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Abstract: As important sensors in smart sensing systems, smartwatches are becoming more and more
popular. Authentication can help protect the security and privacy of users. In addition to the classic
authentication methods, behavioral factors can be used as robust measures for this purpose. This
study proposes a lightweight authentication method for smartwatches based on edge computing,
which identifies users by their tapping rhythms. Based on the DBSCAN clustering algorithm, a new
classification method called One-Class DBSCAN is presented. It first seeks core objects and then
leverages them to perform user authentication. We conducted extensive experiments on 6110 real
data samples collected from more than 600 users. The results show that our method achieved the
lowest Equal Error Rate (EER) of only 0.92%, which was lower than those of other state-of-the-art
methods. In addition, a statistical method for detecting the security level of a tapping rhythm is
proposed. It can prevent users from setting a simple tapping rhythm password, and thus improve
the security of smartwatches.

Keywords: one-class classification; DBSCAN; smartwatch; tapping rhythm; sensor; authentication

1. Introduction

There are various types of smart sensing systems, including smart glasses, earphones,
fitness wristbands, smartwatches, etc. [1]. With the development of technology, more
and more smart systems are used in our lives. For example, since Motorola released
the Moto 360 with Android Wear as its operating system in March 2014, fitness bands
and smartwatches have become increasingly popular in recent years. Most of a user’s
physiological data that are measured by the body sensors of a smart system are personal
information, which is private and more sensitive than mobile phone numbers or email
addresses [2]. Malicious people or organizations can infer high-value intelligence from
the sensor data, such as the user’s identity, location, and health condition. Therefore, it is
crucial to protect the security of these smart devices. Many efforts are being made towards
lightweight security solutions tailored for smart sensing systems [3]. However, there is still
a gap between the technology and the law, and we lack a standard approach to protecting
equipment privacy [4–6]. It was reported by the U.S. Food and Drug Administration that
more than 300 wearable devices from 40 manufacturers have privacy and security risks [7,8].
If cloud computing technology is applied to protect privacy, it cannot respond to urgent
requests, and there are also communication security problems. In edge computing, the
computing and storage nodes are placed at the internet’s edge, which can address concerns
such as latency and bandwidth costs [9,10]. The edge nodes can perform calculations
themselves, rather than transmitting the data to the server for the calculation, which can
reduce the risk of privacy leaks from edge nodes. Since smartwatches can be the edge
nodes of the internet of things, edge computing can protect the privacy of these devices.
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A survey on Implantable Medical Devices (IMDs) and the security of wearable de-
vices [11] classified attacks into three categories, namely communication channel attacks
(e.g., Bluetooth sniffing attacks), hardware attacks (e.g., those caused by accessing data
through hardware addresses), and software attacks (e.g., malicious programs). In addition,
the data of a device without a lock screen or user authentication function are easy to steal if
the device is lost or secretly used by others. Researchers from HP evaluated the ten most
advanced smartwatches, but found that only 50% of them have a lock screen function.
Thus, the long-neglected user authentication for smartwatches should be treated with
greater importance [12].

As more attention has recently been paid to user authentication, researchers have
proposed various edge computing authentication methods, which mainly include the
following three types. The first type of authentication method is based on the user’s physi-
ological biometrics, such as the relevant attributes of the eyes [13,14], Electrocardiogram
(ECG), and Electroencephalogram (EEG) [15,16], as well as the body’s feedback of external
stimuli [17,18]. Specific sensors should be included in smartwatches with these methods.
However, commercial smartwatches are usually not equipped with these sensors [19].
The second authentication type is based on behaviors, such as walking postures [20,21].
Refs. [22–26] predicted when users performed specific actions according to the values of ac-
celerometer sensors. These methods do not require user intervention; thus, the smartwatch
automatically recognizes the user. The sampling frequency should be above 50 Hz [23]
to achieve higher accuracy. However, authentication with a sampling frequency above
50 Hz at all times results in high energy consumption. In addition, in order to achieve
higher accuracy, the duration of the gesture is preferably more than five seconds [23],
which may embarrass users in public. The third type is comprised of knowledge-based
authentication methods, such as passwords and patterns. However, it is very inconvenient
to type passwords or draw patterns on a smartwatch due to its small screen and keypad.
Moreover, even if a password is set, users tend to choose a simple and fast-unlocking
one, since they usually unlock the screen, which makes it less secure [23]. In addition,
passwords and patterns are vulnerable to thermal attacks or smudge attacks [23]. Thus,
passwords are not suitable for smartwatches.

A new knowledge-based authentication method was proposed by Ben Hutchins et al. [27],
which recognizes users by their tapping rhythms. The average verification time is only
1.7 s, which is lower than that of the pattern password (4.5 s) and that of the gesture
password (16.5 s) [27]. The power consumption is only 181.4 mW, which is similar to that
of screen opening (161.5 mW) [27]. In addition, the False Acceptance Rate (FAR) of the
zero-effect attacks on the tapping rhythm is only 8.2% [27]. Thus, the tapping rhythm has
the advantages of a short verification time, less power consumption, and strong robustness.
Moreover, the tapping rhythm can be applied to user identification of small devices, since
the tapping only occupies a small area. However, the average Equal Error Rate (EER) in
Ben Hutchins et al. [27] is 7.2%. Even if we reproduce their method on our datasets, the
lowest EER reaches 4.04%, which means that the important privacy of 4 of 100 people is at
risk of leakage.

In this paper, we propose a new method for authentication of users based on edge
computing by smartwatches via tapping rhythm analysis, which can decrease the EER
from 4.04% to 0.92%. Further, a new classification algorithm called One-Class DBSCAN is
presented to recognize users. Based on clustering, One-Class DBSCAN seeks core objects
of the training data and leverages them to classify new samples. Our method outperforms
another authentication approaches that use tapping rhythms [27]. In addition, there are
mechanisms for detecting the security levels of text passwords, e.g., to see whether a
password contains uppercase letters or not. However, to the best of our knowledge, there
are no detection methods for tapping rhythms. Therefore, based on the standard deviation,
we propose an approach to detecting the security of tapping rhythms. This can improve
the security of tapping rhythm passwords by prompting users with the security level.
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Two main contributions of this paper are as follows:

1. A new one-class classification algorithm called One-Class DBSCAN is proposed,
which contributes a solution to the one-class classification.

2. We also propose a method that can detect the security level of a tapping rhythm and
prompt users to set more complex passwords if the password is too simple.

In Section 2, related works on user authentication are presented. Section 3 describes a
new methodology. The experimental datasets and some evaluation results are explained
in Section 4. In Section 5, we introduce a method for detecting the security of a tapping
rhythm. Section 6 relates to conclusions and future plans.

2. Related Work

User authentication is a basic function for preventing unauthorized users from turning
on a device. The ways of recognizing users can be partitioned into three categories, which
are authentication based on physiological biometrics, authentication based on behaviors,
and authentication based on knowledge [28–30].

2.1. Authentication Based on Physiological Biometrics

Authentication based on physiological biometrics takes the user’s physiological char-
acteristics as user-specific attributes, among which the most common ones are the finger-
print and iris. Iris authentication has been used to identify users of smart glasses [13].
Wang et al. [14] proposed a method for pupil detection under different illuminations. How-
ever, applying iris or fingerprint authentication to a smartwatch with a small size and low
power consumption would inevitably increase its size or hardware cost.

There are also many medical ways to recognize users. Dustin van der Haar et al. [15]
presented a biometric identification method based on a hybrid attribute. They built a
system named CaNViS to classify people by their Electrocardiogram (ECG) and the Elec-
troencephalogram (EEG), which are the most common bio-signals in the medical field.
Since everyone has a different ECG and EEG, this method is universal. ECG was also
employed by Chun et al. [16] for user authentication. However, commercial smartwatches
do not necessarily have these two biosensors.

In addition, some researchers distinguished different people according to the re-
sponses of their bodies. Based on the fact that biological tissue responds accordingly
when an electric current is applied, Cornelius et al. [17] designed bioimpedance models
to recognize users. A typical biometric identification system called VibID, which is based
on arm vibration information, was constructed in Yang et al. [18]. This system identifies
users by their different body tissue responses to mechanical vibrations owing to their
different physical characteristics. However, the wearing position of the wristband has a
great influence on the accuracy of this system, so it is not able to record the long-term
changes in a user’s body.

2.2. Authentication Based on Behavioral Biometrics

Authentication based on behaviors makes use of the sensor data of certain actions
by users. Many researchers have proposed novel authentication methods applied to
computers and mobile terminals. Mare et al. [31] constructed a wristband device that
recognized users by comparing the movement track of the wrist—automatically detected
by the device—with the data that users inputted into a terminal. Ren et al. [32] applied
thane accelerometer to a phone according to users’ unique gait patterns. Draffin et al. [33]
identified users by detecting the location and area of pressing points, as well as the force
of touch. Non-stop authentication based on users’ behavior of touching the screen was
proposed by Frank et al. [34] and Luca et al. [35]. However, these approaches are only
applicable to devices with large screens, such as computers and mobile phones.

Some researchers have proposed implicit authentication methods without user in-
tervention for wristband devices. Kwapisz et al. [20] employed a wristband-type ac-
celerometer to recognize users based on their actions, such as sitting, walking, and running.
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Likewise, Yunze Zeng et al. [21] also took the sensor data of movements, such as walking,
running, climbing, and jumping, as features for identifying users. The authors of [20,21]
intended to directly and automatically recognize users by their sensor data without the
user’s intervention at all times. However, it resulted in high battery consumption.

In addition, some explicit authentication approaches have also been put forward.
Junshuang Yang et al. [22] classified users by the values that sensors collect when users
draw circles, lift the device, and lay it down. Chao Shen et al. [23] constructed a classifier for
unlocking a smartwatch, which was based on acceleration sensor data when users waved
their hands, and the EER of the classifier was 4.27%. Similarly, Wu et al. [24], Akl et al. [25],
and Liu et al. [26] also employed three-axis acceleration to identify people based on their
gestures. The response to external audio was detected to recognize users in the work of
Li et al. [36]. However, Chao Shen et al. [23] showed in their research that, in order to
achieve better accuracy, the duration of the gesture is preferably more than five seconds.
Moreover, they presented that the sampling frequency should be above 50 Hz. These all
result in high energy consumption. Furthermore, users might be reluctant to make such
unusual movements in public. Thus, these methods do not befit most people.

2.3. Authentication Based on Knowledge

These methods recognize users according to some knowledge, such as a text password.
The most common password is a four-digit PIN code, but it is too simple and not safe
enough. Even if attackers do not know the user, they can still guess the PIN code. Text
passwords that include English letters have higher security than four-digit PIN codes and
are widely used in smartphones and smart computers, but it is very difficult for users to
input passwords into a smartwatch due to its small screen.

Some researchers have proposed authentication methods for mobile phones based
on tapping rhythms of the users. Vasaki Ponnusamy et al. [37] utilized x-coordinate,
y-coordinate, pressure, size, and tapping time as features, and built a classifier using
machine learning algorithms to recognize users. Satvik Kulshreshtha et al. [38] pro-
posed Woodpecker, which is an authentication method that enables users to tap secret
rhythms on the backs of mobile devices. However, neither of them were about smartwatch
user authentication.

Ben Hutchins et al. [27] presented a method of user authentication for smartwatches
according the rhythm of tapping on the screen. The rhythm length was the number of
times that the device was tapped. Their study suggested that a rhythm of the same length
as a text password would be safer and more difficult to for attackers to crack. The tap time,
release time, intervals between two successive taps, and relative intervals were used as
features in their method. The length of a tapping rhythm data vector was N (N times of
tapping) and the number of features was 4N − 3. The average and the standard deviation
of all training data were calculated. The category of the new sample was determined based
on its distance from the average. The average EER of their approach was 7.2%.

3. Methodology

We introduce the proposed method in this section, which mainly includes the feature
extraction, model training, and authentication parts.

3.1. Feature Extraction

One tapping rhythm datum is composed of many time instances of beats. For the
convenience of description, the following tapping rhythm data vector is equivalent to a
tapping rhythm datum. Figure 1 shows an example of one tapping rhythm data vector, in
which the x-axis indicates the time and the y-axis indicates whether the screen is tapped.
From the figure, we see that there are three durations, t2 − t1, t4 − t3, and t6 − t5, and two
intervals, t3 − t2 and t5 − t4. Thus, the tapping rhythm data vector can be described as a
vector [t2 − t1, t3 − t2, t4 − t3, t5 − t4, t6 − t5]. For a tapping rhythm data vector of N beats,
the dimension of its feature vector is 2N − 1.
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Figure 1. An example of one tapping rhythm data vector. The x-axis indicates the time and the y-axis
indicates whether the screen is tapped (1 represents the screen being tapped, while 0 means that it is
not).

Each element of the feature vector transformed from the tapping rhythm data repre-
sents one duration or interval. The overall duration of the rhythm is shorter if the user is
in a state of urgency or excitement when tapping, and it may be longer if the user is in a
leisurely mood. Therefore, there is a positive relationship between the total duration of the
tapping rhythm and each duration or interval. Because of this, the feature vector can be
transformed into the ratio of each duration or interval to the total duration of the tapping
rhythm. As a result, the feature values of the vector remain almost unchanged regardless
of if the user is in a state of leisure or urgency, which can increase the similarity of each
input of the same tapping rhythm and thus improve the accuracy of the final judgment.

The function can be described by Equation (1), where x = (x1, x2, ..., xn) represents
the feature vector, xi and xj are feature values, and x′i is the transformed feature vector. D
is the dimension of the vector, which is equal to 2N − 1. The dimension of the transformed
feature vector is the number of durations and intervals. The value of the vector can be
described as the ratio of each duration or interval to the total duration of the tapping
rhythm.

x′i =
xi

∑D
j xj

(1)

3.2. Model Training and Authentication

In traditional classification problems, the training datasets consist of a positive dataset
and a negative dataset. After training, the model can predict whether a new sample
is positive or negative. However, since there is only one class of the tapping rhythms
inputted by the user, our work focuses on the one-classification issue. It is worth noting
that, although the user has multiple favorite tapping rhythms, in our method, he/she can
only set one as the authentication rhythm at each time (which is similar to how a user can
only set one favorite password). One classification represents that the training dataset has
only one class, and the classifier determines whether a new example belongs to this class.
Since the training datasets for supervised learning usually have two classes, it is hard for us
to utilize supervised learning algorithms to classify new samples in the one-classification
issue. Since the clustering algorithm of unsupervised learning can cluster data without
labels, it is adopted in our work. A new instance can be classified into one cluster. For the
convenience of introduction, the formed cluster is equivalent to the class.

DBSCAN is a clustering algorithm proposed by Martin Ester et al. in 1996 [39]. The
data vectors within the distance ε from the vector u constitute the neighbors of the vector
u, which is denoted by Nε(u). If | Nε(u) |≥ MinPts, the vector u is determined as a
core object. Each core object stands for a cluster center. The vectors within the distance ε
from the core object belong to the cluster of this core object. If the distance between core
object u and core object v is less than ε, these two core objects belong to the same cluster.
Thus, DBSCAN determines the core objects and the cluster by parameters MinPts and ε.
Through calculation, the algorithm DBSCAN can find all core objects and all clusters. In
addition, it is easier to satisfy the condition of the core object’s composition to determine
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more core objects if MinPts becomes smaller. Similarly, the number of vectors contained in
one cluster increases as ε increases.

We propose a new classification algorithm called One-Class DBSCAN. One-Class DB-
SCAN generates only one cluster as the current class using all the training data. Algorithm 1
shows the algorithm of One-Class DBSCAN, whose main job is to calculate the core objects,
and the cluster is defined based on the core objects. Feature extraction is illustrated in lines
1 to 5, and is described in Section 3.1. The Euclidean distance between each two data points
is calculated to get the neighbors of each piece of training data, which are shown in lines 8
to 14. The training data whose neighbors are greater than MinPts, i.e., | Nε(u) |≥ MinPts,
are regarded as the core object and are added to the set of core objects. Afterward, if there
is no core object, the center of the training datasets is taken as the core object, as described
in lines 19 to 25 of Algorithm 1. After that, One-Class DBSCAN obtains all core objects,
which all belong to one class. The data vectors within the distance ε from the vector u
constitute the neighbors of the vector u. If the number of neighbors is greater than MinPts,
the vector u is determined as the core object. The core object is decided by the nearby
data vectors. In general, since the outlier is far from the other normal data, the abnormal
data are not judged as the core objects. Thus, the outlier cannot affect the performance of
One-Class DBSCAN.

Figure 2 illustrates several training examples. Red dots stand for the core objects,
circles for the range where the distance from the core object is ε, and black dots for data.
There is only one core object in Figure 2a; therefore, the two black dots in the circle belong
to the class of the core object. In Figure 2b, the core objects and the black dots in their circles
belong to the same class. There is no core object in Figure 2c, and thus, the average value of
all data is employed as the core object.

Figure 2. Examples of One-Class DBSCAN training.

After that, a new instance can be classified according to its distance ε from the core
objects. Algorithm 2 demonstrates the authentication of One-Class DBSCAN. Similarly,
it does feature extraction first in lines 1 to 3. Then, assuming there are L core objects, the
algorithm traverses each core object and calculates the Euclidean distance from the new
sample. If the Euclidean distance between the new sample and any core objects is less than
ε, the sample is classified as a positive class, i.e., the class of training data, which means
that the new sample passed the authentication.
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Algorithm 1 One-Class DBSCAN
Input:

D: The dimension of the vector.
m: The size of the training data.
{x(1), x(2), ..., x(m)}: Training dataset
ε: The parameter of One-Class DBSCAN, which means that the distance is ε.
MinPts: The parameter of One-Class DBSCAN, which is the minimum number of data

vectors within the distance ε required to form a core object.
Function:

1: for i = 1, 2, ..., m do
2: for j = 1, 2, ..., D do
3: x(i)j = x(i)j / ∑D

k x(i)k
4: end for
5: end for
6: Initialize the set of core objects Ω = ∅
7: for i = 1, 2, ..., m do
8: Nε(x(i)) = ∅
9: for j = 1, 2, ..., m do

10: dis =|| x(i) − x(j) ||2
11: if dis ≤ ε then
12: Nε(x(i)) = Nε(x(i)) ∪ {x(j)}
13: end if
14: end for
15: if | Nε(x(i)) |≥ MinPts then
16: Ω = Ω ∪ {x(i)}
17: end if
18: end for
19: if Ω = ∅ then
20: Initialize vector v
21: for j = 1, 2, ..., D do
22: vj =

1
m ∑m

k x(k)j
23: end for
24: Ω = {v}
25: end if
Output:

Ω: The set of core objects
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Algorithm 2 Authentication
Input:

D: The dimension of the vector.
L: The number of core objects.
Ω: The set of core objects {Ω(1), Ω(2), ..., Ω(L)}
ε: The parameter of One-Class DBSCAN, which means that the distance is ε.
v: The vector of the new sample.

Function:
1: for j = 1, 2, ..., D do
2: vj = vj/ ∑D

k vk
3: end for
4: for i = 1, 2, ..., L do
5: dis =|| Ω(i) − v ||2
6: if dis ≤ ε then
7: return True
8: end if
9: end for

10: return False
Output:

True or False: Whether the new sample belongs to this class

4. Experiment

In this section, experiments are conducted with the methods described in Section 3,
and some evaluation results are presented. We evaluated the tapping rhythm program
with an Android Virtual Device (AVD). The CPU of this AVD was the Wear OS Intel Atom
(x86) with four cores, the Random Access Memory (RAM) size was 512 MB, the SD card
size was 512 MB, and the Android API version was 28. We briefly introduce our datasets
and evaluation indicators in Section 4.1, and the experimental process is presented in
Section 4.2. After that, experimental results are given in Sections 4.3 and 4.4. Finally, in
Section 4.5, we measure the running time.

4.1. Datasets and Evaluation Indicators

To the best of our knowledge, there were no public datasets for tapping rhythms on
smartwatches when we performed our evaluations. Thus, we collected data on a Moto
360. In order to record data for our method, we developed a program on an Android
smartwatch. Each user inputs one favorite tapping rhythm 10 times (these 10 tapping
rhythm data belong to the same class). When the user inputs the tapping rhythm, the
program records the tapping rhythm data automatically in the smartwatch. After that, the
collected datasets are transmitted to a PC. A total of 6110 pieces of data were collected from
more than 600 people. The data lengths and the sizes of the datasets are shown in Table 1.
The limited sizes of datasets with the length of N = 9 and N = 10 may lead to inaccurate
experimental results; thus, we only utilized datasets with lengths of 5 to 8.

Table 1. The sizes of tapping rhythm datasets.

N 5 6 7 8 9 10 Total

Num 1700 1770 1330 790 260 260 6110

Three indicators, i.e., the False Acceptance Rate (FAR), False Rejection Rate (FRR),
and Equal Error Rate (EER), were applied to evaluate the model. The FAR is the ratio
of the number of supposititious data that are considered legitimate to the total number
of supposititious essays [27], representing the ratio of impostors acknowledged by our
proposed approach [23]. The FRR is the ratio of the count of incorrect authentications
in legitimate data to the total count of legitimate attempts [27], indicating the ratio of
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legitimate users rejected by our proposed approach [23]. The effect of the classifier becomes
better as the FAR and FRR decrease. However, with the adjustment of parameters, the FAR
and FRR are generally inversely proportional. Thus, to balance it, we also take account of
EER, which is the value where FRR = FAR [27]. Similarly, the smaller the EER, the better
the classifier.

4.2. Implementation

Firstly, we carried out experiments with the proposed method described in Section 3
to evaluate the model. Further, the approach from Ben Hutchins et al. [27] was reproduced
to compare with our method. Since the two methods to be compared have different
features and classification algorithms, these two aspects were compared separately with
two experiments for each. There were four experiments in total.

The evaluation process is shown in Algorithm 3. Each class is treated as a legitimate
class, and the remaining classes of the same length are regarded as supposititious classes for
cross-validation. Five random datasets in the legitimate class were chosen as the training
data, while the remaining five datasets in the legitimate class and another five datasets
selected randomly from the remaining classes were chosen as the testing data in every
training and testing. This process was repeated 10 times to calculate the average mean.
For various algorithm parameters, the FAR and FRR were different, but always inversely
proportional. Thus, in order to balance the FRR and FAR, the model was evaluated with
the equivalent value of the FAR and FRR, i.e., EER. Thus, the parameters at the EER are
the optimal parameters. We took datasets of the same length together for cross-validation
to obtain the EER and the optimal parameters. After that, we calculated the average EER
from each length of data. Similarly, we calculated the average parameters from these
optimal parameters to build a model with fixed parameters that can make predictions for
datasets of all lengths.

Algorithm 3 Evaluation process

1: for 10 times do
2: for c in classes do
3: c′ = classes except c
4: trainDataset = choose 5 data in c randomly
5: testDataset = remaining 5 data in c
6: testDataset += choose 5 data in c′ randomly
7: Train model and calculate FAR,FRR
8: end for
9: end for

10: Calculate the average mean of FAR, FRR
11: Calculate EER

4.3. Ablation Study

As described in Section 3.2, two parameters were used to adjust One-Class DBSCAN.
Thus, MinPts was limited to 2, 3, and 4, and ε was set from 0.01 to 0.20 to find the best
combination of parameters. Figure 3 shows the results of the evaluation of One-Class
DBSCAN. The blue and orange lines represent the FRR and FAR, respectively, which are
inversely proportional. Intuitively, the parameters with low EER could always be found.
The FAR became larger if ε was greater than 0.2, and the FRR approached 1 when ε was
less than 0.01. Therefore, considering both the FAR and FRR, the optimal ε was between
0.01 and 0.2. The figure in the red box is an enlarged view at the lowest point of the original
figure. Through the enlarged figure, we can find that the EER and optimal ε are slightly
different when MinPts changes. The optimal ε and EER at different MinPts are illustrated
in Table 2. It is clearly seen that MinPts has little effect on the experimental results, but the
results of MinPts = 2 are still slightly better than those of 3 and 4. Therefore, combining
Figure 3 with Table 2, the optimal parameters are MinPts = 2 and ε = 0.0973.
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Table 2. Equal Error Rate (EER) and optimal parameters of One-Class DBSCAN.

MinPts 2 3 4

ε 0.0973 0.0992 0.1009

EER 0.92% 0.96% 1.01%

Figure 3. Results of One-Class DBSCAN. The blue is False Rejection Rate (FRR), and the orange dash
is False Acceptance Rate (FAR).

Table 3 illustrates the experimental results for data of different lengths under the
condition of MinPts = 2 and ε = 0.0973. Clearly, as the data length increases, the FRR
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and FAR become smaller. This means that the security of the password increases as the
password length increases.

Table 3. Experimental results when MinPts = 2 and ε = 0.0973.

N 5 6 7 8

FRR 1.11% 0.89% 0.85% 0.63%

FAR 1.16% 0.84% 0.83% 0.69%

4.4. Comparison

In this section, we compare One-Class DBSCAN with the method of Ben Hutchins
et al. [27], the clustering algorithm Mean Shift, the anomaly detection algorithm Isolation
Forest, and two supervised learning algorithms. The method of Ben Hutchins et al. [27] was
reproduced on our datasets as a base line. It employed the tap time, release time, intervals
between two successive taps, and relative intervals as features to identify one piece of
tapping rhythm data. Their classification algorithm was called Vector Comparison. The
mean vector f and the standard deviation vector σ of the training datasets were utilized to
build the model. If || f − f ||2≤ α || σ ||2, the new sample vector f was classified into the
positive class. The optimal parameter (α = 2.82) after adjustment and the corresponding
EER (4.04%) of the method of Ben Hutchins et al. [27] are shown in Table 4. Obviously, our
method (EER = 0.92%) outperformed that of Ben Hutchins et al. [27] (EER = 4.04%) on the
real-world datasets. In order to better explain why our method is better than theirs, we
performed further experiments, i.e., the experiments of comparing the different features
and classification algorithms separately.

The different features and classification algorithm of our approach are innovative.
To validate the effectiveness of our features, we replaced features of our method with
those of Ben Hutchins et al. [27], and the results are shown in the row “Features from
Ben Hutchins et al. [27] and One-Class DBSCAN” in Table 4. From the table, we see that
after the parameter adjustment, the EER was 2.51%, which is higher than that of our
method (EER = 0.92%), indicating that our features performed better than theirs. We
believe that the features have a significant impact on the accuracy of the classification. If
their features (“Features in Ben Hutchins et al. [27] and One-Class DBSCAN” in Table 4)
are replaced by our features (“Our method” in Table 4), the EER can be reduced from 2.51%
to 0.92%.

Afterward, we substituted the Vector Comparison algorithm from Ben Hutchins
et al. [27] with One-Class DBSCAN to determine whether our algorithm is better. The
row “Our features and Vector Comparison” in Table 4 shows that the Vector Comparison
algorithm had an optimal parameter of α = 2.31 and EER of 1.06%, which was slightly
higher than that of our algorithm (EER = 0.92%), suggesting that our algorithm performs
slightly better than theirs as well.

In addition, we compared One-Class DBSCAN with the Mean Shift clustering al-
gorithm [40] and the Isolation Forest anomaly detection algorithm [41]. Mean Shift is a
hill-climbing algorithm that involves shifting a kernel iteratively to a higher-density region
until convergence. It leverages a Gaussian kernel k(x) = exp (− x2

2σ2 ); σ is one parameter of
this algorithm. Every data vector is first assigned a weight according to the distance from
the kernel center. At every iteration, the kernel is shifted to the weighted mean of all data.
Mean Shift judges whether the new sample belongs to the positive class according to the
distance between the new sample and the kernel center. The result is shown in the row
“Mean Shift” in Table 4, where EER = 53.4%. The reason for the poor accuracy of Mean Shift
may be that the kernel function is not suitable for low-dimensional data, such as a tapping
rhythm. Isolation Forest is an unsupervised learning algorithm for anomaly detection. The
algorithm builds subtrees by randomly selecting a feature and then randomly choosing a
split value between the maximum and minimum values of this feature. The new sample
is classified from the root node of the tree to the leaf node. If the path from the root node
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to the leaf node is short, the new sample may be abnormal. The parameter n_estimators
denotes the number of subtrees, and contamination represents the proportion of outliers
in the datasets. The result is shown in the last row of Table 4, where the EER is 30.6%.
Therefore, tree-based classification algorithms are not suitable for tapping rhythm data.

Table 4. Comparison results.

Experiment Optimal Parameter(s) EER

Our method (Our features and One-Class
DBSCAN)

MinPts = 2, ε = 0.0973 0.92%

Ben Hutchins et al. [27] method (Features in
Ben Hutchins et al. [27] and Vector
Comparison)

α = 2.82 4.04%

Features in Ben Hutchins et al. [27] and
One-Class DBSCAN

MinPts = 2, ε = 461.9 2.51%

Our features and Vector Comparison α = 2.31 1.06%

Mean Shift σ = 0.0418 53.4%

Isolation Forest n_estimators = 10,
contamination = 0.14

30.6%

Further, we made more comparisons with two supervised learning algorithms, i.e.,
Decision Tree [42] and Logistic Regression [43]. In Decision Tree, criterion represents the
function for measuring the quality of a split (“gini” is Gini impurity), splitter is the strategy
used to choose the split at each node (“best” is to choose the best split), max_depth is the
maximum depth of the tree, and min_samples_split is the minimum number of samples
required to split an internal node. We tried many parameters, but we could not decrease
the FAR. The FAR was always greater than the FRR, so we could not get EER. Therefore,
in Table 5, we just give the results of the FRR and FAR. After adjusting the parameters,
the best result was FRR = 7.0% and FAR = 24.9%, which indicates that the model usually
treated the negative samples as positive samples. In Logistic Regression, C represents the
inverse of the regularization strength. The best results were FRR = 0.09% and FAR = 16.8%,
which was better than those of Decision Tree. In our method, EER = 0.92% means that FRR
= FAR = 0.92%. Thus, our method outperformed the Decision Tree in FRR and FAR, and
was better than Logistic Regression in FAR. In supervised binary classification problems,
the training datasets consist of a positive dataset and a negative dataset. However, in the
real environment, we can only obtain the input data of the target user, i.e., only the positive
data, without the negative data. Since there is only one class of tapping rhythms inputted
by users, supervised models cannot be trained.

Table 5. Experimental results using supervised learning algorithms.

Experiment Optimal Parameter(s) FRR FAR

Decision Tree criterion = gini, splitter = best, max_depth = 3,
min_samples_split = 0.8

7.0% 24.9%

Logistic Regression C = 0.1 0.09% 16.8%

In summary, our approach was better than that of Ben Hutchins et al. [27] in both the
features and the classification algorithm. The EER values obtained through experiments
suggested that our features can distinguish the datasets more easily, and One-Class DB-
SCAN can cluster the datasets more clearly. Our method also outperformed the Mean Shift
clustering algorithm and the Isolation Forest anomaly detection algorithm. The experimen-
tal results also show that MinPts = 2 is better than 3 and 4, and the lowest EER of 0.92%
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can be obtained when MinPts = 2 and ε = 0.0973. However, even if the length of the data
is only 5, our method can still achieve an FRR of 1.11% and FAR of 1.16%, as shown in
Table 3, indicating that our approach can achieve precise results, even with a small amount
of training data.

4.5. Running Time

Since the time that it takes to input the tapping rhythm is dependent on the users, it
could not be evaluated. Therefore, we measured the running time of the model training
after the user entered the tapping rhythm and the running time of authentication after the
user inputted a new sample. In order to ensure the accuracy of experiments, we measured
the running times of the model training with different lengths of tapping rhythms separately.
There were five training samples for each training, and the experiments are executed 10
times to calculate the average running time.

Table 6 shows the running times of training and authentication. It is clear that both the
running time of training and the running time of authentication increased with the lengths
of the tapping rhythms, i.e., N. Thus, we conclude that tapping rhythms with a long length
require more running time. From Table 6, the average running time of training was 49.1
ms, which is negligible for users. Even when the lengths of the tapping rhythms reached 8,
the average running time was only 55.6 ms. The average running time of authentication
was much shorter than that of training, which was 8.9 ms when N = 5 and 12.6 ms when
N = 8. Then, the average training time on the entire dataset was 52.45 ms, and the average
authentication time was only 10.58 ms. Therefore, clearly, our method runs fast, so the
running time is negligible for users.

Table 6. The running times of training and authentication.

N Training Authentication
avg (ms) std (ms) avg (ms) std (ms)

5 49.1 9.58 8.9 4.12

6 51.3 8.12 9.6 3.66

7 53.8 6.01 11.2 3.73

8 55.6 8.24 12.6 2.53

avg(ms) 52.45 10.58

5. Tapping Rhythm Security Improvement

For text passwords, there is a system that can detect password security, and if the
password we set is too simple, it prompts us with a message like “contains any two of
numbers and uppercase or lowercase letters” so that we can change the password to
increase the security. However, there are no uppercase or lowercase letters or numbers
that can be quantified in a tapping rhythm. Moreover, there is currently little research in
this field, and as far as we know, no one has proposed a method for detecting the security
of tapping rhythms. If there is a system that can detect the security of a tapping rhythm
inputted by users and prompt them to set a more complex one when the password is
simple, the risk of being cracked will be decreased. Therefore, we propose an approach
based on the standard deviation for detecting the security of the tapping rhythm to fill the
gap in the field, which can improve the tapping rhythm’s security.

We took all the data of one class as the training data and all the data of the remaining
classes as the test data. The average standard deviation values of ten vectors in each class
were obtained. Figure 4a illustrates the histogram of the standard deviation of the data,
where the x-axis represents the standard deviation and the y-axis stands for the size of the
data with the standard deviation within this interval. From the figure, we observe that the
standard deviation of most data is concentrated in the interval of 100 to 200. To ensure
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the accuracy of the experimental results, we only compared the FAR and the standard
deviation of the data with the standard deviation within 100 to 200.

We set a threshold for the standard deviation σ′. In order to simulate the real environ-
ment, the data with a standard deviation below the threshold were not accepted. Then,
we got the average FAR, which is shown in Figure 4b. The x-axis represents the threshold
σ′, and the y-axis stands for the average FAR. Clearly, it can be seen from the figure that
the FAR decreases as the threshold σ′ increases, demonstrating that the security of the
password improves as the threshold increases. Thus, the standard deviation can be applied
as a threshold to determine the FAR, which can be regarded as a criterion for detecting
the security of the tapping rhythm password. From Figure 4, the threshold of the tapping
rhythm can be set between 100 to 200.

Figure 4. (a) Histogram of the standard deviation of the data. (b) FAR of different data with a
standard deviation greater than σ′.

6. Conclusions and Future Work

With the growing popularity of smart sensing systems, data security needs to be
seriously taken into consideration. Existing user authentication methods for wearable
devices have high power consumption, requirements of specific actions, and other disad-
vantages. In order to solve these problems, tapping rhythms were introduced to recognize
individuals in this paper, and a new algorithm called One-Class DBSCAN was presented.
The experimental results using real-world datasets showed that the lowest EER of our ap-
proach was only 0.92%, which indicates that the proposed method can effectively improve
the security of smartwatches. The average training time of our method was 52.45 ms, and
the average authentication time was only 10.58 ms. In addition, we proposed a method
for improving the security of the tapping rhythm password by prompting users with the
security level. The habit of tapping on a mobile device is unstable and changes as time goes
on. We can periodically remind users to reset their tapping rhythm passwords to adapt
to new habits. Further, incremental learning can be applied to update the model with the
current tapping rhythms.

In the future, we will improve our method so that it can recognize multiple different
tapping rhythms after one training (the user can set multiple favorite tapping rhythms at
once). In addition, further investigation of user authentication for smart sensing systems
will be conducted. Since our approach is flexible and feasible, it can be applied in many
places with less data, and we will try to make breakthroughs in other application scenarios.
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