(
sim
(
π, π′

))
.

• Symmetry: A similarity measure is a symmetric function in all its arguments, that is,

sim(π1, π2, . . . , πn) = sim
(

πp(1), πp(2), . . . , πp(n)

)
for any permutation p on N>0.

• Inclusion: For any π1, π2, π3, if ∀x ∈ X : π1(x) ≤ π2(x) ≤ π3(x), then sim(π1, π3) ≤
sim(π1, π2) and sim(π1, π3) ≤ sim(π2, π3).
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As a result of the intuitive closeness of Redundancy Type II to similarity measures, it
is proposed that

r(II)(p) = sim(p). (12)

All properties of type II redundancy metrics (Definition 4) are shared by similarity
measures (Definition 5). Consequently, if a function is proven to be a similarity measure,
then it is in the following not separately proven that it can function as a redundancy metric.

Similarity measures specifically designed towards possibility distributions have rarely
been discussed until recently [61,72,73]. Before that, similarity of possibility distributions
has been predominately determined either based on fuzzy set similarity measures or
elementwise distance measurements. A short overview of the most important measures
are given in the following. Advantages and disadvantages of measures regarding their
application in multi-sensor systems are discussed.

One of the most simple possibilistic similarity measure satisfying the properties of
Definition 5 is the consistency of possibility distributions:

sim(p) = h(p) = max
x∈X

(
min
π∈p

(π(x))
)

. (13)

Proofs that consistency satisfies the properties of Definition 5 are given in [61] for
two possibility distributions (|p| = 2). As a result that the consistency measure is a con-
catenation of the minimum and maximum operator, it is indiscriminate to the number
of information items. Therefore it satisfies the properties for |p| > 2 also. Its simple
nature is also its disadvantage. The consistency of possibility distributions is largely in-
dependent of shape or specificity producing unintuitive results if, e.g., given π and π′

with spec(π) � spec(π′). The most extreme example involves two normal possibility
distributions representing total ignorance and complete knowledge, respectively, so that
spec(π) = 0 and spec(π′) = 1. Consistency produces in this case sim(π, π′) = 1. On the
other hand, consistency is advantageous because of its scalability and robustness. Its com-
putational complexity scales linearly with the number of information items. Consistency
is more robust against possibility distributions coming from not fully reliable sources
than more sophisticated measures which rely on shape or specificity. Slightly erroneous
possibility distributions may not result in a strong deviation of sim because consistency
remains high as longs as there is some agreement in p. Of course, if a source is strongly
unreliable and, thus, an information item is strongly deviating (e.g., it claims π(v) = 0 for
the unknown true value v) then consistency is also affected by this erroneous item.

Similarity is a more strict property than inclusion (as used for the Redundancy Type I).
In terms of fuzzy set theory, two fuzzy sets A, B are similar if A ⊆ B and B ⊆ A. Two
possibility distributions are, thus, completely similar (sim(π, π′) = 1) if ∀x ∈ X : π(x) ≥
π′(x) and π′(x) ≥ π(x). Consequently, a similarity measure for the use as Redundancy
Type II metric can be derived from (11). Considering the least-agreement requirement of
Definition 5, taking the minimum r(I) of all pairwise combinations (π, π′) ∈ p creates a
similarity measure:

simr(p) = min
(π,π′)∈p

(
r(I)
(
π, π′

))
. (14)

It is straightforward to proof that (14) satisfies all properties of Definition 5 (see
Appendix A.2). However, (14) is computationally unfavourable since it (i) considers all
pairwise combinations in p and (ii) it needs to compute the area beneath any π ∈ p and
beneath any pairwise fusion results (see (8), (10), and (11)).

A widely practised approach is to adopt fuzzy set similarity measures—as they are—
for possibility distributions. This seems reasonable because fuzzy sets and possibility
distributions are defined mathematically very similarly (cf. Section 3.1). Most of the
existing fuzzy similarity measures determine the overlap of fuzzy sets in different ways.
For example, it has been proposed in several works (e.g., in [74]) to use the Jaccard index
as a similarity measure (for an overview of fuzzy (dis-)similarity measures cf. [61,74]). Let
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A and B be two fuzzy sets, µA and µB their fuzzy membership functions, and simµ be a
fuzzy similarity measure, then the Jaccard index determines the similarity by simµ(A, B) =
A∪B
A∩B =

∫ xb
xa

min(µA(x),µB(x))dx∫ xb
xa

max(µA(x),µB(x))dx
. The direct possibilistic counterpart is then

sim(π1, π2) =

∫ xb
xa

min(π1(x), π2(x))dx∫ xb
xa

max(π1(x), π2(x))dx
. (15)

The Jaccard index is easily extended to more than two information items because
it relies exclusively on intersection and union of fuzzy sets or minimum and maximum
operators for possibility distributions. Equation (15) becomes then

sim(p) =

∫ xb
xa

minπ∈p(π(x))dx∫ xb
xa

maxπ∈p(π(x))dx
. (16)

When using similarity measures based on fuzzy set theory it has to be kept in mind
that fuzzy membership functions and possibility distributions do not convey the same
meaning (as argued in Section 3.1). A membership function describes a fuzzy set completely.
It is a mapping of elements to a degree of membership, i.e., it is known that v = x and
v belongs to a fuzzy set with a degree of µA(x). In case of a possibility distribution, it
is unknown whether v = x; it is only known that v = x is possible to π(x). Therefore,
two non-overlapping fuzzy sets are two completely distinct entities. This motivates the
non-agreement property (with regard to fuzzy sets: simµ(A, B) if A ∩ B = 0). There is a
recent discussion ongoing whether the non-agreement property should be a requirement
for possibilistic similarity measures [61]. The argument is that if there are two inconsistent
possibility distributions π1, π2 which are less distant apart in the frame of discernment
than π3, π4, then sim(π1, π2) > sim(π3, π4). For that to be true, sim(π1, π2) would need to
be greater than null, which does not conform with the non-agreement property.

A possibilistic similarity measure which does not adhere to the non-agreement prop-
erty is based on information closeness [71] which is derived from the information gain (8):

G(π1, π2) = g
(

π1, max
x∈X

(π1(x), π2(x))
)
+ g
(

π2, max
x∈X

(π1(x), π2(x))
)

,

sim(π1, π2) = 1− G(π1, π2)

2
.

(17)

As a result that it is possible that g(π1, maxx∈X(π1(x), π2(x))) < 1 if h(π1, π2) = 0,
(17) does not satisfy the non-agreement property. Extending (17) to an indefinite number
of possibility distribution (|p| > 2) results in:

G(p) = ∑
π∈p

g
(

π, max
x∈X,π′∈p

(
π′(x)

))
,

sim(p) = 1− G(p)
|p| .

The non-agreement property is in accordance with the idea behind Redundancy Type
II measures that each source or item in a redundant group carries the same information.
Therefore, it is argued to implement redundancy metrics based on similarity measures
which fulfil the non-agreement property.

4.1.3. Reliability and Redundancy Metrics

As pointed out in Section 1, unreliable information stems from defective information
sources which experienced shifts, drifts, or produce outliers. Possibility distributions of
unreliable sources tend to or actually give false estimations of the unknown value v (the
ground truth). In the following a possibility distribution π is said to be strongly erroneous
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or incorrect if v lies outside of the crisp set A for which π gives support (v /∈ A, π(v) = 0)
and partially erroneous if v ∈ A but π(v) < 1. Note that an unreliable source may
provide incorrect possibility distributions but it does not necessarily need to do so, i.e., the
source can still provide correct distributions. Figure 5 illustrates possibility distributions of
different reliabilities. Identifying unreliable possibility distributions is a hard task because
a possibility distribution is in itself an imprecise estimation of an unknown. Reliability
assessments can be derived from knowledge about past behaviour (π may be unreliable
or incorrect if a source as been proven to be unreliable in previous measurements) or
by comparing π inside a group of sources known to be redundant. The reliability of a
possibility distribution is inversely related with the quality of its information content (its
specificity). The less specific a distribution is, the less likely it is to be erroneous. In the
extreme case of total ignorance, a possibility distribution is completely free of error (and
therefore reliable) but is of not much use since it is maximally non-specific.

0 v 1
0

1

x

π
π1
π2
π3

Figure 5. An incorrect (π1), a partially erroneous (π2), and a correct possibility distribution (π3). The
degree of error is dependent on the level of possibility π(v), v being the unknown ground truth.
Note that it is difficult to determine the error of a possibility distribution since v is unknown and it is
precisely the task of π to give an imprecise estimation of v.

Unreliable sources providing faulty possibility distributions may affect the proposed
metrics for quantifying redundancy negatively. Shifted possibility distributions reduce the
redundancy degree for both r(I) (11) and r(II) (12), although it is argued that r(II) is more
easily and severely affected due to its stricter definition regarding similarity. Determining
r(I) with (11) or r(II) with (13) or (14), redundancy is lower if possibility distributions are
inconsistent due to unreliable sources. Using (15) the overlap between distributions may
be lower. More robust but not immune against occurring inconsistencies is (17).

As a result that a single faulty information item—even in large groups of items—can
cause a drop in the determined redundancy, a preemptive method to increase robustness is
desirable, especially for large multi-sensor systems. Let rel ∈ [0, 1] be a reliability measure
which states that an information source S is completely unreliable if rel(S) = 0 and
completely reliable if rel(S) = 1. If rel(S) is known, then an approach to make use of this
knowledge is to modify the information items, i.e., the possibility distribution, provided by
S before they are processed further. The idea is to make a possibility distribution coming
from an unreliable source less specific by widening or stretching it dependent on rel. Let π′

be a modified possibility distribution based on π, then a widening modification function
needs to satisfy the following properties:

• Information preservation: If rel = 1, then the available information must not be
changed but be preserved, i.e., π′ = π.

• Specificity interaction: If rel = 0, then the information needs to be modified to model
total ignorance, i.e., ∀x ∈ X : π′(x) = 1. Information must not get more specific by
the modification: spec(π′) ≥ spec(π) for any rel ∈ [0, 1].

A modification function has been proposed in [75] so that

π′(x) = rel · π(x) + 1− rel, (18)
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and another in [13] so that
π′(x) = max

x∈X
(π(x), 1− rel). (19)

Both modification functions raise the overall possibility level for all elements in the
frame of discernment (see Figure 6 for an example). In this way, they stress the unpre-
dictability of unreliable sources. Anything is possible in proportion to the unreliability of a
source (1-rel(S)). This kind of approach towards modification functions is counterintuitive—
especially in case of technical sensor systems—and leaves room for improvement. Consider,
for instance, a sensor affected by drift due to ageing effects or due to environmental changes.
In such a case, it is plausible that sensor readings are, e.g., slightly systematically off the true
value or are affected by noise with an increasing amplitude. It is therefore more plausible
that the unknown truth v is close to π(x) than that v is distant from π(x) (in an extreme
case on the opposite side of the frame of discernment). For this reason, a modification
function is proposed, which captures the essence of widening or stretching more closely,
as follows:

π′(x) = max
x′∈C

(
π
(
x′
))

,

C =
[

x− (1− rel)β · (xb − xa), x + (1− rel)β · (xb − xa)
]
,

(20)

with xa ∈ R being the minimum and xb ∈ R being the maximum border of X. Depend-
ing on rel and a control parameter β ∈ R≥1, the modified possibility value π′(x) is the
maximum possibility in the vicinity of x. This creates a widening effect. The parameter β
provides an additional manual option to control the extent to which rel alters π(x). The
larger β is chosen to be, the less effect rel has on π(x). For lim

β→∞
rel does not widen π(x).

The default value is β = 1 in which case the unreliability has maximum effect in (20). It
is straightforward to prove that (20) satisfies the requirements of information preservation
and specificity interaction assuming π to be normal (see Appendix A.3). The proposed
method of (20) is compared to the methods of [13,75] in Figure 6.

xa xb
0

1

x

π′

(a)
xa xb

0

1

x

π′

(b)

xa xb
0

1

x

π′

rel = 1
rel = 0.75
rel = 0.5
rel = 0.25
rel = 0

(c)

Figure 6. Modifying possibility distributions depending on the reliability of their information source S. Subfigure (a) shows
the approach of Yager and Kelman (18), (b) shows the method of Dubois et al. (19), and (c) shows the proposed method (20).
Only the method in (c) has a widening effect, both methods in (a,b) raise the level of possibility along the complete frame
of discernment. All methods result in total ignorance for rel(S) = 0 and π′ = π for rel(S) = 1. For these plots, parameter
β = 2.

4.2. Redundant Information Sources

Up to this point, redundancy metrics for information items have been defined and
discussed. A possibilistic redundancy metric for information sources is derived from r(I)

and r(II) in the following. It is defined as follows:
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Definition 6 (Possibilistic Redundancy Metric). Let S be a possibilistic information source,
i.e., the information items Ij provided by S are possibility distributions: Ij = πj with j ∈ N>0. Let S
be the set of all available sources and P(S) be all possible combinations of sources, then a possibilistic
redundancy metric ρ is a function which maps P(S) to the unit interval: ρ : P(S)→ [0, 1].

The metric ρ is derived from r(II) (12). The following relations between ρ and r(II) hold:

• If information sources are redundant, then they provide redundant information items. Conse-
quently, ρ(S) increases as the redundancy of information items belonging to the sources in
S increase.

• The reverse is not necessarily true. Redundant information items do no necessitate that their
information sources are also redundant. Due to cases of incomplete information, redundant
information items may support spurious redundancy (similar to spurious correlation which is
depicted in Figure 1).

In this context and to qualify as an intuitively meaningful metric, the following requirements
have to be met:

• Boundaries: A redundancy metric should be able to model complete redundancy and complete
non-redundancy. It follows that ρ is minimally and maximally bounded. It is proposed that
ρ ∈ [0, 1].

• Symmetry: The metric ρ is a symmetric function in all its arguments, i.e.,

ρ(S1, S2, . . . , Sj) = ρ(Sp(1), Sp(2), . . . , Sp(j))

for any permutation p on N>0.

The possibilistic redundancy metric is proposed to be a function of two pieces of
evidence. The evidence against redundancy ec : P(S) → [0, 1] captures the idea that
redundant information items do not necessarily mean redundant information sources. The
evidence ec is derived from r(II): As long as information items are redundant, ec(S) = 0. It
is discussed more closely in Section 4.2.1. Evidence in favour of redundancy ep : P(S)→
[0, 1] is supposed to tackle the challenge of incomplete information. It indicates to which
degree information is available from the complete frame of discernment. The evidence ep
is discussed more closely in Section 4.2.2. A set of information sources is only redundant if
ep(S) > 0 and ec(S) < 1. The smaller value of ep and the complement 1− ec dominates
the redundancy metric. The geometric mean is proposed as an averaging function for ep
and ec as follows:

ρ(S) = ρ
(
ec(S), ep(S)

)
=
√

ep(S) · (1− ec(S)). (21)

By splitting ρ into two separate evidences, it is aimed to achieve a cautious, more
transparent metric.

4.2.1. Evidence Against Redundancy

The measure ec indicates whether there is evidence that information sources are not
redundant. In this sense, sources are assumed to be redundant as long as they are not
proven to be otherwise (the complement of ec contributes to (21)). With regard to the
redundancy metric r(II) for information items, sources are evidenced to be non-redundant
if they provide non-redundant items. Information sources are defined to be a set of ordered
information items (see Definition 2). In order to derive ec from r(II), an averaging function
over the ordered items of sources is required. In the following, the short notation r = r(II)

is used.
Let S = {S1, S2, . . . , Sn}, i.e., let S be a set of information sources. Let each Si with

i ∈ {1, . . . , n} provide an ordered set of possibility distributions (Si = {πi,1, πi,2, . . . , πi,m}),
all of the same cardinality m. Let pj be the set of possibility distributions provided at
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the same instance j, i.e., pj = {π1,j, π2,j, . . . , πn,j} (each source provides a single item to
pj), then

ec(S) = 1− avg
j={1,...,m}

(
r
(
pj
))

. (22)

The function avg(·) in the context of averaging redundancy values is a mapping
[0, 1]m → [0, 1]. Averaging functions are required to be symmetric, idempotent, continu-
ous, and increasingly monotone. Definitions of these properties can be found in [27,68].
Additionally, averaging functions satisfy the following inequality:

min
j={1,...,m}

(
r
(
pj
))
≤ avg

j={1,...,m}

(
r
(
pj
))
≤ max

j={1,...,m}

(
r
(
pj
))

.

Averaging functions which are closer to the minimum operator are said to be more
and-like, whereas functions closer to the maximum operator are said to be more or-like.

The choice of the averaging function has a significant impact on ec and ultimately
on the possibilistic redundancy metric (21). The mindset behind possibility theory—any
world is possible unless shown otherwise (see [50] or Section 3.3)—is most closely realized
if avg(·) satisfies the property of

• Absorbing element: avg(r(p1), . . . , r(pm), 0) = 0 for any p, that is, if information
sources in S produce non-redundant items, then this is evidence that S are not
redundant as well.

Averaging functions which satisfy this property are the minimum operator

minj∈{1,...,m}
(
r
(
pj
))

and the geometric mean m
√

∏m
j=1 r

(
pj
)
. If information sources are

known to or tend to producing outliers, then the absorbing element property results very
easily in avgj={1,...,m}

(
r
(
pj
))

= 0 and ec(S) = 1. Thus, minimum and geometric mean are
only reasonable to apply, if sources are known to be reliable or if the effects of unreliable
sources have been reduced by widening the possibility distributions (20). This requires the
degree of reliability to be known or at least to be estimated. Comparing minimum and
geometric mean, the geometric mean is less prone to unreliable sources. Although both
satisfy the absorbing element property, the geometric mean is less strict in penalizing the
occurrence of partially redundant items.

The arithmetic mean 1
m ∑m

j=1 r
(
pj
)

does not satisfy the absorbing element property
and is not dominated by the minimum of its argument (and neither by the maximum).
It is therefore more robust against unreliable sources, but it thwarts the basic idea that a
possibilistic redundancy metric is supposed to handle incomplete or biased information.
Consider a condition monitoring example, in which data represent predominately the
system’s normal condition. In this example, this normal condition dominates the arithmetic
mean and evidence against redundancy is neglected. This argument weighs even more
heavily for all averaging functions which are more or-like than the arithmetic, such as the
quadratic mean.

A controllable compromise between minimum dominated functions and arithmetic
mean is to apply the class of ordered weighted averaging operators (OWA) [56]. OWA oper-
ators allow to control the degree of orness of an averaging function. Let w = {w1, . . . , wm}
be an ordered set of weights with wj ∈ [0, 1] and ∑m

j=1 wj = 1, then an OWA operator is

avgOWA
(
pj, w

)
=

m

∑
j=1

wj · r(j)
(
pj
)
. (23)

For OWA operators, the arguments (here: redundancies r) have to be ordered re-
garding their values in decreasing order. Therefore, r(·) denotes a permutation such that
r(1) ≥ r(2) ≥ . . . ≥ r(m). The orness orn : w→ [0, 1] of an OWA operator is defined by

orn(w) =
1

m− 1
·

m

∑
j=1

(m− j) · wj.



Sensors 2021, 21, 2508 20 of 36

An OWA operator becomes the minimum operator if its orn(w) = 0, i.e., w = {0, 0, . . . , 1}
and it becomes the arithmetic mean if orn(w) = 1

2 , i.e., w = { 1
m , 1

m , . . . , 1
m}. For a meaning-

ful ec, it is argued that 0 ≤ orn(w) < 1
2 . A method to compute weights w from orn(w) is

given in [27,76]. The choice of orn(w) needs to be made carefully depending on knowledge
about the application at hand (regarding incompleteness, bias of information) and the
characteristics of applied information sources (regarding reliability).

4.2.2. Evidence Pro Redundancy

The second consideration to be made in constructing a redundancy metric is incom-
plete information on information item level (biased or skewed data). A technical system
monitored by several information sources may not operate in all its possible states evenly.
A cyber–physical production system may even exclusively run in its (intended) normal
operation state; data gathered from faulty states may be rare or non-existent. For example,
let the frame of discernment be all possible measurements from a sensor in all possible
states of the monitored system. Assume that a system can be in an abnormal and a normal
state. If a sensor observes the system only in its normal state, then the provided information
items (i.e., possibility distributions) cover only a part of the frame of discernment, that is,
the part which represents the normal state. Applying in this example the evidence contra
redundancy measure ec (22), correlation coefficients, or mutual information may lead to
premature redundancy detection. Premature redundancy is the case if information is redun-
dant given the observed part of the frame of discernment, but not regarding the complete
frame of discernment. Figure 7 illustrates cases of incomplete information motivating a
second evidence measure which puts ec into context.

xa xb

xa

xb

x1

x2

xa xb
0

1

x

π

xa xb
0

1

x

π

xa xb
0

1

x

π

Figure 7. Information items in the form of triangular possibility distributions provided by two
information sources. Available (e.g., measured) information is scattered throughout the frame of
discernment X = [xa, xb]. The left side shows a two-dimensional scatter plot in which each marker
represents the maximum of each possibility distribution. The right side depicts the possibility
distributions of three exemplary selected datapoints (marked by an encompassing circle). Each
cluster considered in isolation represents a case of incomplete information because only parts of
the frame of discernment are covered. For example, cluster 1 (marked by ) suggests redundancy
(as long as information items are similar). This may not hold when new information from both
sources become available. Clusters 1 ( ) and 2 ( ) together suggest redundancy more strongly. Any
data containing cluster 3 ( ) evidences no redundancy. Relying esclusively on ec (22) may result in
detecting redundancy prematurely. A second evidence measure is needed to put ec into context. This
second measure—denoted as evidence pro redundancy ep—is presented in the following.
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This second evidence ep quantifies how completely the available information covers
the frame of discernment X. This coverage of X is in the following denoted as

Definition 7 (Range). Given a frame of discernment X = [xa, xb], the range of a set of possibility
distributions p quantifies how far p stretches over X. Let P(p) bet the power set of al possible p,
then the range is described by a function rge : P(p)→ [0, 1] with the following properties:

• Upper bound: If rge(p) = 1, then ∃π ∈ p : π(xa) = 1 and ∃π ∈ p : π(xb) = 1.
• Lower bound: rge(p) = 0 if ∀π, π′ ∈ p : π = π′, that is, all possibility distributions

π ∈ p are identical.

The range of available information is based on the position of a possibility distribution
on the frame of discernment. The position is determined via the center of gravity [77]

pos(π) =

x if π(x) = 1 and ∀x′ ∈ {X \ x} : π(x′) = 0,∫ xb
xa

x·π(x)dx∫ xb
xa

π(x)dx
otherwise.

(24)

Interesting properties of (24) for the determination of the range are:

• if ∀x ∈ X : π(x) = 1 (π models total ignorance), then pos(π) = 1
2 · (xb − xa),

• pos(π) = xa if and only if π(xa) = 1 and ∀x ∈ {X \ xa} : π(x) = 0 (π models
complete knowledge at xa), and

• pos(π) = xb if and only if π(xb) = 1 and ∀x ∈ {X \ xb} : π(x) = 0 (π models
complete knowledge at xb).

The position of a set of possibility distributions p is obtained by fusing the distribution
prior to taking the center of gravity. Thus,

pos(p) = pos(fu(p)).

Let (π, π′) ∈ p denote all pairwise combinations of possibility distribution in p, then

rge(p) = max
(π,π′)∈p

(
|pos(π)− pos(π′)|

)
= max

π∈p
(pos(π))−min

π∈p
(pos(π)). (25)

Proofs that (25) satisfy the properties of Definition 7 are given in Appendix A.4.
Given a set of information sources S = {S1, S2, . . . , Sn} in which Si = {πi,1, πi,2, . . . , πi,m}

and given that pj = {π1,j, π2,j, . . . , πn,j}, then

rge(S) = max
j,j′∈{1,...,m}

(
|pos

(
pj
)
− pos(pj′)|

)
= max

j∈{1,...,m}

(
pos
(
pj
))
− min

j∈{1,...,m}

(
pos
(
pj
))

. (26)

The range rge(S) quantifies the maximum distance of possibility distributions pro-
vided by S. At least one pair pj, pj′ of information item sets need to range over the frame
of discernment X in order to provide evidence for a redundant behaviour, i.e., ep(S) > 0
if ∃j ∈ {1, . . . , m} : rge

(
pj
)
> 0. The range is normalized and then directly employed as

evidence pro redundancy:

ep(S) =
rge(S)− xa

xb − xa
. (27)

As a result that the range is derived from the position measure, rge(S) = 1 iff
∃j ∈ {1, . . . , m} : pos

(
pj
)
= 1 and ∃j ∈ {1, . . . , m} : pos

(
pj
)
= 0 which is in accordance

with the upper bound property of Definition 7. Therefore, only cases of complete knowl-
edge result in rge = 1. The lower bound rge(S) = 0 iff j, j′ ∈ {1, . . . , m} : fu

(
pj
)
= fu(pj′).

The behaviour of rge in case of total ignorance is also noteworthy. Assume two information
sources S1, S2 providing total ignorance at all instances. Therefore, all possibility distribu-
tions of S1, S2 are completely similar and the evidence against redundancy ec(S1, S2) = 0.
Although they are similar, both sources have deemed all alternatives in X completely
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possible—they did not commit to any x ∈ X. There is no evidence or information that,
if the sources will commit to alternatives in the future, both will commit to the same
alternative and behave redundantly. Both sources have provided total ignorance up until
the most recent instance, therefore rge(S1, S2) = 0, and, thus, no information is evident
pro redundant behaviour. In this example, ep balances ec and helps to make a more
well-grounded decision.

The evidences ep and ec form together a redundancy metric ρ which is cautious in cases
of incomplete information. The proposed redundancy metric ρ is applicable to groups of
information sources of any size. It quantifies how strongly a group of sources is redundant.
It does not give information about whether there are redundant sources in this group, but
rather if all sources in the complete group are redundant. In the following, it is proven that
ρ (21) is a redundancy metric in accordance wit Definition 6.

Proposition 8. The proposed possibilistic redundancy metric ρ (21) satisfies the boundaries prop-
erty of Definition 6, i.e., ρ(S) ∈ [0, 1].

Proof. The metric ρ takes the geometric mean of ep(S) and 1− ec(S). The geometric mean
does not alter boundaries, so ρ ∈ [0, 1] if ep ∈ [0, 1] and ec ∈ [0, 1].

• ep: The evidence ep (27) is build upon the function rge (26) which in turn is build
upon the function pos (24). The position pos ∈ [xa, xb] because it is based on the center
of gravity. The range rge takes the difference of maximum and minimum positions
and is, therefore, also in [xa, xb]. The evidence ep normalizes rge to the interval [0, 1]
in (27).

• ec: The evidence ec (22) averages the redundancies of information items obtained by
r(II) which is by definition in [0, 1] (see Definition 4).

Proposition 9. The proposed possibilistic redundancy metric ρ (21) satisfies the boundaries
property of Definition 6, i.e., ρ(S1, S2, . . . , Sj) = ρ(Sp(1), Sp(2), . . . , Sp(j)) for any permutation
p on N>0.

Proof. The metric ρ is symmetric if ep and ec are symmetric.

• ep: The function range rge (26) takes the difference of the maximum and minimum of
all pj. the order of the information sources has no effect on rge. Equation (27) only
normalizes rge. Thus, ep is symmetric.

• ec: The type II redundancy metric r(II) is symmetric per definition (Definition 4). The
evidence ec (22) averages r(II) over all provided information items and is consequently
also symmetric.

5. Evaluation

The proposed possibilistic redundancy metric is evaluated qualitatively considering
three datasets from technical application domains. Considered information sources are to a
certain extent unreliable, provide noisy data, provide (un-)correlated data, and some per-
ceive only a fraction of the frame of discernment. The redundancy metric ρ (21) is calculated
for pairs of information sources (in the following also referred to as features). The metric is
compared to to the Pearson’s correlation coefficient measure and an inconsistency-based
approach—as identified in Section 2—with a strong focus on the correlation coefficient.
The aim of this evaluation is to gain an understanding of the metric’s performance on
practical data.

The evaluation is carried out on the Typical Sensor Defects (TSD) dataset [5], the Smart-
phone Dataset for Human Activity Recognition in Ambient Assisted Living (HAR) [78],
and the Sensorless Drive Diagnosis (SDD) dataset [79]. The TSD dataset contains data
obtained from a condition monitoring application of a storage container for hazardous and
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flammable substances. Applied sensors are, e.g., temperature sensors, smoke detectors,
and gas detectors. The gathered data belongs exclusively to the normal condition of the
observed system. Data is provided with an error of ±2% of the sensor’s measurement
range creating a uniform probability density function. The TSD dataset is a set of datasets
from which the dataset without sensor errors is used. Data in the HAR dataset tend to
be affected by noise due to the low quality of applied sensors (smartphone sensors). The
HAR dataset contains 6 classes, of which the activities walking, walking upstairs and walking
downstairs are defined here as normal conditions. In the SDD dataset, a drive motor is
examined for potential faults in the drive’s bearing. Sensors measure the voltage and
current of the motor. The SDD dataset contains highly linearly correlated data. Both the
HAR and SDD dataset provide data as precise singletons. Together, the TSD, HAR, and
SDD datasets provide typical scenarios and challenges for data exploration. All three
datasets are publicly available. The TSD dataset is uploaded and published by the authors
of [5] (https://zenodo.org/record/56358 (accessed on 7 February 2021)). The SDD and
HAR datasets are publicly available at the University of California Machine Learning
Repository [80]. An overview of the selected datasets and their characteristics is given in
Table 1.

Table 1. Overview of the selected datasets.

Dataset
Information
Sources
(Columns)

Information
Items
(Rows)

Format Imprecision Noteworthy Char-
acteristics

SDD 48 58509 real-valued, x ∈ R
precise,
p(x = v) = 1,
p(x 6= v) = 0

highly linearly cor-
related

HAR 561 5744 real-valued, x ∈ R
precise,
p(x = v) = 1,
p(x 6= v) = 0

noisy

TSD 22 72500
real-valued, x ∈ R
binary-valued,
x ∈ {0, 1}

imprecise,
uniform PDF

incomplete infor-
mation

5.1. Implementation

The datasets being considered in this evaluation do not provide possibility distri-
butions. They contain several heterogeneous sensors as information sources. In general,
information obtained from multi-sensor systems often need to be preprocessed due to any
or all of the following reasons:

• Imprecision is modelled with probability distributions or not at all rather than with
possibility distributions. Precise information items given as singletons are often only
allegedly so—modelling the imprecision is often neglected.

• Information comes from unreliable sources.
• Information comes from heterogeneous sensors meaning that information is provided

regarding different frame of discernments.

For each information item in a dataset the following preprocessing steps are therefore
carried out:

1. If information are provided as singletons or probability distributions, they are trans-
formed into possibility distributions.

2. The unreliability of information sources is taken into account by modifying (widening)
the possibility distribution using (20) with parameters rel and β selected appropriately
for each dataset.

3. All information are mapped to a common frame of discernment.

https://zenodo.org/record/56358
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Step 1 of probability possibility transformation and step 3 regarding harmonizing the
frame of discernments are detailed in the following sections. Modifying the possibility
distributions is implemented with reliability parameters ∀S ∈ S : rel(S) = 0.98 and
β = 1 for datasets SDD and TSD. For the HAR dataset ∀S ∈ S : rel(S) = 0.85 and β = 1
reflecting the poor quality of sensors in this dataset. Furthermore, the redundancy metric
is implemented using the consistency measure (3) as similarity measure (see Definition 5)
and using the geometric mean for the averaging of item-based redundancies (22), that is,

ec(S) = 1− m

√√√√ m

∏
j=1

r
(
pj
)
.

5.1.1. Probability Possibility Transform

If the imprecision of information is modelled with probability distributions, then a
necessary preprocessing step is to transform the information into possibility distributions.
A probability-possibility transformation is required to satisfy the following three conditions.

• Normalization condition: The resulting possibility distribution is required to be
normal (∃x ∈ X : π(x) = 1).

• Consistency principle: What is probable must preliminarily be possible, that is, the
possibility of an event A is an upper bound for its probability (Pr(A) ≤ Π(A)).

• Preference preservation: Given a probability distribution p, p(x) < p(x′)→ π(x) ≤
π(x′).

A transformation is optimal if it loses as little information as possible in the transfor-
mation (following the maximum specificity principle). Dubois et al. [64] have proposed
an optimal transform with regard to this principle. This optimal transform is for practical
implementation purposes highly computationally complex and cumbersome to handle [66].
Therefore, the truncated triangular probability-possibility transform (TTPPT) is applied
in this implementation which has been devised in [53,65,66]. The TTPPT is an approxi-
mation of an optimal transform which is less computationally complex. It can be applied
to Gaussian, Laplace, triangular, and uniform probability density functions resulting in a
truncated triangular possibility distribution. A truncated triangular possibility distribution
is defined by three parameters xn ∈ X, xε ∈ X, and ε ∈ [0, 1] as follows:

π(x) =


0 if |x− xm| > xn,
ε if xn ≥ |x− xm| > xε,
1− 1−ε

xε
· |x− xm| if |x− xm| ≤ xε.

(28)

Let p(x) be a probability density function (PDF), xm be the expected value of p(x),
and σ its standard deviation, then xn, xε, and ε are determined depending on the type of
PDF as listed in Table 2 (values obtained in [65]).

Table 2. Parameters xn, xε, and ε for the truncated triangular probability-possibility transform of
different probability density functions (PDF).

PDF xn xε ε

Gaussian 2.58 · σ 1.54 · σ 0.12
Laplace 3.20 · σ 1.46 · σ 0.13

Triangular 2.45 · σ 1.63 · σ 0.11
Uniform 1.73 · σ 1.73 · σ 0

5.1.2. Unifying Heterogeneous Information

Data in multi-sensor systems are often heterogeneous, i.e., data representing different
physical quantities (e.g., voltage and electric current), or data in different dimensions (e.g.,
a scalar value and a vector). To be able to draw conclusions about the redundancy of
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heterogeneous sources, data are transformed into a unitless, uniform frame of discernment.
A natural way to unify the frame of discernments is to make use of fuzzy sets. Given
a binary or multi-class classification task, the fuzzy set representing each class can be
exploited to transform the frame of discernments. In the following a binary classification
task is assumed. The procedure is then to take a class, to model it with a fuzzy membership
function µ, and, given x ∈ X, π(x), and µ(x), to compute the possibilities πµ for each µ.

The membership function is implemented using a parametric, trainable unimodal
potential function [81] defined by

µ(x) =

{
2−d(x,pl) if x ≤ x ,
2−d(x,pr) if x > x ,

(29)

with d(x, pl) =

( |x− x|
Cl

)Dl

and

d(x, pr) =

( |x− x|
Cr

)Dr

.

Unimodal potential functions were proposed by Aizerman et al. [82] as a tool for
pattern recognition. It was not until later that they were applied in the fuzzy set community
as membership functions [14,81]. Unimodal potential functions are used to model the
distribution of compact objects of convex classes [14]. The function parameters allow to
asymmetrically adjust the function to the distribution of a class which are either determined
by training data or by expert’s knowledge. The advantages of unimodal potential functions
are that their parameters are both simple to learn and intuitively to interpret.

In dataset TSD, the parameters for (29) are provided, which are determined by
an expert. For datasets SDD and HAR, the parameters are obtained as follows. Let
x = {x1, x2, . . . , xn} be the available training data, then parameter x is the arithmetic mean
of x. Parameter Cl = x−mini∈{1,2,...,n}(xi) and Cr = maxi∈{1,2,...,n}(xi)− x. Parameters Dl,
Dr ∈ N>1. In state-of-the-art applications they are often determined empirically such as
in [5,83]. In [84], a method to learn parameters Dl and Dr is proposed based on density
estimations of the training data. In the implementation of this work, Dl = 2 and Dr = 2
for all datasets TSD, HAR, and SDD. Due to its parametric and trainable character, the
unimodal potential function and its variations have shown to be particularly effective in
practice—from industrial [5,83] to medical applications [85].

As a final step, the possibility distributions π(x), x ∈ X, are transformed to πµ(µ(x)),
µ ∈ [0, 1]. The transformation is carried out by applying the unimodal potential func-
tion (29) as follows:

πµ(µ) = max
x∈{X | µ(x)=µ}

(π(x)). (30)

Note that, due to the bell shape of the potential function, µ is a non-injective but
surjective mapping. In (29) the same membership is assigned to two different x (with the
exception of µ(x) = 1 which is unique). This necessitates the maximum operator in (30).

The complete preprocessing sequence is exemplary illustrated in Figure 8 with infor-
mation provided as a singleton, as a uniform PDF, and as a Gaussian PDF.
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Figure 8. Preprocessing steps (i)–(v) carried out on three information items provided as probability distributions p(x)—as
(a) singular value, (b) uniform probability density function, and (c) Gaussian probability density function. Each item
gives information regarding an unknown measurand in its own frame of discernment (X1 = [xa,1, xb,1], X2 = [xa,2, xb,2],
X3 = [xa,3, xb,3]). As a result of this, preprocessing is necessary to be able to derive conclusions about potential redundancy.
First, in step (ii) the probability distributions are transformed into possibility distributions via the truncated triangular
probability-possibility transformation [53,65,66]. Step (iii) takes account of potential unreliability of information sources
by widening π(x) using (20) (here with rel = .95 and β = 1). Steps (iv), (v) transform the frame of discernment into fuzzy
memberships Xµ = [µa, µb] = [0, 1]. Assuming a binary fuzzy classification task, one fuzzy class (e.g., the normal condition
in condition monitoring) is represented by a unimodal potential function (UPF) (29) either learned from training data
or provided by an expert (iv) (here: arbitrary selected UPFs are shown as an example). Whereas π(x) in (iii) represents
the imprecision of a single information item, µ(x) represents the fuzzy set of the given class. In the final step (v), π(x) is
transformed into π(µ) (30). Note that π(x) aligns with µ(x) in such a way that (a) π(µ) is close to 0 and (b), (c) π(µ) is
close to 1.

5.2. Results and Discussion

For the qualitative evaluation, information sources are selected from the datasets
which exhibit different types of relations and provide different challenges for determining
their redundancies. Sources are either linearly correlated, non-linearly correlated, non-
redundant, affected by aleatoric noise, or are a combination thereof. In addition, the
perceptive fields of sources are limited to varying proportions of the frame of discernment
(information is biased or incomplete). Redundancy is computed only for pairs of sources.
Selected pairs of information sources are: (a) 7 and 8 from SDD, (b) 2 and 46 from SDD,
(c) 20 and 36 from SDD, (d) 86 and 99 from HAR, (e) 89 and 102 from HAR, (f) 12 and 50
from HAR, (g) 9 and 15 from TSD, (h) 9 and 18 from TSD, and (i) 14 and 18 from TSD.
Information coming from the selected sources are illustrated for all cases (a)–(i) in Figure 9.
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Figure 9. Information items of the selected information sources. Each row, consisting of a scatter
and linear plot, belongs to sources from the datasets Sensorless Drive Diagnosis (SDD) (a–c), HAR
(d–f), and Typical Sensor Defects (TSD) (g–i). Each point in the scatter plots represents the center
of gravity (24) of an information item, i.e., of πµ(µ(x)). To get an intuition about the imprecision in
the information, the possibility distributions of a single pair of information items are plotted below
each scatter plot. The selected cases show linear relations, non-linear relations, non-redundancy, and
aleatoric noise. In some only part of the frame of discernment is perceived. Note that plots (g–i) are
zoomed in for better visibility.

In Section 2 state-of-the-art measures for quantifying redundancy between information
sources are identified. These are (i) the Pearson’s correlation coefficient ρp (probabilistic),
(ii) mutual information (probabilistic), (iii) inconsistency (possibilistic; used as a measure
for non-redundancy) [5], and conflict (based on Dempster–Shafer theory; used as a measure
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for non-redundancy) [46,47]. Of these, the proposed redundancy metric is evaluated against
ρp and the approach based on inconsistency. Mutual information measures the degree
of dependency between probability distributions based on their entropy. The probability
distribution from which data is generated needs to be known in advance. Given the
datasets, these distributions are precisely not known. Considering that data are real-valued
in the selected datasets, probability distributions cannot be constructed ad hoc based
on frequency of occurrences (which is more reasonable if data are categorical or integer-
valued). This dilemma regarding MI shows its lack of practicability given applications
with unknown probability distributions of data and is the reason why it is excluded here.

The following list provides details about the implementation of compared approaches
for the sake of reproducibility:

• Pearson’s correlation coefficient: Correlation coefficients are computed on the ex-
pected value of the original data because sources from the TSD dataset provide
information associated with an imprecision interval modeled by a uniform PDF. Let
x(e)i,j be the expected value of the imprecise data provided by source Si at instance j

and let x(e)i be the arithmetic mean of the expected values of Si. Then, the correlation
coefficient is computed by

ρp(S1, S2) =

∣∣∣∣∣∣∣∣
∑m

j=1

(
x(e)1,j − x(e)1

)(
x(e)2,j − x(e)2

)
√

∑m
j=1

(
x(e)1,j − x(e)1

)2
∑m

i=1

(
x(e)2,j − x(e)2

)2

∣∣∣∣∣∣∣∣.
• Inconsistency-based approach: In [5] the inconsistency inc of a possibility distribu-

tion is determined within a set of possibility distributions. The inconsistency is the
distance between the distribution’s position pos(π) and the position of the majority
observation pos

(
πmaj

)
within the set: inc =

∣∣posπ − pos
(
πmaj

)∣∣. The position is de-
termined by (24). Since we compare only pairs of information sources, no majority
observation can be found and the distance between the positions of both information
items is taken. The approach in [5] is designed for streaming data and the inconsis-
tency of information items is averaged with a moving average filter. Instead of this
kind of filter, inc is averaged so that:

inc(S1, S2) =
1
m
·

m

∑
j=1

∣∣pos
(
π1,j
)
− pos

(
π2,j
)∣∣.

Similar to our approach, a homogenous frame of discernment between information
items is required. Therefore, the inconsistency is computed on the possibility distri-
butions πµ obtained by the preprocessing steps detailed previously. The measure inc
determines the degree of non-redundancy between information sources.

Results including ρ, ep, ec, ρp, and inc are shown for each case in Table 3.
The possibilistic redundancy metric quantifies the redundancy of information in the

presented cases differently. The metric itself conveys more sophisticated information about
the relation between sources than the correlation coefficient. The metric ρ quantifies the
linear case (a) of the SDD dataset as highly redundant. Information items are both assessed
as similar (ec � 1) and range over a significant part of the frame of discernment (ep � 0).
Case (d)—linear with noise—and case (e)—non-linear—of the HAR dataset show both
highly similar items as well. As a result that information is limited to only a part of the
frame of discernment, ρ = 0.69. In cases (b), (c), and (f), there is high evidence that the
sources are not redundant (ec = 1). The overall metric is dominated by the minimum of
1−ec and ep, therefore ρ = 0. All pairs of information sources coming from the TSD dataset
(g)–(i) are highly similar. Therefore, there is little evidence that they are not redundant
(ec � 1). In these cases, information sources perceive only a small part of the frame of
discernment. Consequently, their range is close to 0. There is also close to no evidence that
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sources are redundant. A reasonable interpretation is that sources may be redundant but
that more information is required to consolidate the claim of redundancy. Thus, the split of
the possibilistic redundancy metric into ep and ec makes it possible to assess redundancy
relations in more detail. Relying only on similarity measures would in these cases lead to
premature identifications of redundancies. This would negatively impact applications in
machine learning as well as information fusion.

Table 3. Results of the possibilistic redundancy metric ρ (21) along with the evidences ep (27)
and ec (22). The metric is compared to (i) the Pearson’s correlation coefficient ρp computed on the
expected values of the original data and an inconsistency-based approach (measure inc). The cases
(a)–(i) refer to the selected information sources as plotted in Figure 9.

Case Dataset S1 S2 ep ec ρ ρp inc

(a) SDD 7 8 0.92 0 0.96 1 0
(b) SDD 2 46 0.85 1 0 0.09 0.06
(c) SDD 20 36 0.76 1 0 0.07 0.19
(d) HAR 89 102 0.47 0 0.69 0.98 0.02
(e) HAR 86 99 0.47 0 0.69 0.94 0.09
(f) HAR 12 50 0.47 1 0 0.27 0.16
(g) TSD 9 15 0.04 0 0.20 0.90 0.16
(h) TSD 9 18 0.04 0.10 0.19 0.89 0.02
(i) TSD 14 18 0.05 0 0.23 0.99 0.02

In comparison to the Pearson’s correlation coefficient, the possibilistic metric is more
cautious in suggesting redundancy. This is most evident in cases (d), (e), and (g)–(i) in
which ρp assigns higher values than ρ. This is because ρ does not solely rely on similarity
measures but also on the range of information (on which ep is based). The correlation
coefficient does not have this kind of point of reference. This is especially problematic in
case (i) in which sources show correlated behaviour but, because the information covers
only a small specific part of the frame of discernment, it cannot be said with certainty that
they are truly redundant. In the other cases, the values of ρ and ρp are more close. It stands
out that ρ tends to assign zero redundancy more easily. The coefficient ρp determines
correlation statistically, whereas ρ takes non-agreeing information as evidence against
redundancy. This leads ρ to reject redundancy faster.

The inconsistency-based approach requires some expert’s knowledge to interpret
correctly. Higher values of inc suggest non-redundant behaviour of information sources.
Regarding cases (c) and (f), in which information is deemed as non-redundant by both ρ
and ρp, inc > 0.1. Using this value as a threshold, it is noteworthy that the inconsistency-
based approach does not detect non-redundancy in case (b). Similar to ρp it does not take
contextual information regarding the frame of discernment into account. In summary, inc
is less intuitively to read and results in less correct estimations.

6. Conclusions

Redundancy takes a key role in the robustness of algorithms and models applied
to intelligent technical multi-sensor systems. Redundant information sources serve as
a back-up in case of malfunctioning sensors, but also allow to detect drifts more easily.
Standard existing approaches that determine redundancy between information sources, for
instance correlation coefficients or information-theoretical metrics, do not take into account
epistemic uncertainties such as incomplete or imprecise information.

This article contributes a redundancy metric set in the framework of possibility theory.
It explicitly determines redundancy between information sources which provide imprecise
information, e.g., in the form of probability or possibility distributions. Redundancy of
sources is determined based on two evidential measures. The first determines whether
single imprecise information items are redundant in principle—either based on inclusion
or similarity measures. If all items of sources are redundant, then the sources are deemed
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potentially redundant. The second evidence measure—based on the range of information—
determines whether sufficient information is available to consolidate the first evidence.
This results in a cautious redundancy metric which does not assign high redundancy values
in case of incomplete information. In contrast, metrics based on correlation coefficients
may detect redundancies prematurely.

A most important aspect of implementations for large-scale technical and cyber–
physical systems are the scalability and computational complexity of methods. It is simply
not feasible to assess every subset of the available information sources regarding their
redundancy since the power set of sources grows exponentially with each added source.
In order to ensure scalability, two steps have to be approached in future work. First,
the possibilistic redundancy metric needs to be analysed and optimized regarding its
computational complexity. Second, methods and strategies have to be designed which
analyse the power set of sources in a clever way—either by relying on expert’s knowledge
or by reducing the search space based on deductions from already analysed sources.

Additionally, in technical systems data are streamed, that is, only a limited amount of
data are available in advance if at all. Algorithms need to be able to cope with streaming
data, adapt to new information, and update previous knowledge incrementally. The
possibilistic redundancy metric is engineered to be cautious on available information
with the idea that it can be updated as soon as new information becomes available. The
proposed metric still has to be analysed regarding its updatability, i.e., whether it needs to
be computed from scratch for every new information or whether it can be updated.
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Appendix A. Additional Proofs

Appendix A.1. Proofs of Section 4.1.1

In all following proofs, the short notation π ≥ π′ is used instead of ∀x ∈ X : π(x)
≥ π′(x).

In Proposition 5, it is stated that if r(I)(π1, π2) = 1 and r(I)(π2, π3) = 1, then
r(I)(π1, π3) = 1.
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Proof of Proposition 5. r(I)(π, π′) = 1 iff π ≥ π′ [57]. If π1 ≥ π2 ≥ π3, then π1 ≥ π3 and
r(I)(π1, π3) = 1.

Assuming π1 and π2 to be two possibility distributions which are fully consistent
(h(π1, π2) = 1), it is to be proven that Proposition 6 holds, i.e., if r(I)(π3, π1) = 1 and
r(I)(π3, π2) = 1, then r(I)(π3, {π1, π2}) = 1.

Proof of Proposition 6. First, r(I)(π, π′) = 1 iff π ≥ π′ [57]. If h(π1, π2) = 1, then
fu(π1, π2) =

min(π1,π2)
h(π1,π2)

= min(π1, π2). Since π3 ≥ π1 and π3 ≥ π2, π3 ≥ min(π1, π2). It

follows that r(I)(π3, {π1, π2}) = 1.

Corollary 1 states that r(I)(π3, {π1, π2}) = 1 does not imply r(I)(π3, π1) = 1 or
r(I)(π3, π2) = 1.

Proof of Corollary 1. As a result that fusion is carried out by a t-norm (in case of h(π1, π2) >
0), no information about the shape of neither π1 or π2 can be induced (other than they
overlap because h(π1, π2) > 0). Therefore, it cannot be implied that r(I)(π3, π1) = 1 or
r(I)(π3, π2) = 1.

Proof of Proposition 7. It is to be proven that if r(I)(π1, π3) = 1 and r(I)(π2, π3) = 1, then
r(I)({π1, π2}, π3) = 1. In both cases of conjunctive and disjunctive fusion, it holds that if
both π1 ≥ π3 and π2 ≥ π3, then fu(π1, π2) ≥ π3. Therefore, r(I)({π1, π2}, π3) = 1.

Appendix A.2. Proofs of Section 4.1.2

Proposition A1. The possibilistic similarity measure simr proposed in (14) satisfies the properties
of Definition 5.

Proof of Boundaries Property. A possibilistic similarity measure simr is defined to be in
[0, 1]. Since r(I) ∈ [0, 1], min(π,π′)∈p

(
r(I)(π, π′)

)
∈ [0, 1] and simr ∈ [0, 1].

Proof of Identity Relation (Upper Bound) Property. Identity relation is satisfied if
simr(π, π, . . . , π) = 1. Obviously, each pair in {π, π, . . . , π} has h(π, π) = 1 and fu(π, π) =
π. Thus, no information is gained in the fusion process: g(fu(π, π), π) = g(π, π) = 0.
Therefore, each pair has r(I)(π, π) = 1. It follows that simr(π, π, . . . , π) = 1.

Proof of Non-Agreement (Lower Bound) Property. Non-agreement is satisfied if simr(p) =
0 in case of h(p) = 0. Since (11) includes a multiplication with h, all pairs (π, π′) ∈ p have
r(I)(π, π′) = 0 and, thus, simr(p) = 0.

Proof of Least Agreement Property. Least agreement is satisfied if simr(p) ≤ min(π,π′)∈p
(simr(π, π′)). Similarity between two possibility distributions is simr(π, π′) =
min

(
r(I)(π, π′), r(I)(π′, π)

)
. Then, simr(p) = min(π,π′)∈p

(
r(I)(π, π′)

)
= min(π,π′)∈p(

min
(

r(I)(π, π′), r(I)(π′, π)
))

= min(π,π′)∈p(simr(π, π′)).

Proof of Symmetry Property. The symmetry property is satisfied if simr(π1, π2, . . . , πn) =

sim
(

Sp(1), Sp(2), . . . , Sp(n)

)
for any permutation p on N>0. The similarity measure simr is

symmetric because the minimum operator in (14) itself is symmetric and the minimum
type I redundancy is taken from all possible pairwise combinations in {π1, π2, . . . , πn},
e.g., simr(π, π′) = min

(
r(I)(π, π′), r(I)(π′, π)

)
.

Proof of Inclusion Property. Inclusion is satisfied if (i) simr(π1, π3) ≤ simr(π1, π2) and
(ii) simr(π1, π3) ≤ simr(π2, π3) in case of π1(x) ≤ π2(x) ≤ π3(x)∀x ∈ X. Let i, j ∈
{1, 2, 3}. Then ∀i < j : r(I)

(
πj, πi

)
= 1, r(I)

(
πi, πj

)
≤ 1, and, therefore, simr

(
πi, πj

)
=

min
(

r(I)
(
πj, πi

)
, r(I)

(
πi, πj

))
= r(I)

(
πi, πj

)
. Since h

(
πi, πj

)
= 1, fu

(
πi, πj

)
= πi.
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Part (i)

simr(π1, π3) ≤ simr(π1, π2) if r(I)(π1, π3) ≤ r(I)(π1, π2). It follows that

r(I)(π1, π3) ≤ r(I)(π1, π2),

(1− |g(fu(π1, π3), π3)|) · h(π1, π3) ≤ (1− |g(fu(π1, π2), π2)|) · h(π1, π2),

1− |g(fu(π1, π3), π3)| ≤ 1− |g(fu(π1, π2), π2)|,
1− |g(π1, π3)| ≤ 1− |g(π1, π2)|,
−|g(π1, π3)| ≤ −|g(π1, π2)|,

−| spec(π1)− spec(π3)︸ ︷︷ ︸
<0

| ≤ −| spec(π1)− spec(π2)︸ ︷︷ ︸
<0

|,

spec(π1)− spec(π3) ≤ spec(π1)− spec(π2),

spec(π3) ≥ spec(π2).

Part (ii)

simr(π1, π3) ≤ simr(π2, π3) if r(I)(π1, π3) ≤ r(I)(π2, π3). The same steps as carried
out in part (i) can be applied. This leads to

−| spec(π1)− spec(π3)︸ ︷︷ ︸
<0

| ≤ −| spec(π2)− spec(π3)︸ ︷︷ ︸
<0

|,

spec(π1)− spec(π3) ≤ spec(π2)− spec(π3),

spec(π1) ≤ spec(π2).

Appendix A.3. Proofs of Section 4.1.3

Proposition A2. The proposed modification method in (20) satisfies the information preservation
property, i.e., if rel = 1, π′ = π.

Proof. If rel = 1, then (1− rel)β · (xb − xa) = 0. Consequently, C = {x} and π′(x) =
maxx′∈{x}(π(x′)) = π(x).

Proposition A3. The proposed modification method in (20) satisfies the specificity interaction
property, i.e., both (i) if rel = 0, ∀x ∈ X : π′(x) = 1 and (ii) spec(π′) ≥ spec(π).

Proof. Part (i)

If rel = 0, then (1 − rel)β · (xb − xa) = (xb − xa) and C ranges ∀x over the com-
plete frame of discernment, i.e., C = X. π is assumed to be normal, therefore π′(x) =
maxx′∈X π(x′) = 1∀x ∈ X.

Part (ii)

Equation (20) relies solely on the maximum operator. Therefore, π′(x) ≥ π(x) and
spec(π′) ≥ spec(π) (see (9) or (10)).

Appendix A.4. Proofs of Section 4.2.2

Proposition A4. Equation (25) satisfies the upper bound property of Definition 7.

Proof. rge(p) = 1 if maxπ∈p(pos(π)) − minπ∈p(pos(π)) = xb − xa. As can be seen
in (24), (i) maxπ∈p(pos(π)) = xb if π(xb) = 1 and ∀x ∈ {X \ xb} : π(x) = 0 and
(ii) minπ∈p(pos(π)) = xa if π(xa) = 1 and ∀x ∈ {X \ xa} : π(x) = 0.

Proposition A5. Equation (25) satisfies the lower bound property of Definition 7.
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Proof. If ∀π, π′ ∈ p : π = π′, then pos(π) = pos(π′) and max(pos(π)) = min(pos(π)).
It follows that rge(p) = 0.
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