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Abstract: Device-free passive intrusion detection is a promising technology to determine whether
moving subjects are present without deploying any specific sensors or devices in the area of interest.
With the rapid development of wireless technology, multi-input multi-output (MIMO) and orthogonal
frequency-division multiplexing (OFDM) which were originally exploited to improve the stability
and bandwidth of Wi-Fi communication, can now support extensive applications such as indoor
intrusion detection, patient monitoring, and healthcare monitoring for the elderly. At present,
most research works use channel state information (CSI) in the IEEE 802.11n standard to analyze
signals and select features. However, there are very limited studies on intrusion detection in real
home environments that consider scenarios that include different motion speeds, different numbers
of intruders, varying locations of devices, and whether people are present sleeping at home. In
this paper, we propose an adaptive real-time indoor intrusion detection system using subcarrier
correlation-based features based on the characteristics of narrow frequency spacing of adjacent
subcarriers. We propose a link-pair selection algorithm for choosing an optimal link pair as a
baseline for subsequent CSI processing. We prototype our system on commercial Wi-Fi devices
and compare the overall performance with those of state-of-the-art approaches. The experimental
results demonstrate that our system achieves impressive performance regardless of intruder’s motion
speeds, number of intruders, non-line-of-sight conditions, and sleeping occupant conditions.

Keywords: device-free detection; indoor intrusion detection; OFDM subcarriers; Wi-Fi sensing

1. Introduction

An indoor intrusion detection system (IDS) detects the presence and activity of a
human being and serves as an essential component in a diverse range of human–computer
interaction applications in the fields of patient monitoring, smart care in homes, and the
detection of living people in hazardous environments [1].

Current IDSs have used a variety of specific sensors such as inertial sensors, pressure
sensors, ultrasonic sensors, and infrared sensors [2–4]. These sensors are deployed in
the designated area of the buildings in advance. They collect motion signals in real-time
and send out warning messages through predefined threshold mechanisms. Although
sensor-based systems obtain motion information directly, these systems’ performances are
affected by various factors such as building structure, deployment location, and sensor
baseline drift [5–11].

Another promising technology for intrusion detection is computer vision [12–15]. A
vision-based IDS uses computer vision technology to enable real-time detection of intruders
from streaming media information, thus greatly improving its usefulness in surveillance
applications. However, vision-based IDSs require image acquisition devices deployed
in the environment, and they are prone to be affected by variations of light intensity.
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Although omni-directional cameras can capture information from all viewing angles in
line-of-sight (LOS) environments, they will not work as effectively in non-line-of-sight
(NLOS) environments. Furthermore, vision-based IDSs may cause concerns over invasion
of user privacy.

Wi-Fi technology, with its wide use and new development, has become a promising
technology for IDS. Multiple-input, multiple-output (MIMO) technology is an important
and representative Wi-Fi technology that provides high throughput to meet the grow-
ing demands for wireless data traffic [16–18]. Through orthogonal frequency-division
multiplexing (OFDM), MIMO provides channel state information (CSI) at each subcarrier
for each transmitter–receiver antenna link pair. The intention of OFDM technology is to
reduce the attenuation of wireless signals, which is mainly caused by multipath effects.
In recent years, many studies showed that the CSI measurements of subcarriers can be
adopted for various sensing applications such as human-presence detection [19–21], fall de-
tection [22–24], elderly healthcare monitoring [25–27], activity recognition [28–30], gesture
recognition [31–33], and human identification and authentication [34]. A Wi-Fi sensing
system can be deployed using off-the-shelf commodity Wi-Fi routers and personal com-
puters with the advantage of not requiring additional hardware devices such as sensors
or cameras.

The key to designing Wi-Fi-based IDSs is to examine and identify characteristic
patterns of CSI measurements to extract features and differentiate static (no presence of
intruder) and dynamic (with the presence of an intruder) statuses of areas of interest. The
illustration image is shown in Figure 1. If the feature patterns selected in the same state are
not consistent due to different motion speeds of intruders or different numbers of intruders,
the IDS may face severe performance problems [7]. As a matter of fact, a slight motion of a
human body will cause a drastic fluctuation of CSI data at the receiver, the location of the
Wi-Fi router also affects the strength of multipath attenuation, and even the orientation
of the human body will have an impact on CSI measurement values. Therefore, the same
status may be correspondent to different feature patterns in different scenarios.

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

Another promising technology for intrusion detection is computer vision [12–15]. A 

vision-based IDS uses computer vision technology to enable real-time detection of intrud-

ers from streaming media information, thus greatly improving its usefulness in surveil-

lance applications. However, vision-based IDSs require image acquisition devices de-

ployed in the environment, and they are prone to be affected by variations of light inten-

sity. Although omni-directional cameras can capture information from all viewing angles 

in line-of-sight (LOS) environments, they will not work as effectively in non-line-of-sight 

(NLOS) environments. Furthermore, vision-based IDSs may cause concerns over invasion 

of user privacy. 

Wi-Fi technology, with its wide use and new development, has become a promising 

technology for IDS. Multiple-input, multiple-output (MIMO) technology is an important 

and representative Wi-Fi technology that provides high throughput to meet the growing 

demands for wireless data traffic [16–18]. Through orthogonal frequency-division multi-

plexing (OFDM), MIMO provides channel state information (CSI) at each subcarrier for 

each transmitter–receiver antenna link pair. The intention of OFDM technology is to re-

duce the attenuation of wireless signals, which is mainly caused by multipath effects. In 

recent years, many studies showed that the CSI measurements of subcarriers can be 

adopted for various sensing applications such as human-presence detection [19–21], fall 

detection [22–24], elderly healthcare monitoring [25–27], activity recognition [28–30], ges-

ture recognition [31–33], and human identification and authentication [34]. A Wi-Fi sens-

ing system can be deployed using off-the-shelf commodity Wi-Fi routers and personal 

computers with the advantage of not requiring additional hardware devices such as sen-

sors or cameras. 

The key to designing Wi-Fi-based IDSs is to examine and identify characteristic pat-

terns of CSI measurements to extract features and differentiate static (no presence of in-

truder) and dynamic (with the presence of an intruder) statuses of areas of interest. The 

illustration image is shown in Figure 1. If the feature patterns selected in the same state 

are not consistent due to different motion speeds of intruders or different numbers of in-

truders, the IDS may face severe performance problems [7]. As a matter of fact, a slight 

motion of a human body will cause a drastic fluctuation of CSI data at the receiver, the 

location of the Wi-Fi router also affects the strength of multipath attenuation, and even 

the orientation of the human body will have an impact on CSI measurement values. There-

fore, the same status may be correspondent to different feature patterns in different sce-

narios. 

MIMO

Multipath Reflection

 

Figure 1. Illustration of detecting indoor intrusion using a commodity Wi-Fi device without addi-

tional sensors or cameras. 

Current device-free Wi-Fi-based IDSs mainly focus on recognizing human presence, 

while ignoring other important factors such as the number of the intruders, intrusion ac-

tivity (e.g., slow motion or fast movement), intrusion type (e.g., entry from the window 

or the door), or intrusion while the owner is sleeping at home. In fact, these are real world 

Figure 1. Illustration of detecting indoor intrusion using a commodity Wi-Fi device without addi-
tional sensors or cameras.

Current device-free Wi-Fi-based IDSs mainly focus on recognizing human presence,
while ignoring other important factors such as the number of the intruders, intrusion
activity (e.g., slow motion or fast movement), intrusion type (e.g., entry from the window
or the door), or intrusion while the owner is sleeping at home. In fact, these are real world
intrusion scenarios. In designing an effective system, we must consider these factors, such
as the layout of rooms, the placement of furniture, LOS or NLOS, the number of intruders,
or whether there are people sleeping in the home. These requirements place tremendous
challenges on the design and performance of IDSs.

To address the above challenges, we were motivated to develop an environment-
adaptive Wi-Fi-based indoor IDS which can accurately detect intrusion in various real-
world scenarios. The system design is inspired by the following preliminary study findings.
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First, instead of randomly choosing a subcarrier or averaging all MIMO link pairs, we
analyzed the sequence signals in each subcarrier and each link pair under different sce-
narios and found that some link pairs are not sensitive to human motion, nor are their
corresponding subcarriers. We proposed an algorithm to select an optimal subcarrier using
the three-dimensional CSI packets. Second, we empirically tested that the threshold-based
detection method using absolute variance value is not suitable for an adaptive system.
Meanwhile, we found that the correlation indicated by maximum eigenvalue or eigen-
vector is not stable for classifying scenarios as static or dynamic. Based on the theory of
OFDM and the Doppler effect, we analyzed the correlation coefficient matrix of time-series
subcarriers and found that the correlation coefficient of adjacent subcarriers indicates a
pattern statistically similar to the Doppler effect due to the extremely close frequency
space. This inspired us to explore potential features from these correlation coefficients to
distinguish dynamic scenarios from static.

We implemented our system on commercial Wi-Fi devices and evaluated its perfor-
mance in real-world environments and in different scenarios. The results showed that
our system can accurately detect intrusion with a high average precision of 98.96%, along
with a low average false negative rate of 0.73% considering various scenarios such as low
motion speed or high motion speed, LOS or NLOS, single intruder or multiple intruders,
and whether someone is sleeping at home or not. We also compared the performance of
our method against state-of-the-art approaches under different scenarios. We concluded
that our proposed method outperforms the compared approaches with higher precision
and a lower false negative rate.

Our contributions are summarized as follows:

• We investigated the characteristics of MIMO link pairs and OFDM subcarriers and
validated that they are impacted by human motion and it is infeasible to randomly
choose a link pair or to average CSI amplitudes of all subcarriers for feature extractions.
Then, we designed a link pair selection algorithm to select an optimal link pair for
feature extractions.

• We integrated the subcarrier dimension-based features into the classifier based on
extremely narrow frequency spacing of adjacent subcarriers and the Doppler effect.

• We implemented our system with commodity Wi-Fi devices and evaluated its perfor-
mance in real-world scenarios. The experimental results demonstrated our method
outperforms both eigenvalue-based and threshold-based methods.

The remainder of this paper is structured as follows. Section 2 introduces the related
works of other researchers and explains the main differences between our proposed method
and other methods. Section 3 presents the preliminary empirical analysis of the intrusion
detection method. Section 4 explains the detailed procedures of system design. Section 5
discusses the evaluation results of our proposed method. Section 6 concludes and presents
our future work.

2. Related Works

Recently, device-free Wi-Fi CSI-based human activity recognition has attracted a
great amount of interest, as it promises to provide a ubiquitous sensing solution using
the pervasive Wi-Fi infrastructure. An intelligent detection system called Wi-Vi [19] was
proposed in 2013 that enabled small, inexpensive see-through-wall devices that operated
in the industrial, scientific, and medical (ISM) band. Gong et al. [10] observed that the
detection threshold is correspondent to the level of link sensitivity to human motion and
showed that the proposed threshold model achieved comparative detection performance.
Palipana et al. [35] provided a model to characterize subcarrier amplitude variation of
CSI with human presence that explained the nonlinearity that could occur in CSI under
the influence of persons. Qian et al. [21] were the first to incorporate meaningful phase
information for device-free human detection by successfully removing the randomness
involved in the raw phase. They proposed a novel unified feature using the eigenvalue
of the correlation matrix of the CSI. Soltanaghaei et al. [36] proposed an approach for
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detecting the presence of nonmoving people and provided a single solution to infer home
occupancy by using the concept of peripheral Wi-Fi vision. They showed that the system
could achieve 96.7% accuracy in occupancy detection with different occupancy scenarios
including with an empty location and with moving and stationary subjects. Wu et al. [9]
designed and implemented a unified detection approach for stationary persons by model-
ing and exploiting chest motions of human breathing as an intrinsic indicator of human
presence. Zhou et al. [20] proposed a device-free presence-detection and localization al-
gorithm by analyzing CSI fingerprint patterns, and they achieved a presence-detection
precision of over 97%. Zhu et al. [37] proposed a novel scheme for robust device-free
through-the-wall detection of moving humans with commodity Wi-Fi devices. In particu-
lar, they investigated the correlated changes among different subcarriers in the presence of
human movement and extracted the mean of first-order differences of eigenvectors of CSI
across different subcarriers.

Other CSI-based device-free applications include fall detection, posture recognition,
sleep monitoring, driving fatigue monitoring, and even smoking detection. Y. Wang et al. [22]
were the first to utilize PHY-layer information with CSI for device-free fall detection
in WLANs by implementing WiFall on laptops equipped with commercial 802.11n network
interface cards (NICs). H. Wang et al. [23] found a sharp power profile decline pattern
in the time-frequency domain indicating a fall and further exploited the complementary
characteristics of falls in the time and frequency domains for accurate fall segmentation and
detection. X. Liu et al. [38] designed a breath-detection system that could continuously col-
lect the CSI of radio signals and extract breathing patterns. It could track irregular breathing
(e.g., sleep apnea) and could also provide breathing information when the person was in
different sleeping positions. Jia et al. [39] presented a device-free fatigue detection system,
WiFind, to identify the state of drivers by the coefficient of variation of Wi-Fi signals. X.
Zheng et al. [40] made the first attempt to develop a ubiquitous passive smoking detection
system, Smokey, which could identify smoking activities by analyzing Wi-Fi signals. Zhang
et al. [41] took the first attempt to build a ubiquitous passive violence detection system,
WiVi, based on the commercial WiFi infrastructure. The system leveraged the correlated
features extracted from combined subcarriers, to take full advantage of Channel State
Information. These pioneer works have proved that Wi-Fi technology can be used for
human motion detection and other applications, whereas our focused study is to further
explore features and develop an adaptive IDS for real home environments.

The main differences between our proposed method and other methods are in feature
extraction and data preprocessing procedures. Our proposed method introduces a link
pair selection algorithm instead of simply calculating the median amplitudes of all link
pairs. Some related works, such as [5], selected the distribution of the variance of different
subcarriers as the main feature, whereas our work exploits features from correlation
information of subcarriers to enhance the generalization ability. Compared with works
such as in [6], we select the sum of the correlation coefficients of adjacent subcarriers and
the sum of the correlation coefficients of all subcarriers that are greater than a given number
ρ instead of the eigenvalue of the correlation matrix of subcarriers. Our goal is to develop
a reliable and efficient method to achieve intrusion detection adaptively in real-time.

3. Preliminary Empirical Analysis

The key to designing pattern-based approaches is to examine and find characteristic
patterns to construct features and differentiate human presence in different scenarios and
contexts. We explore the patterns of OFDM subcarriers in static and dynamic environ-
ments first, so as to deduce the possible characteristics that can be added to classifiers to
distinguish whether or not a human being is present in various scenarios.

3.1. MIMO-OFDM Overview

For wireless communications, MIMO-OFDM combines MIMO technology, which
transmits different signals over multiple antennas, and OFDM, which utilizes a large
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number of closely spaced subchannels. CSI describes a communication link where a signal
propagates from the transmitter to the receiver. Each CSI entry describes the channel
frequency response (CFR) and can be expressed in (1).

H =
n

∑
i

ai(t)e−j2π f τi(t) (1)

In (1), ai(t) means the amplitude attenuation factor, τi(t) denotes the propagation
delay, and f indicates the carrier frequency [1]. The CSI amplitude |H| and phase ∠H are
impacted by the indoor objects’ layout, displacement of Wi-Fi devices, and humans.

Hk,m,t =

 Hk,1,t . . . Hk,1,t+n
...

. . .
...

Hk,m,t · · · Hk,m,t+n

 (2)

We use sliding time window to monitor the characteristics of a signal sequence. We
construct a mathematical model for different subcarriers of multiple link pairs as shown in
Equation (2), where Hk,m,t means the mth subcarrier’s CFR of the kth link pair during an n
time window, as shown in Figure 2. For a typical IEEE 802.11n Wi-Fi device, CSI of each
subcarrier of each link pair can be reported using the 802.11n CSI Tool [42], which is the
most widely used tool for CSI measurements. Figure 2 shows the mean amplitude of each
link pair and instantaneous values of 30 subcarriers of link 5.
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3.2. Rx-Tx Link Pair Matters

Theoretically, the subcarrier information of K Rx-Tx link pairs can be isolated from
the data packets of CSI. Existing CSI-based human presence recognition approaches rely
either on randomly choosing a link pair or on averaging all subcarriers of one link. Using a
typical commercial Wi-Fi device with MIMO from two transmitters and three receivers,
we examined the data from various links and subcarriers and found that they perform
differently even under the same environment. Figure 3 shows the sequence signals of two
subcarriers of link 1 in a static environment and link 3 in a dynamic environment. We can
clearly observe the following:

(1) In the static environment, the amplitude variation of some subcarriers is obviously
different, with the amplitude variance of some subcarriers being bigger than others.

(2) In the dynamic environment, the amplitude variation of some subcarriers is not
obvious and the amplitude is not sensitive to the presence of human beings. Hence it
cannot be directly used to extract features.

Therefore, the choice of link pair matters. In our preliminary study, we confirmed that
some links are not sensitive to human motion and the corresponding CSI sequence is not
informative for identification. In addition, it is impracticable to directly use the threshold
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method of amplitude or amplitude variance for classification. It can be seen from Figure 3
that even in static environments, some subcarriers showed poor stability.
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3.3. Adaptive Pattern Matters

As is clear from the above analysis, a simple subcarrier with threshold amplitude
or phase mean value, variance, or standard deviation cannot adapt to the environment
for static and dynamic differentiation. Consequently, the possible features should be
independent of absolute power, since the transmission power parameters will be adjusted
according to different situations and thus are scenario dependent, whereas human motion
contributes to disturbances of amplitude. Therefore, we choose to analyze the similarity
between subcarriers, which could be a good scenario-independent index. The statistical
characteristics under this index could be employed as features of the system.

COV
(

Hi, Hj
)
=

∑n
i=1

(
Hi −

−
Hi

)(
Hj −

−
H j

)
n

(3)

COR
(

Hi, Hj
)
=

COV
(

Hi, Hj
)

σiσj
(4)

Covariance is an index used to express the relationship between variables as shown
in (3), where Hi, Hj denote the amplitudes of the i th and j th subcarriers with n packets
and Hi, H j denote the expected value of the i th and j th subcarriers. Although covariance
can reflect the correlation of two random variables, its value is greatly affected by the
dimension, so the similarity of subcarriers cannot be simply represented by the value
of covariance. To eliminate the influence of this dimension, we exploit the correlation
coefficient to describe it, as shown in (4) where σi, σj denote the standard deviation of the
i th and j th subcarriers.

Figure 4 shows the correlation coefficient matrix of two subcarriers from the same link
pair at a fixed window, which is a symmetric matrix with order 30 with diagonal entities
always being 1. We theoretically assume that with a higher correlation coefficient, the link
is more likely to be static and free of intrusion. In contrast, a lower correlation coefficient
would probably denote the occurrence of human motion due to the interference of the
multipath. To avoid the contamination of correlation features by ambient noise, we reduce
the dimension of the matrix by extracting the eigenvalues and eigenvectors under each
window to describe the possible features.

Ax = λx (5)
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αi = [λi max1, λi max2] (6)

νi = [xi max1, xi max2] (7)
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Eigenvalues and eigenvectors naturally reflect the inherent features of matrices. In
data mining, eigenvalues are directly used to describe the information contained in the
direction of corresponding eigenvectors. To retain as much information as possible in the
original signals, we extract the maximum eigenvalue and second largest eigenvalue of
the correlation coefficient matrix, as well as the relative eigenvectors. The matrix A in (5)
indicates the correlation coefficient matrix of subcarriers, the vector x denotes the eigen-
vector, and λ represents the eigenvalues. Then, we construct the two-dimension feature
candidates as shown in (6) and (7), which represent the eigenvalues and eigenvectors set.

The preliminary results for classification distinguishing static and dynamic environ-
ments are shown in Figure 5. We randomly select two segments of the CSI measurement
dataset and then compare the distribution of the two features. From Figure 5a, we can see
that there is a relatively obvious gap between the two states. However, the two features in
Figure 5b are clearly mixed together, so it is impossible to distinguish the two states. In fact,
based on our experimental comparison, the time window of features mixing accounts for
more than 56% of the whole dataset, and the preliminary classification results show that
the accuracy of classification using the maximum eigenvalue and the secondary eigenvalue
is only 48%. Even if the eigenvalue numbers are increased to 10, the highest detection rate
can reach only about 88%; at the same time, this approach results in a high false negative
rate, which is unacceptable for a real-time detection system.

Extracting eigenvectors for analysis is essentially the core of principal component
analysis, because eigenvectors represent the main components of information. However,
Figure 6 shows that the eigenvectors still cannot be used to distinguish the two states.
Based on the fact that the correlation does not depend on the environment or transmitting
power, we still expect to identify characteristics that can distinguish between the static
and dynamic states. Therefore, we studied the time sequence of the correlation coefficient
matrix, especially the change process in various scenarios. After random sampling and
overall tests, we found a simple and effective feature combination. Details are shown in
the next section.
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3.4. Spatial Patterns Between Subcarriers

Considering the environment and power adaptive capability, the similarity of subcar-
rier time-series signal variation is still an important index to be further analyzed. Inspired
by pioneer researches on Wi-Fi radar and Doppler effect [41,43–45], we examined the
time-series signals in both the time and frequency domains. A Wi-Fi signal is a type of
electromagnetic wave signal, and its wireless link is affected by the speed of the mobile
target, so the Doppler frequency shift also applies at the receiver.

Figure 7 shows the spectrum distribution of the subcarriers of OFDM. The carrier
frequency spacing is the Nyquist bandwidth, which ensures the maximum frequency
utilization. Thanks to the OFDM technology, the frequency difference of adjacent subcar-
riers is very small, which shows that the Doppler frequency shift has a high similarity
concurrently mapping to the sequence packets after the recovery of the analytical signal; in
contrast, the frequency difference of subcarriers far away from each other is large, and the
impact of moving targets on that difference is great. Based on this theoretical deduction, we
randomly select the subcarrier correlation coefficients with equal length windows under
different scenarios shown in Figure 8, which demonstrate the following patterns:
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In a static state, the correlation coefficients of some adjacent subcarriers are high, and
the region with high correlation coefficients is always moving.

In a dynamic state with low motion speed, the correlation coefficients of adjacent
subcarriers are very high on the overall view, which are widely distributed, more stable,
and larger than those in the static state.

In a dynamic state with high motion speed, the correlation coefficients of adjacent
subcarriers are smaller and more stable, which are smaller than those of a dynamic state
with low motion speed and static state.

In general, the number of high correlation coefficients in a dynamic state with slow-
motion speed is greater and is stable, the number of high correlation coefficients in a
dynamic state with high motion speed is the least and is stable, and the number of high
correlation coefficients in a static state is medium but not stable.

Based on the above observation, we proposed two possible feature variables in a
mathematical model: (1) the sum of the correlation coefficients of adjacent subcarriers and
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(2) the sum of the correlation coefficients of all subcarriers that are greater than ρ. The
first feature variable mainly describes the details, whereas the second mainly describes the
general view.

To preliminarily test whether the selected feature variables distinguish well between
static and dynamic states, we preprocess the signals using our method in the next section
and generate the distributions of features under multiple windows. Figure 9 shows the
distribution of proposed features under random windows with ρ equal to 0.7. We can
observe that there is a clear gap between static and dynamic states.
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4. System Design

The intention of the proposed system is to adaptively detect indoor intrusion in
various intrusion scenarios. Based on the empirical analysis, we designed the architecture
of our system. As shown in Figure 10, we first built a simple CSI acquisition system based
on 2 × 3 MIMO, in which the network card is compatible with the 802.11n protocol. Due to
the influence of environmental noise and wireless interference, the collected CSI packets
often contain outliers that can readily have a negative impact on system performance,
so these outliers must be eliminated. After wavelet de-noising and normalization, the
subcarrier amplitudes are adjusted to a fixed upper and lower range. Then, we designed an
algorithm to select the appropriate link from which to extract the two correlation coefficient
features. By setting the short step sliding time window mechanism, we divided the data
packet into several data segments to support vector machine (SVM) model off-line training
and performance testing [46–50]. Finally, the system was set for real-time detection with
the appropriate model parameters.

4.1. CSI Raw Data Gathering

Daniel Halperin et al. [42] constructed the CSI tool, elaborating the measurement
and processing methods of CSI in a Wi-Fi signal. Our system uses a commercial router
as the Access Point (AP) and a laptop equipped with an Intel 802.11n compatible NIC as
the Monitor Point (MP) to build the hardware platform. It collects the indoor CSI signal
with the help of CSI Tool. In the Ubuntu 12.04 operating system, the MP can continuously
receive CSI packets from the wireless router using ping operations.

Each CSI packet contains seven data fields. The specific meanings of these seven fields
are shown in Table 1. Each data element in the CSI structure is described in the complex
signal model, which reflects the amplitude and phase information of its channel state. The
amplitude, phase, and other features represented in the CSI packet are adopted as the raw
data in the subsequent data processing.



Sensors 2021, 21, 2287 11 of 24
Sensors 2021, 21, x FOR PEER REVIEW 11 of 25 
 

 

RAW CSI DATA

NORMALIZATION

OUTLIERS DETECTION

FILTERING

LINK SELECTION

FEATURES EXTRACTION

SEGMENTATION

OFFLINE TRAINING

REAL-TIME DETECTING

MP

AP

 

Figure 10. Main diagram of our proposed scheme. 

4.1. CSI Raw Data Gathering 

Daniel Halperin et al. [42] constructed the CSI tool, elaborating the measurement and 

processing methods of CSI in a Wi-Fi signal. Our system uses a commercial router as the 

Access Point (AP) and a laptop equipped with an Intel 802.11n compatible NIC as the 

Monitor Point (MP) to build the hardware platform. It collects the indoor CSI signal with 

the help of CSI Tool. In the Ubuntu 12.04 operating system, the MP can continuously re-

ceive CSI packets from the wireless router using ping operations. 

Each CSI packet contains seven data fields. The specific meanings of these seven 

fields are shown in Table 1. Each data element in the CSI structure is described in the 

complex signal model, which reflects the amplitude and phase information of its channel 

state. The amplitude, phase, and other features represented in the CSI packet are adopted 

as the raw data in the subsequent data processing. 

Table 1. Channel state information (CSI) data field table. 

Parameter Indication 

Timestamp_low Low 32 bits of network card used with 1 MHz clock 

Nrx Number of antennas of the receiver 

Ntx Number of antennas of the transmitter 

RSSI RSSI value measured by the receiver 

Noise Channel noise 

rate Sampling frequency 

csi CSI value 

  

Figure 10. Main diagram of our proposed scheme.

Table 1. Channel state information (CSI) data field table.

Parameter Indication

Timestamp_low Low 32 bits of network card used with 1 MHz clock
Nrx Number of antennas of the receiver
Ntx Number of antennas of the transmitter
RSSI RSSI value measured by the receiver

Noise Channel noise
rate Sampling frequency
csi CSI value

4.2. Preprocessing

Three data preprocessing modules are described in this section, which are used
respectively for outlier detection, wavelet-based filtering, and normalization, with the goal
of having the results minimally affected by varying scenarios.

4.2.1. Outlier Detection

The purpose of outlier detection is to detect abnormal changes in the received CSI data.
To ensure the stability of quality of service (QoS) in different environments, the transmitter
automatically adjusts the radio transmission power, which is reflected in the fact that the
CSI values in the time domain include some outliers.

In this module, the abnormal data can be identified by the local outlier factor (LOF),
which is used to identify abnormal conditions received by the MP. The LOF algorithm
determines the anomaly degree of a sample by calculating its local reachable density.
Generally, the LOF values of the data in the cluster are close to 1, whereas the LOF values
of the data at the edge of the cluster are slightly larger than 1. Accordingly, those data with
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LOF values far greater than 1 may be the outliers that need to be eliminated in the system.
The algorithm is as follows:

(1) Input the preliminary dataset D and the threshold value of outlier factor ξ. The
preliminary dataset D can be obtained from the raw-data gathering module, and the
outlier factor ξ can be set according to the experimental comparisons.

(2) Calculate the local reachable density of each object using (8). The local reachable
density of object p can be represented as one divided by the average accessible distance
between object p and Nk(p).

lrdk(p) = 1/

[
∑o∈Nk(p) reach− distk(p, o)

|Nk(p)|

]
(8)

where, reach− distk(p, o) denotes the reachability distance between object p and o, Nk(p)
denotes the set of k nearest neighbors of object p, and |Nk(p)| denotes the number
of elements in Nk(p). The reachability distance between object p and o is defined as
reach− distk(p, o) = max{k− dist(o), d(p, o)}, where, k − dist(o) denotes the Euclidean
distance of the object o to the k-th nearest neighbor, and d(p, o) denotes the Euclidean
distance between p and o.

(3) Calculate local outlier factor LOFk(p) of each object using (9). The LOF of object
p represents the degree of abnormality of p. The value of LOF is proportional to the
probability that the object is abnormal.

LOFk(p) =
∑o∈Nk(p)

lrd(o)
lrd(p)

k
(9)

(4) Filter outliers and output the final sanitized dataset. If an object’s LOF value is
far beyond the threshold factor ξ, these data will be eliminated, and a new dataset will be
established. Figure 11 shows the raw sequence signals with outliers and processed signals
without outliers.
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4.2.2. Wavelet-Based Filtering

The CSI time-series signal collected in our system is a typical time-varying nonstation-
ary signal, which contains Gaussian white noise or power-line interference. Therefore, it is
necessary to exploit a signal de-noising tool that not only eliminates the high-frequency
noise but also retains the human-motion components hidden in the high-frequency part.
The discrete wavelet transformation (DWT) de-noising method gives both fine frequency
resolution for low-frequency signals and time resolution for high-frequency signals. The
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output of DWT can be fed to a wavelet filter to remove noise while preserving human
motion information in different scenarios [1].

The wavelet basis and decomposition level, the threshold rule, and the threshold
function are the key factors that affect the final de-noising effect. In our study, human-
motion-related signal frequencies range from 0 to 50 Hz for all scenarios. Based on exper-
imental comparisons and pioneer studies on nonstationary signals, we finally chose the
db-8 wavelet (the Daubechies) with two decomposition levels, which has been shown to
give better performance in electrocardiogram signal analysis [2].

To preserve the signal details as much as possible, we select rigorous and soft threshold-
ing so as to retain more features within the signals corresponding to the detail coefficients.
After thresholding the detail coefficients, the de-noised CSI signals are reconstructed us-
ing new detail coefficients and all level approximations. A comparison of original and
de-noised CSI signals is illustrated in Figure 12.
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4.2.3. Normalization

Due to adjustments in transmitting power and the QoS-center mechanism, the raw CSI
amplitudes vary in different environments and scenarios. CSI data must be standardized
to the same range for later correlation analysis and feature extraction, so we exploit the
min–max normalization method to map the data into [−1, 1].

x′ = (x−min)/(max−min) (10)

After wavelet de-noising, the maximum and minimum amplitudes in a fixed window
are calculated, then the discrete x is transformed into a new value x′ according to (10). The
unit limitation on data is removed, and they are transformed into a dimensionless pure
value, while the correlation between subcarriers is preserved. The normalized CSI signal is
shown in Figure 13.
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4.3. Link Pair Selection

Based on empirical analysis of OFDM subcarriers, we conclude that random selection
of a link pair is unreliable for feature extraction, which will tremendously affect the
final classification performance. According to experimental results, the sensitivity of the
variance of subcarrier correlation coefficients to human motion varies, thus in either a
static or dynamic environment, the stability of the change in the subcarrier correlation
coefficients is critical and directly affects the precision and the false negative rate. We
analyze the stability of K links (k = 6 in this system) and output the optimal estimation
using the following mathematical model:

X̂k
ij = var

(
Ak

i,j

)
, (∀i, j ∈ [1, m], i < j) (11)

Kopt = argminE
(

X̂k
ij

)
, (k ∈ [1, K]) (12)

where Ai,j indicates the ij th entry of correlation coefficient matrix A of the k-th link pair,
m is the number of subcarriers which equals to 30 in our system, and K denotes the total
number of link pairs which equals to 6. Since the correlation matrix A is a symmetric
matrix and the entries on the diagonal are all 1, we count only one-half of the matrix entries.
Equation (11) outputs the variance vector X̂k

ij that will be considered a set of random
variables as an input into (12). Then, we calculate the expectation of the X̂k

ij and output
the optimal index of link pair Kopt related to the minimum expectation. The subcarriers of
the selected link pair will then be adopted for feature extraction.

4.4. Features Extraction

Based on the subcarrier analysis above, we conclude that because of the similarity of
Doppler frequency shift between adjacent subcarriers, we can deduce the characteristics
from the distribution of correlation coefficients of subcarriers. The red area in Figure 14
shows where our features are located: the detail part denotes the correlation coefficient
of adjacent subcarriers, and the general part describes the correlation coefficients that are
greater than a fixed threshold.
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We describe two previously proposed features in mathematical models in Equations (13)
and (14): (1) the sum of the correlation coefficients of adjacent subcarriers and (2) the
sum of the correlation coefficients of all subcarriers that are greater than ρ.

D =
m

∑
i,j=1

Ai,j, (∀i, j ∈ [1, m], j− i = 1) (13)

G =
m

∑
i,j=1

Ai,j > ρ, (∀i, j ∈ [1, m], i < j) (14)

Dw = [D1, · · · , Di, · · · , Dn] (15)
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Gw = [G1, · · · , Gi, · · · , Gn] (16)

where m means the total number of subcarriers, which equals 30 in our system, Ai,j with
constrained i, j denotes the correlation coefficient of each adjacent subcarrier pair, and ρ
defines a threshold for detecting the high coefficient of all subcarriers which has an impact
on classification performance. Two features are calculated and then stored in D and G.
For each fixed window w, we continuously sample the two features and generate two
datasets, Dw and Gw, as expressed in Equations (15) and (16), for training and testing in
the future. We did not add the CSI phase features into our current system, mainly because
the phase must be calibrated and sanitized which will increase calculation complexity
and affect the valuable bandwidth. Therefore, we will exploit the phase information for
other applications in our future works, as the extracted correlation coefficient features have
shown satisfactory performance.

4.5. Real-Time Segmentation

For the real-time monitoring system, data windowing is critical for building training
and testing sets. When the window is smaller, there will be more feature sets in the samples,
and the detection sensitivity is higher; but at the same time, the generalization ability of the
machine-learning model gets worse, thus making overfitting more likely. By contrast, when
the window is larger, the adaptability of the model is stronger and less likely to overfit,
but it is easier to lose patterns and thus becoming underfitted. Therefore, it is necessary to
leverage the window and step size based on recognition performance. In our experiments,
we found that when the window size is 2 s and the step length is 0.1 s, i.e., when the data
overlap rate is 95%, we can achieve a high recognition rate as well as quickly detect an
intruder within only 2 s. The illustration diagram is shown in Figure 15.
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4.6. Classifier

Because the features were manually extracted from the raw CSI and only binary
classification is required, we choose a shallow machine-learning model to identify static
and dynamic states. A shallow machine-learning model does not need massive amounts of
data and complex computation resources in the way a deep-learning model does. Shallow-
learning algorithms, such as k nearest neighbors, SVM, and self-organizing map algorithms,
are widely used for detection and recognition applications. SVM separates data points
using a set of hyperplanes in high-dimensional space to maximize the functional margin:
that is, the distance to the nearest training data points of any class [1]. It can also use a
kernel function to classify classes that are not linearly separable [2].

T = ( f1, l1), ( f2, l2), · · · , ( fn, ln) (17)

min
w,b,εi

1
2
‖w‖2 + C

n

∑
i=1

ψi, ψi ≥ 0, s.t. li(w · li − b) ≥ 1− ψi, ∀( fi, li) ∈ T (18)

Given a training dataset T as shown in (17), where fi is a two-dimensional feature
vector, li is the label for static and dynamic state, the SVM algorithm will process the
optimization problem of (18), where ψi denotes the misclassification degree, and C is a
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parameter needing to be tuned that determines the tradeoff between the margin size and
the amount of error in training.

We exploit the radial basis function (RBF) kernel in our SVM model, which has been
proven to have better performance. Cross-validation was also conducted to search for the
optimal parameter combination, c, g, that can reflect the fitting degree of the model for
unknown test data more accurately and objectively. Through experimental comparisons,
we conclude that the system outputs an overall accuracy of 98.96% with the optimal
parameters c being 8.0 and g being 0.03125. In the next section, we evaluate our proposed
system and discuss its classification and detection performance.

5. Evaluation

In this section, we first introduce the experimental evaluation environment and the
prototype of the experimental platform. We then discuss the impact of environments and
scenarios on performance. Finally, we compare the classification performance of our system
with those of the state-of-the-art approaches.

5.1. Experimental Setup

To simulate real-world intrusion scenarios as much as possible, we first chose a real
apartment as the experimental site, an approach that differs from others’ research works
that used a laboratory as the experimental site. Figure 16 shows the selected apartment
for data gathering and testing. AP and MP were deployed as shown in Figure 17. The
“intruder” walked randomly into the living room with different speeds, including slow
(approximately 0.5 m/s) and fast (approximately 2 m/s). We next designed a scenario with
multiple intruders and someone sleeping in the bedroom. To the best of our knowledge,
this is the first time such a scenario has been considered in CSI-based intrusion detection.
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monitor point (MP).

Unlike most studies, which considered only a single intruder, we intended to verify
whether our system can provide stable performance with multiple intruders. In addition,
we considered whether a person turning over in bed and normal breathing during sleeping
would affect the detection performance. Finally, we compared the detection performance
of the through-the-wall environment by deploying the AP and MP in different rooms,
separated by a 20-cm-thick concrete wall, which is also a typical layout in the real home
environment. All experimental scenarios are shown in Table 2.

Table 2. Experimental Scenarios and Grouping.

No PLACEMENT SPEED INTRUDERS SLEEPING

1 LOS Null 0 No
2 LOS Slow 1 No
3 LOS Fast 1 No
4 LOS Slow 2 No
5 LOS Fast 2 No
6 LOS Null 0 Yes, with turning over
7 LOS Null 0 Yes, with normal breath
8 NLOS Null 0 No
9 NLOS Slow 1 No
10 NLOS Fast 1 No
11 NLOS Slow 2 No
12 NLOS Fast 2 No
13 NLOS Null 0 Yes, with turning over
14 NLOS Null 0 Yes, with normal breath

We implemented our system with commodity Wi-Fi devices and evaluated its per-
formance in the previously described scenarios. We used a TL-WDR5620 wireless router
equipped with two antennas as the AP which was deployed on an office desk in the living
room. We adopted the Dell Latitude D360 laptop with an Intel Wi-Fi Link 5300 card as
the MP, which was placed in the living room for LOS test and in the bedroom for NLOS
test. We set the AP to operate in IEEE 802.11n mode at 2.4 GHz with 20-MHz bandwidth
and set the MP to run Linux Ubuntu 10.04 with CSI Tool installed. In our experiment, the
CSI sampling rate is 50 Hz, i.e., 50 packets per second from the AP. The sampling duration
of each group was set at 50 s, so the sample size of each group is 2500 packets. Each
group collection run was repeated five times. We measured the indoor temperature of the
experiment as 20 ◦C (68◦ F) and the outdoor temperature as 8 ◦C (46.4◦ F). The environment
surrounding the residence was quiet without human activities. After training the SVM
model, we imported the test data into the model and obtained four types of outputs: true
positive (TP) where there is human presence and the system reports so, false positive (FP)
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where there is no human presence but the system reports human presence, true negative
(TN) where there is no human presence and the system reports correctly, and false negative
(FN) where there is human presence but the system does not report it. For a real-time
indoor intrusion detection system, we are more concerned about two indicators, TP and FN.
The former represents the number of samples detected when an intrusion occurs, and the
latter represents the model failing to output a dynamic state when an intrusion happens.
To show the system performance more clearly, we define the following indicators:

Precision = TP/(TP + FP), FNR = FN/(TP + FN) (19)

Precision indicates what percent of the reported dynamic cases are indeed dynamic,
whereas false negative rate (FNR) means what percent of dynamic cases are failed to be
detected. We examined these indicators to evaluate the performance of the system in
various scenarios, as described in the following sections.

5.2. Overall Performance

We would like to make direct comparisons with other approaches. However, the
experimental sites used in testing the state-of-the-art methods in other studies are almost
in laboratories, and many scenarios are not considered. We therefore cannot make direct
comparisons for these scenarios. Thus, we first present the overall evaluation of our
system’s performance, and we then compare the results with those generated from two
other state-of-the-art methods. Figure 18 shows the overall performance of our system.
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First, we average the results of five tests for each group and calculate the performance
in different scenarios. Under LOS, the system’s average precision can reach 98.96%, and the
average false negative rate (FNR) can be as low as 0.73%, which means that the possibility
of erroneous classification of an intrusion is very small, and the system is robust. Even in
NLOS, the average precision can reach 98.17%, and the average FNR is 3.32%, which is
slightly higher than that in the LOS environment, indicating that in the through-the-wall
environment, it is relatively easy to misclassify. Under the conditions of high motion speed
and low motion speed, the average precision values are 97.94% and 99.09% respectively.
The average precision values with one person and multiple persons are 97.53% and 99.02%
respectively, all with low FNRs. In general, scenario differences have little impact on the
performance of our proposed system, which performs well in the real-world environment.
The performance evaluation is detailed in the following sections.

5.3. Impact of Sliding Time Window Size

We need to evaluate the impact of the sliding time window size of the samples on
the performance of the proposed model, since the window size is critical for feature
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generalizability, for the system computation needs, and for the response time. We try to
find the optimal window size that balances recognition rate and system response time.

Figure 19 shows the impact of different window sizes on precision and FNR. It can be
clearly observed that as the sliding time window becomes larger, the precision increases
and the FNR reduces correspondingly until the size is 4 s, which means that when the
window is larger than 4 s, system performance begins to decline. This indicates that when
the window size is enlarged, with a corresponding decrease in the number of samples,
the SVM model underfits, and its sensitivity to features decreases. At the same time, as
window size increases from 2 s to 4 s, although precision increases, the average growth rate
in precision is not high, at only 0.14%. Therefore, to improve the model’s generalization
ability, i.e., the ability to accurately classify features, we set the window size to 2 s which
brings average precision of 98.38% and an average FNR of 0.67%.
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5.4. Impact of Speed and Number of Intruders

The motion speed of indoor intruders is not constant. We must evaluate the impact of
different speeds on performance, as well as the impact of a single intruder or multiple in-
truders. According to our empirical analysis, since the features we choose are derived from
the correlation of subcarriers, in which the correlation coefficient of adjacent subcarriers is
very sensitive to the motion speed, thus we can differentiate the low and high speeds.

Figure 20 shows the impact of different motion speeds and numbers of intruders on
performance. The precision of the system is lowest (97.74%) and the FNR is highest (1.11%)
with a single person moving at low speed; the precision is highest (99.06%) and the FNR is
lowest (0.28%) with multiple persons moving at high speed.
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Compared with the low-speed detection results from other works, our system has bet-
ter performance detecting low-speed movement. Generally, the lower the speed, the more
difficult to detect; and the more people there are, the higher the detection accuracy is. If we
consider our MIMO system as a Doppler radar, the larger the moving target is, the easier
it will be to detect it, which is consistent with the theoretical analysis. Furthermore, our
experimental results inspire us to apply our system for speed detection in the future work.

5.5. Impact of Sleeping and Respiration

In addition to the impact of the number of intruders on performance, we also evaluate
the system’s ability to recognize intrusion when someone is sleeping at home and the
impact on system performance of a body turning over and of breathing. We add the feature
set of body rotation and normal breathing into the static data, select CSI data for different
speeds from the dynamic dataset, and then rebuild the SVM model. Figure 21 shows the
system performance when someone is sleeping at home.
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When the intruder’s speed is low, even if someone at home is resting, the precision
given by the system can still be as high as 97.52%, which is only 0.42% lower than that
in a non-sleeping situation. FNR is as low as 1.45%, which is 0.36% higher than that in a
non-sleeping situation.

In the situation of fast movement of intruders, the precision can reach 98.89%, and
FNR is only 0.31%. The results show that our approach has great adaptability to sleeping
situations; even if there are slight body movements and normal breathing, the impact on
recognition rate is relatively low.

5.6. Comparison with STATE-OF-THE-ART Methods

We discussed the performance of our proposed method in various scenarios. To
verify the advantages of the proposed method, we need to compare it with other intrusion
detection systems. Because the experimental sites adopted in most research are in labora-
tories rather than in real home environments, and because almost no one has considered
the scenarios of multiple intruders and with somebody sleeping at home, we compare
our method against the most widely used time-sequence human detection methods ap-
plied in the concerned scenarios. Specifically, we compare our proposed method with
the eigenvalue-based method used in PADS [6] and the variance-based method used in
SIED [5], which are two commonly used approaches at present. In addition to the above
two studies, there are also other studies such as [35,51–53] using similar features. In PADS,
the authors exploited the amplitude and calibration phase of CSI to detect human move-
ment. By calculating the correlation matrix of amplitude and phase from continuous CSI
measurement, PADS derived the maximum eigenvalues of two matrices for mobile human
detection for classification. In SIED, the authors used the patterns of distribution of the
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variance and a hidden Markov model to identify moving objects. After preprocessing the
raw CSI data, we extracted the relevant features used in PADS and SIED, trained each SVM
model, and then examined the performance.

Figure 22 plots the comparison results for precision and FNR for the three methods
using different features. Three scenarios are considered, including single intruder with high
speed, single intruder with low speed, and NLOS. The first two are based on the average
values in an LOS environment, and the latter is based on the average values of high speed
and low speed in an NLOS environment. Note that for the eigenvalue-based method, if only
the maximum eigenvalue and the second largest eigenvalue of the correlation coefficient
matrix are selected as the features, the precision and FNR are very poor. Therefore, to
reflect the maximum potential of this method, we select the top 10 maximum eigenvalues
as the features, which is an option that outputs the optimal performance. Meanwhile, the
threshold-based method uses the distribution of CSI amplitude variance as the feature
for training.

Sensors 2021, 21, x FOR PEER REVIEW 22 of 25 
 

 

average values in an LOS environment, and the latter is based on the average values of 

high speed and low speed in an NLOS environment. Note that for the eigenvalue-based 

method, if only the maximum eigenvalue and the second largest eigenvalue of the corre-

lation coefficient matrix are selected as the features, the precision and FNR are very poor. 

Therefore, to reflect the maximum potential of this method, we select the top 10 maximum 

eigenvalues as the features, which is an option that outputs the optimal performance. 

Meanwhile, the threshold-based method uses the distribution of CSI amplitude variance 

as the feature for training. 

  
(a) (b) 

Figure 22. Comparison with other methods. (a) Precision. (b) FNR. 

It can be clearly observed that our proposed method outperforms both eigenvalue-

based and threshold-based methods for all selected scenarios. For the most common sin-

gle person intrusion, the precision of our method can achieve 97.53%, whereas the preci-

sion of the eigenvalue-based method is 88.95%, and the threshold-based method has the 

worst performance, at only 72.53%. In addition, in the complicated NLOS environment, 

our method can achieve the precision of 98.17%, which is 10.72% higher than that of the 

eigenvalue-based method and 27.66% higher than that of the threshold-based method. 

Moreover, one of the advantages of our method is that its FNR is far lower than those of 

the other two methods in the same scenarios, which is critical for a real-time detection 

system. This result is expected, since our proposed system only relies on the correlation 

of adjacent subcarriers and the high coefficient region, regardless of differences in re-

ceived signal strength, transmitting power, and environment variables. This demonstrates 

that our method is more adaptive to various environments. 

6. Conclusions and Future Work 

In this study, we developed an environment- and scenario-adaptive indoor intrusion 

detection system with commodity Wi-Fi devices. We first investigated the characteristics 

of MIMO link pairs and OFDM subcarriers impacted by human motion and validated the 

infeasibility of randomly choosing a link pair or of averaging CSI amplitudes of all sub-

carriers. Based on these findings, we designed an optimal link-pair selection algorithm as 

the first step of developing our system. Since only one link pair is selected, the number of 

antennas will not affect the performance. Using the theory of narrow frequency spacing 

of adjacent subcarriers and the Doppler effect, we integrated the subcarrier dimension-

based features into our classifier and trained an SVM model to detect the static and dy-

namic states. We implemented our system with commodity Wi-Fi devices and evaluated 

its performance for various scenarios, including low speed and high speed for intruder 

Figure 22. Comparison with other methods. (a) Precision. (b) FNR.

It can be clearly observed that our proposed method outperforms both eigenvalue-
based and threshold-based methods for all selected scenarios. For the most common
single person intrusion, the precision of our method can achieve 97.53%, whereas the
precision of the eigenvalue-based method is 88.95%, and the threshold-based method has
the worst performance, at only 72.53%. In addition, in the complicated NLOS environment,
our method can achieve the precision of 98.17%, which is 10.72% higher than that of the
eigenvalue-based method and 27.66% higher than that of the threshold-based method.
Moreover, one of the advantages of our method is that its FNR is far lower than those of
the other two methods in the same scenarios, which is critical for a real-time detection
system. This result is expected, since our proposed system only relies on the correlation of
adjacent subcarriers and the high coefficient region, regardless of differences in received
signal strength, transmitting power, and environment variables. This demonstrates that
our method is more adaptive to various environments.

6. Conclusions and Future Work

In this study, we developed an environment- and scenario-adaptive indoor intrusion
detection system with commodity Wi-Fi devices. We first investigated the characteristics
of MIMO link pairs and OFDM subcarriers impacted by human motion and validated
the infeasibility of randomly choosing a link pair or of averaging CSI amplitudes of all
subcarriers. Based on these findings, we designed an optimal link-pair selection algorithm
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as the first step of developing our system. Since only one link pair is selected, the number of
antennas will not affect the performance. Using the theory of narrow frequency spacing of
adjacent subcarriers and the Doppler effect, we integrated the subcarrier dimension-based
features into our classifier and trained an SVM model to detect the static and dynamic states.
We implemented our system with commodity Wi-Fi devices and evaluated its performance
for various scenarios, including low speed and high speed for intruder motion, LOS and
NLOS, single intruder and multiple intruders, and scenarios in which someone is sleeping
at home. A sliding window size of 2 s is selected in our system. With the running time of the
detection algorithm on an ordinary computer being negligible, it will take 2 s to detect the
intrusion in both LOS and NLOS environments, which means our method can be applied in
real-time. The experimental results demonstrated that our system performs well in terms of
precision and FNR, and outperforms both eigenvalue-based and threshold-based methods.
Furthermore, we verified that the correlation coefficients of adjacent subcarriers are highly
sensitive to human movement, which inspires us to consider applying our method to
Wi-Fi-based speed detection and crowd counting in the future. With the development of
Wi-Fi 6 standard, we also consider extending our system to support the next generation
Wi-Fi 6 IEEE 802.11ax specification.
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