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Abstract: An around view monitoring (AVM) system acquires the front, rear, left, and right-side
information of a vehicle using four cameras and transforms the four images into one image coordinate
system to monitor around the vehicle with one image. Conventional AVM calibration utilizes the
maximum likelihood estimation (MLE) to determine the parameters that can transform the captured
four images into one AVM image. The MLE requires reference data of the image coordinate system
and the world coordinate system to estimate these parameters. In conventional AVM calibration,
many aligned calibration boards are placed around the vehicle and are measured to extract the
reference sample data. However, accurately placing and measuring the calibration boards around a
vehicle is an exhaustive procedure. To remediate this problem, we propose a novel AVM calibration
method that requires only four randomly placed calibration boards by estimating the location of each
calibration board. First, we define the AVM errors and determine the parameters that minimize the
error in estimating the location. We then evaluate the accuracy of the proposed method through
experiments using a real-sized vehicle and an electric vehicle for children to show that the proposed
method can generate an AVM image similar to the conventional AVM calibration method regardless
of a vehicle’s size.

Keywords: around view monitoring system; automatic camera calibration; vision-based advanced
driver assistance systems

1. Introduction

Around view monitoring (AVM) systems eliminate blind spots around the vehicle to
prevent car accidents [1]. Because AVM systems create images that show the surrounding
view of the vehicle, various vision-based advanced driver assistance systems (ADAS)
utilize these AVM-produced images. For example, the parking space detection system
detects the parking lines in the AVM images to determine the parking space area [2–4], the
automated driving system detects the road lanes in the AVM images to track the position of
the vehicle [5], and the downward view generation operation transforms an AVM image to
generate a downward view image [6]. Therefore, these systems all require well-calibrated
AVM images.

The AVM system transforms four captured images to generate an AVM image, as
shown in Figure 1. In AVM calibration, image transformation parameters that are required
to generate the AVM images are estimated. These parameters describe the geometrical
relationship between the captured image coordinate system and the world coordinate
system. In conventional AVM calibration, the maximum likelihood estimation (MLE) is
used to estimate this relationship.

The MLE assumes that the location of the calibration board on the surface of the road
represents the world coordinate system. Figure 1c shows the reconstructed world coordi-
nate system using the calibration board location. The MLE computes the Euclidean distance,
which is the re-projection error between the calibration boards in the reconstructed world
coordinate system and the calibration boards in the captured image coordinate system,
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and minimizes this error to determine the image transformation parameters. Therefore,
accurately measuring the calibration board location is a significant and operative procedure
of conventional AVM calibration methods to generate well-calibrated AVM images.
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Figure 1. The procedure for conventional around view monitoring (AVM) calibration.

Conventional AVM calibration requires the alignment of the calibration boards for
measurements, as shown in Figure 1a. Because calibration boards are spread over a
large area, accurately measuring calibration boards is an exhaustive procedure. Vehicle
manufacturers use AVM calibration facilities to measure the calibration board locations
accurately, as shown in Figure 2 [7]. Various AVM calibration studies are also based
on well-aligned calibration boards [8–19]. The details of these studies are provided in
Section 2.1.
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Some researchers have utilized alternative devices to facilitate camera calibration [20–23].
They used odometry or an inertial measurement unit. However, adjacent images utilizing
these approach methods cannot be aligned because these methods focus on the calibration
of only one camera.

Other approaches detect road lanes or the host vehicle instead of utilizing addi-
tional devices [24–28]. These approaches also focus on the calibration of only one camera.
Choi et al. [29] calibrated four AVM cameras to align adjacent images using detected road
lanes. These calibration methods must repeat the road lane detection process until the
integrity of the detected lanes is verified. The methods we have surveyed indicate that
camera calibration without the use of calibration boards can face various challenges.

Lee et al. [30] calibrated AVM cameras using only two circle-shaped calibration boards.
This method takes multiple photos while the vehicle passes between the two calibration
boards to achieve the effect of having more calibration boards placed. However, driving
perfectly straight ahead is as exhausting as accurately measuring the calibration board
locations. Furthermore, only one calibration board per image with the smallest mean
square error is selected from among the multiple images taken while driving. Therefore,
this approach is not suitable for the MLE because only one calibration board is used to
represent the world coordinate system.

We propose an MLE-based AVM calibration method that uses minimal calibration
boards, as shown in Figure 3. This method estimates the location of the four calibration
boards instead of measuring them. To this end, we divide the AVM image into two areas,
as shown in Figure 4. The first area is the overlapping region of interest (ROI) where the
fields of view of adjacent cameras overlap. The other area is the nonoverlapping ROI.
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ROI (green area).

At least one calibration board must be placed in each overlapping ROI. If we place
additional calibration boards in the nonoverlapping ROI, the accuracy of the MLE will
increase. However, the human eye can hardly distinguish between the AVM image results
with and without calibration boards placed in the nonoverlapping ROI because the nonover-
lapping ROI errors are distributed equally for each pixel and are, therefore, not significant.
In contrast, the human eye can easily recognize the overlapping ROI errors because the
overlapping ROI is where adjacent images are stitched. Therefore, it is possible to generate
an AVM image even if the calibration boards are placed only in the overlapping ROI.

We define two errors to calibrate the AVM cameras using square-shaped calibration
boards: a square-shaped error (SSE) and an alignment error (AME). An SSE indicates
the difference between the square shape and the quadrilateral shape. A square-shaped
calibration board can become a quadrilateral-shaped calibration board in the captured
images based on the camera orientation. Therefore, we can estimate the camera orientation
by minimizing the SSE. An AME indicates the Euclidean distance between the same
calibration boards in the adjacent images. By minimizing the AME, we can estimate the
camera position and align the adjacent images. Therefore, we use the sum of the two errors
as the loss function of the proposed method.

The proposed AVM calibration offers the following various advantages:

• A measuring procedure is not required.
• Only four calibration boards are used to minimize the placing procedure.
• The proposed method can still generate an AVM image similar to that generated by

the conventional method.
• In a small repair shop, the four calibration boards need to be in place only when AVM

calibration is being done.

2. Related Works

Camera calibration has been extensively researched in a wide range of fields. There-
fore, this literature review focuses on two types of AVM calibration-related studies: AVM
calibration and vehicle-mounted camera calibration. AVM calibration methods consider
the geometric relationship of adjacent AVM cameras. Vehicle-mounted camera calibration
methods cannot estimate the adjacent AVM camera relationships, but they can estimate
the orientation and position of a mono camera so that these methods can be utilized for
AVM calibration.
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2.1. AVM Calibration

Most of the AVM calibration methods we surveyed use well-aligned calibration boards.
Chang et al. [8] proposed a method to determine accurate vertexes of calibration boards
when the edges of the calibration boards were blurred and jagged. Zhao et al. [9] reduced
the brightness difference among fisheye images and achieved a smooth transition around
stitching seam. Two methods [8,9] utilized direct linear transform (DLT) to estimate the
image transformation matrix required to generate an AVM image and focused on increasing
the accuracy of the AVM calibration.

Gao et al. [10] projected a 2D AVM image generated by the DLT on a 3D ship model.
The 3D AVM image helps drivers to be aware of the driving environment and eliminates
visual blind spots. Yang et al. [11] proposed a flexible central-around coordinate mapping
(CACM) model for vehicle surround view synthesis. The CACM model calculates the
geometric relationship between the world coordinate system and the virtual AVM camera
coordinate system. These studies focused on mapping models for AVM systems.

Jeon et al. [12] and Lo [13] focused on improving the performance of the embedded
system. They also generated an AVM image using the DLT and upload a lookup table
including image transformation parameters for generating an AVM image.

No matter how well-aligned calibration boards are used, errors will occur if the
coordinates of the calibration boards are not accurately detected in an image. Some
researchers proposed a method that can determine the coordinates of calibration boards
in an image more accurately. Kim [14] patented a technology for a robot that revises the
coordinates of calibration boards in an image. Pyo et al. [15] drew straight lines between
calibration boards and detected the vanishing points using the drawn lines. The detected
vanishing points help calibration board detection accurately detect the coordinates of
calibration boards.

Natroshvili et al. [16] utilized MLE to estimate the orientation and location of cameras.
The DLT-based method can only estimate a homography matrix used to transform an image,
but the MLE-based method can estimate parameters indicating the orientation and location
of cameras. When an AVM image requires revision, adjusting the orientation and location
parameters is more intuitive and convenient than adjusting the homography matrix.

Zeng et al. [17] patented an AVM calibration method that paints calibration boards on
all grounds, including under the vehicle, to determine the vehicle coordinates accurately.
Since the calibration boards under the vehicle are obscured by the vehicle, the coordinates
of the vehicle can be estimated.

Ko et al. [18] and Li [19] used a hyperbolic reflector and a spherical image sensor
instead of a fisheye lens, respectively. The hyperbolic reflector is a mirror that increases the
field of view of a camera by more than 180 degrees. The spherical image sensor can see all
360-degree surroundings by combining two cameras having a field of view of 180 degrees
or more.

2.2. Vehicle-Mounted Camera Calibration

Camera calibration methods for vehicle-mounted cameras focus on estimating the
orientation and location of the camera. The estimated parameters can be used to inverse
perspective mapping (IPM). IPM is a method that transforms a captured image into a
top view image that removes perspective distortion using the orientation and location of
the camera.

Some researchers used additional devices instead of calibration boards. Wang et al. [20]
proposed a camera-encoder fusion system to estimate extrinsic parameters. The extracted
and tracked natural features provide the Euclidean distance information of the image
coordinate system, and the encoder measures the camera travel distance. This method
estimates the extrinsic parameters by comparing the Euclidean distance of the natural
features with the camera travel distance. Schneider et al. [21] and Chien et al. [22] also
measured the camera travel distance using odometry and visual-odometry, respectively.
Li et al. [23] used an inertial measurement unit to measure the orientation of the camera.
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Other researchers detected road lanes instead of using additional devices or calibration
boards. Xu et al. [24] and Prakash et al. [25] detected road lanes and used them for
estimating the orientation and location of the front camera. The estimated parameters are
used for IPM. A top view image generated by IPM provides the distance between obstacles
and the host vehicle. Wang et al. [26] and de Paula et al. [27] also detected road lanes
to estimate the orientation and location of a front camera. They estimated the distance
between obstacles and the host vehicle without IPM.

Lee et al. [28] proposed a camera calibration method detecting the host vehicle instead
of detecting the road lanes. More specifically, this method detects the host vehicle surface to
avoid the problems of utilizing detected road lanes, but it can only estimate the orientation
of the camera.

3. AVM Calibration Using Four Randomly Placed Calibration Boards

The proposed method can generate an AVM image without the location information
of the calibration boards. To this end, we estimate the calibration board locations by
minimizing the AVM error, which consists of the SSE and AME. In the following sections,
we first describe the difference between conventional AVM calibration and the proposed
AVM calibration and then define the SSE, AME, and AVM error used to generate an
AVM image.

3.1. Conventional AVM Calibration

The MLE-based conventional AVM calibration estimates the geometrical relationship
between the calibration board locations in the world coordinate system and the image
coordinate system. Because lens distortion parameters do not change even if the camera
orientation and location are changed, we assume that the source images of the AVM
calibration are lens distortion-corrected images. The relationship between the world
coordinate system and the source image coordinate system can be expressed as follows:

~
us = Ks[Rs|Ts]

~
uw (1)

where
~
us is the homogeneous source image coordinate system,

~
uw is the homogeneous

world coordinate system, Rs is the rotation matrix describing the camera orientation, Ts
is the translation matrix describing the camera location, and Ks is the intrinsic matrix
describing the optical properties of the camera.

Ks =

[
fsI2×2 ps
02×1 1

]
(2)

where fs is the focal length, I2×2 is a 2 × 2 identity matrix, and ps is a 2D principal point.
We assume that a virtual AVM camera is over the vehicle and looks at the vehicle vertically
downward to generate an AVM image, as shown in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 21 
 

 

tively. Li et al. [23] used an inertial measurement unit to measure the orientation of the 

camera. 

Other researchers detected road lanes instead of using additional devices or calibra-

tion boards. Xu et al. [24] and Prakash et al. [25] detected road lanes and used them for 

estimating the orientation and location of the front camera. The estimated parameters are 

used for IPM. A top view image generated by IPM provides the distance between obsta-

cles and the host vehicle. Wang et al. [26] and de Paula et al. [27] also detected road lanes 

to estimate the orientation and location of a front camera. They estimated the distance 

between obstacles and the host vehicle without IPM. 

Lee et al. [28] proposed a camera calibration method detecting the host vehicle in-

stead of detecting the road lanes. More specifically, this method detects the host vehicle 

surface to avoid the problems of utilizing detected road lanes, but it can only estimate the 

orientation of the camera. 

3. AVM Calibration Using Four Randomly Placed Calibration Boards 

The proposed method can generate an AVM image without the location information 

of the calibration boards. To this end, we estimate the calibration board locations by 

minimizing the AVM error, which consists of the SSE and AME. In the following sec-

tions, we first describe the difference between conventional AVM calibration and the 

proposed AVM calibration and then define the SSE, AME, and AVM error used to gen-

erate an AVM image. 

3.1. Conventional AVM Calibration 

The MLE-based conventional AVM calibration estimates the geometrical relation-

ship between the calibration board locations in the world coordinate system and the 

image coordinate system. Because lens distortion parameters do not change even if the 

camera orientation and location are changed, we assume that the source images of the 

AVM calibration are lens distortion-corrected images. The relationship between the 

world coordinate system and the source image coordinate system can be expressed as 

follows: 

𝐮̃s = 𝐊s[𝐑s|𝐓s]𝐮̃w (1) 

where 𝐮̃s is the homogeneous source image coordinate system, 𝐮̃w is the homogeneous 

world coordinate system, 𝐑s is the rotation matrix describing the camera orientation, 𝐓s 

is the translation matrix describing the camera location, and 𝐊s is the intrinsic matrix 

describing the optical properties of the camera. 

𝐊s = [
𝑓s𝐈2 × 2 𝐩s
𝟎2x1 1

] (2) 

where 𝑓s is the focal length, 𝐈2×2 is a 2 × 2 identity matrix, and 𝐩s is a 2D principal 

point. We assume that a virtual AVM camera is over the vehicle and looks at the vehicle 

vertically downward to generate an AVM image, as shown in Figure 5. 

 

Figure 5. Visualization of the orientation and location of the virtual AVM camera. Figure 5. Visualization of the orientation and location of the virtual AVM camera.



Sensors 2021, 21, 2265 7 of 20

The relationship between the world coordinate system and the AVM image coordinate
system can be expressed in the same way as in Equation (1).

~
uv = Kv[Rv|Tv]

~
uw (3)

where
~
uv is the homogeneous coordinate system of the virtual AVM image, Rv is the

rotation matrix describing the virtual AVM camera orientation, Tv is the translation matrix
describing the virtual AVM camera location, and Kv is the intrinsic matrix describing
the optical properties of the virtual AVM camera. From Equations (1) and (3), we can
express the relationship between the source image coordinate system and the AVM image
coordinate system as

~
uv = (Kv[Rv|Tv])(Ks[Rs|Ts])

−1 ~
us = HAVM

~
us (4)

where HAVM is a 3 × 3 homography matrix describing the relationship between the source
image coordinate system and the AVM image coordinate system. The matrix Kv[Rv|Tv]
consists of known parameters because the properties of the virtual AVM camera are
determined by the drivers or manufacturers, as shown in Figure 6. Furthermore, be-
cause the camera optical properties do not change even if the camera orientation and
location are changed, we can assume that the intrinsic matrix Ks is known. Therefore,
conventional AVM calibration focuses only on estimating the extrinsic matrix [Rs|Ts] to
compute HAVM. To estimate the extrinsic matrix [Rs|Ts], conventional AVM calibration
defines a re-projection error erp and determines the extrinsic matrix that minimizes the
re-projection error.

erp = ‖−uv −HAVM
−
us‖ (5)

[
−
Rs|
−
Ts] = argmin

[Rs|Ts]

(
erp
)

(6)

where erp is the re-projection error,
−
uv represents the measured calibration board coordi-

nates for the virtual AVM image coordinate system,
−
us represents the measured calibration

board coordinates for the source image coordinate system, and [
−
Rs|
−
Ts] is the estimated ex-

trinsic matrix. Equation (5) is the loss function of the conventional AVM calibration method.
Because the calibration board locations are not measured, the measured calibration board
coordinates representing the virtual AVM image coordinate system,

−
uv, in Equation (5) is

unknown. Therefore, we estimate the calibration board coordinates in the virtual AVM
image,

−
uv, to generate an AVM image.
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3.2. Calibration Board Detection

Calibration board detection occurs in the preprocessing phase of the proposed method.
We detect the calibration boards in the source images and utilize them to compute the SSE
and AME. Because one calibration board is placed in each overlapping ROI, two calibration
boards are photographed in one source image (one source image has two overlapping
ROIs). The photographed square-shaped calibration boards become quadrilateral shapes
in the source images due to camera tilting. Therefore, we detect two quadrilateral shapes
in the source images using simple and commonly used image processing techniques, as
shown in Figure 7.
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We utilize the adaptive thresholding image binarization method to binarize the source
images [31]. This method computes the local threshold values instead of the global thresh-
old value to accurately binarize an image. The morphological transformation can remove
noise [32], and the labeling algorithm assigns the pixels to the same group if the values
between the neighboring pixels are identical [33]. Next, we detect the edge points of the
labeled object and fit the edge points to four straight lines using K-mean clustering [34].

If the labeled object is a quadrilateral, the fitted four straight lines indicate four sides of
the quadrilateral. To find the two calibration boards among the labeled objects, we compute
the quadrilateral error. The quadrilateral error is the sum of the Euclidean distance between
the edge points and the fitted four straight lines. If the labeled object is a quadrilateral, the
quadrilateral error is close to zero. Because there are two calibration boards in one source
image, we divide the source image into left and right areas and select the labeled object
with the least quadrilateral error in each area as the calibration board.

3.3. Square-Shaped Error

We can estimate the geometrical relationship between the quadrilateral shape and the
square shape because a square-shaped calibration board has a quadrilateral shape in the
source image. The square-shaped calibration board can be transformed into a parallelogram
shape by an affine transformation matrix, and the parallelogram shape can be transformed
into a quadrilateral shape by a perspective transformation matrix.

~
uparall = HA

~
usquare =

 a11 a12 0
0 1 0
0 0 1

~
usquare

~
uquad = HPHA

~
usquare = HP

~
uparall =

 1 0 0
0 1 0

p31 p32 1

~
uparall

(7)
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where
~
uparall represents the homogeneous coordinates of the parallelogram-shaped cali-

bration board,
~
usquare represents the homogeneous coordinates of the square-shaped cali-

bration board,
~
uquad represents the homogeneous coordinates of the quadrilateral-shaped

calibration board, HP is a perspective transformation matrix, and HA is an affine trans-
formation matrix. The parameter a11 of the affine transformation matrix HA transforms
a square into a rectangle, the parameter a12 transforms a rectangle into a parallelogram,
the parameter p31 of the perspective transformation matrix HP transforms a square into
a trapezoid with a parallel pair of opposite sidelines in the horizontal direction, and the
parameter p32 of the perspective transformation matrix HP transforms a square into a trape-
zoid with a parallel pair of opposite sidelines in the vertical direction. We can transform
the quadrilateral-shaped calibration boards into square-shaped calibration boards with the
perspective and affine matrices:

~
usquare = (HPHA)

−1 ~
uquad (8)

To estimate the matrix (HPHA)
−1 in Equation (8), we define a SSE to indicate the

difference between the coordinates
~
uquad and

~
usquare using the characteristics of a square

shape. The characteristics of a square is that the four angles and the intersection angle
of two diagonals are 90 degrees, the length of the four sidelines are equal, and the two
diagonals are

√
2 times longer than the sidelines. We define two types of errors based on

these characteristics: angle-based SSE (ASSE) and length-based SSE (LSSE). The reason for
classifying the SSE into two types is to simultaneously minimize the SSE and AME, details
of which are described in Section 3.5.

3.3.1. Angle-Based SSE

An angle-based SSE (ASSE) refers to the difference between an internal angle of a

square and the corresponding quadrilateral angle. Let a line vector
−
l quad,i represent an i-th

sideline of a detected quadrilateral-shaped calibration board. By the matrix (HPHA)
−1 in

Equation (8), the detected quadrilateral-shaped calibration board can be transformed into a

square-shaped calibration board
−
l square,i = (HPHA)

−1−l quad,i. The included angle of the
square-shaped calibration board can be determined by the dot product of i-th and the j-th

line vectors where
−
l square,i =

[
l1,i l2,i l3,i

]T.

φ = cos−1

 l1,il1,j + l2,il2,j√(
l1,i

)2
+
(

l2,i

)2
·
√(

l1,j

)2
+
(

l2,j

)2

 (9)

Therefore, we can define the ASSE as follows:

eASSE =
∣∣∣π

2
− φ

∣∣∣ (10)

Equation (10) can be simplified by the cosine function as:

eASSE =
∣∣cos

(
π
2
)
− cos(φ)

∣∣ = |− cos(φ)|
=

l1,i l1,j+l2,i l2,j√
(l1,i)

2
+(l2,i)

2·
√
(l1,j)

2
+(l2,j)

2
(11)

where 0 ≤ φ ≤ π. We then determine the parameters that minimize the ASSE and the
calibration boards in the source image can be transformed into square shapes:(−

HP,
−
HA

)
= argmin

HP,HA

(
2

∑
n=1

5

∑
k=1

eASSE(n, k)

)
(12)
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where eASSE(n, k) is the ASSE of the k-th angle of the n-th calibration board,
−
HP is the

estimated perspective transformation matrix, and
−
HA is the estimated affine transformation

matrix. There are two calibration boards in the source image and five intersection points in
the square (four vertices and one center of the square); thus, n is from 1 to 2 and k is from 1
to 5, respectively.

3.3.2. Length-Based SSE

A length-based SSE (LSSE) refers to the sideline length difference between the quadri-

lateral and square shapes. Let homogeneous coordinates
−
vquad,i represent the i-th vertex

of a detected quadrilateral-shaped calibration board, then the transformed homogeneous

coordinates by the matrix variable is
−
vsquare,i = (HPHA)

−1−vquad,i =
[

v1,i v2,i 1
]T. We

can calculate the length of one side using the transformed coordinates
−
vsquare,i as:

mi =
√(

v1,i − v1,j
)2

+
(
v2,i − v2,j

)2 (13)

where mi is the length of the i-th side of the transformed calibration board. The LSSE can
be defined as Equation (14), where the length of one side of the calibration board is m:

eLSSE =
4

∑
i=1
|m−mi|+

2

∑
j=1

∣∣∣√2m− dj

∣∣∣ (14)

where dj is the length of the j-th diagonal of the transformed calibration board. We then
find the parameters that minimize the LSSE, and the calibration boards in the source image
can be transformed into square shapes with:(−

HP,
−
HA

)
= argmin

HP,HA

(
2

∑
n=1

eLSSE(n)

)
(15)

where eLSSE(n) is the ASSE of the n-th calibration board,
−
HP is the estimated perspective

transformation matrix, and
−
HA is the estimated affine transformation matrix.

3.4. Alignment Error

An alignment error (AME) is defined as the Euclidean distance between the same
square-shaped calibration boards in adjacent images. Because the quadrilateral-shaped
calibration board can be transformed into square-shaped calibration boards by minimizing
the SSE, we focus only on estimating the similarity transformation matrix HS consisting of
a scale parameter s, an image rotation parameter θ, and image translation parameters tx
and ty to align the square-shaped calibration boards in adjacent images.

HS =

− s · cos(θ) s · sin(θ) tx
s · sin(θ) s · cos(θ) ty

0 0 1

 (16)

Square-shaped calibration boards of a front image and a left image can be aligned
using Equation (17).

Hfront
S

~
v

front
square = Hleft

S
~
v

left
square (17)
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where Hfront
S is the similarity transformation matrix of a front image, and

~
v

front
square represents

the homogeneous coordinates of the vertex of the square-shaped calibration board of the
front image. Therefore, we can define the AME as follows:

eAME = ‖Hfront
S

−
v

front
square −Hleft

S
−
v

left
square‖+ Hleft

S
−
v

left
square −Hrear

S
−
v

rear
square‖

+‖Hrear
S
−
v

rear
square −Hright

S
−
v

right
square‖+ ‖H

right
S

−
v

right
square −Hfront

S
−
v

front
square‖

(18)

where
−
vsquare represents the homogeneous coordinates of the vertex of the transformed

calibration boards by the perspective and affine transformation matrices. We can estimate
the similarity transformation matrix by minimizing the AME.(

−
H

front

S ,
−
H

left

S ,
−
H

rear

S ,
−
H

right

S

)
= argmin

Hfront
S

Hleft
S

Hrear
S

Hright
S

(eAME) (19)

where
−
HS is the estimated similarity transformation matrix.

3.5. AVM Error

We can estimate the image transformation parameters for generating the AVM image
by minimizing the AVM error, which consists of an SSE and AME. Because there are two
types of SSEs, the ASSE and LSSE, the AVM error can be expressed as a combination of the
two types: the ASSE–AME and the LSSE–AME.

The problem with the ASSE–AME combination is that the units of the two measure-
ments are not consistent. The ASSE is in radians whereas the AME is in pixels. In contrast,
the units for the LSSE and AME are both in pixels. Therefore, we focus on using the
LSSE–AME combination. However, the LSSE–AME combination is not without limitations.
The LSSE–AME combination suffers from the local minimum problem because the range of
the parameters searched by the MLE changes according to the size of the calibration board.

To solve this problem, we find the appropriate initial parameters by minimizing the
ASSE. To minimize the ASSE, we utilize the Levenberg–Marquardt algorithm, which is
most widely used to solve the maximum likelihood problems of camera calibration. The

estimated matrices
−
HP and

−
HA, by minimizing the ASSE, are used as initial values to

minimize the LSSE–AME combination, as shown in Figure 8. Since the matrices
−
HP and

−
HA are already optimized, the local minimum problem caused by the size of the calibration
board can be solved. The LSSE–AME combination is also minimized by utilizing the
Levenberg–Marquardt algorithm.
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4. Experiments

We performed several experiments to evaluate the proposed method. We used Kodak’s
PIXPRO SP360 cameras with a 235◦ field of view and a 2880 px× 2880 px resolution [35].
The cameras were installed on a Hyundai SONATA vehicle, as shown in Figure 9 [36]. The
installation heights of the front, rear, left, and right cameras are approximately 57, 84, 92,
and 92 cm, respectively. Each camera is tilted approximately 30◦. The overall length of
the vehicle is 480 cm, the overall width is 183 cm, and the overall height is 147.5 cm. The
dimensions of the calibration boards are 50 cm× 50 cm and we set the calibration board
dimensions in the AVM image to 100 px× 100 px.
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Figure 9. Four installed cameras for the field experiments.

The size of the calibration board must be experimentally determined based on the
size of the vehicle and the field of view of the cameras. More specifically, the calibration
board size must increase with the increase in the size of the vehicle or the range of the
camera field of view. However, the larger the calibration boards, the more inefficient it is
to carry and place them. When we used calibration boards with dimensions smaller than
50 cm× 50 cm, sometimes the calibration board detection algorithm failed. When we used
calibration boards with dimensions larger than 100 cm× 100 cm, it was difficult to place the
calibration boards in the overlapping ROI. Therefore, for the purpose of our experiment,
we set the dimensions of the calibration board as 50 cm× 50 cm.

4.1. Performance Evaluation Using a Real-Sized Vehicle

We placed four calibration boards around the vehicle to evaluate the performance of
the proposed method, as shown in Figure 10. Because the camera manufacturer provides
the lens distortion parameters and intrinsic parameters, we can easily correct the lens
distortion, as shown in Figure 11. In the lens distortion-corrected images, the shape
of the calibration boards is quadrilateral. The calibration board detection detects two
quadrilaterals per image, as shown in Figure 11c. The proposed method transforms the
source images such that the detected quadrilateral calibration boards become squares.
Figure 12 shows the generated AVM image using the proposed method. We can observe
that all the calibration boards are similar to squares and the adjacent images are well aligned.
Furthermore, even though there are no calibration boards in the nonoverlapping ROI, the
source image in the nonoverlapping ROI can also be transformed into a well-calibrated
AVM image.
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Figure 11. Example images for the performance evaluation of the proposed method.

Table 1 shows the estimated image transformation parameters corresponding to the
AVM image in Figure 12a. Because the parameters a11, a12, p31, and p32 are normalized,
the affine and perspective distortion-corrected images are scaled and rotated, as shown
in Figure 13. For example, the front image in Figure 13a is rotated 0.2524π clockwise and
the average of the side lengths is 1.9278 px when the affine and perspective distortions are
corrected. Therefore, the product of s and γ is close to 100 px and the sum of θ and φ of the
front, left, rear, and right images are close to 0π, −0.5π, −π, and −1.5π, respectively, as
shown in Table 2.

Table 1. Estimated image transformation parameters.

Parameters Front Left Rear Right

s 51.8717 3.5862 8.7625 37.9317
θ (rad) −0.2611π 0.0857π −0.3056 −0.8748
tx (px) −7428.2071 2825.3564 −3613.53 −7673.6563
ty (px) −7496.9527 −2347.6187 −2979.6379 10,336.4311

a11 0.0843 0.5115 0.2502 0.1971
a12 −0.1002 −0.0410 0.0879 −0.1692
p31 −0.0009 −0.0007 −0.0003 −0.001
p32 0.0044 −0.0012 −0.0019 −0.0034
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Table 2. The relationship between the normalized coefficients and estimated parameters.

Parameters Front Left Rear Right

s 51.8717 3.5862 8.7625 37.9317
γ (px) 1.9278 27.8365 11.4110 2.6364

s× γ (px) 99.9983 99.8273 99.9889 100.0031
θ (rad) −0.2611π 0.0857π −0.3056π −0.8748π
φ (rad) 0.2524π −0.6251π −0.6956π −0.5785π

θ + φ (rad) −0.0087π −0.5394π −1.0012π −1.4533π

For quantitative evaluation, we calculated the AVM errors, as shown in Table 3.
Because there are two boards in one image, the LSSE per calibration board is approximately
17.6571/2 = 8.8285 px. The LSSE is the sum of the errors of the four sides and two diagonal
lines; thus, the error for each sideline is approximately 8.8285/6 ≈ 1.4714 px. That is,
the length of one side of the calibration board is approximately 100 ± 1.4714 px in the
generated AVM image. The AME indicates the offset of the adjacent images when two
images are stitched. Because one calibration board has four vertexes, the offset of the
calibration board is approximately 10.1691/4 ≈ 2.5423 px. These values are significantly
small enough to be difficult for the human eye to recognize.

Table 3. AVM errors of the proposed method.

Calibration Board eAVM eLSSE eAME

front-left 25.1992 16.3466 8.8526
left-rear 37.231 25.1189 12.1121

rear-right 24.2864 14.6869 9.5994
right-front 24.5884 14.4762 10.1122

average 27.8262 17.6571 10.1691

4.2. Performance Evaluation Using an Electric Vehicle for Children

The orientation and location of the camera can change depending on the type and
size of a vehicle. Because the proposed method should be able to generate an AVM
image regardless of vehicle type, we experimented using an electric vehicle for children
to verify this aspect, as shown in Figure 14. The installation height of each camera is
approximately 40 cm and each camera is tilted approximately 30◦. The overall length of the
miniature vehicle is 126 cm, the overall width is 73 cm, and the overall height is 64.5 cm.
The dimensions of calibration boards are 20 cm× 20 cm and we set the calibration board
dimensions in the AVM image to 100 px× 100 px.
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Figure 15 shows a generated AVM image using the proposed method for an electric
vehicle for children. We can observe that the proposed method can generate a well-
calibrated AVM image even though the size of the vehicle is small.
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Table 4 shows the calculated AVM errors corresponding to the AVM image in Figure 15.
The error for each sideline is approximately 39.5697/12 ≈ 3.2974 px and the offset of the
calibration board is approximately 6.6367/4 ≈ 1.6591 px. These resulting values are similar
to those of the experimental environment using a real-sized vehicle because the calibration
board dimensions in the AVM image are the same in both experiments. From the results of
the experiments using real-sized and miniature vehicles, it can be verified that the proposed
method can generate an AVM image regardless of the size of the vehicles.

Table 4. AVM errors of the proposed method using an electric vehicle for children.

Calibration Board eAVM eLSSE eAME

front-left 37.9732 31.5650 6.4082
left-rear 16.0779 8.3447 7.7332

rear-right 34.7484 25.7785 8.9699
right-front 96.0263 92.5907 3.4357

average 46.2065 39.5697 6.6367

4.3. Comparison Experiments with the Conventional Method

The proposed method can generate an AVM image using only four randomly placed
calibration boards. In contrast, the conventional methods require calibration boards with
known locations. Therefore, to compare the proposed method with the conventional
method, we aligned and measured the calibration board locations, as shown in Figure 16,
and provided the measured data as input to the conventional method.

Figure 17 shows the AVM images generated by the proposed method and the conven-
tional method. We can observe that the results of the two methods are very similar, even
though we did not input information regarding calibration board location to the proposed
method. To compare the two methods in more detail, we calculated the root mean square
error (RMSE), optical flow, and AVM errors for the two AVM images. The RMSE can be
expressed as follows:

eRMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

[
Ic(i, j)− Ip(i, j)

]2 (20)
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where Ic(i, j) is the grayscale value of the AVM image from the conventional method at the
(i, j) point, Ip is the grayscale value of the AVM image from the proposed method, m is the
width of the AVM images, and n is the height of the AVM images. The calculated RMSE of
the two AVM images in Figure 17a,b is 0.0457 when the range of the grayscale is 0–1.
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Since the RMSE can depend on the content of the source images, we additionally
compute optical flow to measure the displacement. We utilize a method of Farneback [37]
to compute optical flow. Figure 18 shows the optical flow between the AVM images of
the proposed method and the conventional method. The average of the optical flow is
7.1239 px where the resolution of the AVM image is 1170 px× 1000 px. The RMSE value
and the average of the optical flow indicate that the two AVM images are very similar.
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Table 5 shows the AVM errors of the proposed method and the conventional method.
We can observe that the results of the proposed method are analogous to those of the
conventional method. The AVM error in the conventional method is caused by the mea-
surement data error and the calibration board detection error. The AVM error in the
proposed method is caused only by the calibration board detection error, not the measure-
ment data error. Therefore, the AVM error in the conventional method is bound to be larger
than that of the proposed method.

Table 5. AVM errors in the proposed method and the conventional method.

Calibration Board
eAVM eLSSE eAME

Proposed Conventional Proposed Conventional Proposed Conventional

front-left 20.3643 44.3193 16.5563 26.0181 3.8080 18.3012
left-rear 24.4981 62.4852 20.4678 40.2469 4.0303 22.2383

rear-right 41.5034 57.8872 27.8327 36.4387 13.6708 21.4485
right-front 67.4672 64.4724 64.0037 46.3019 3.4635 18.1706

average 38.4583 57.291 32.2151 37.2514 6.2431 20.0396

If we used the AVM calibration facility, the measurement data error would be very
small, so the AVM error of the conventional method would have been less or similar to
those of the proposed method. However, since we experimented in the same environment
without the calibration facility, the AVM error of the conventional method is larger than
the proposed method.

These evaluations along with the comparison experiments verify that the proposed
method is able to generate an AVM image similar to that of the conventional method
without requiring the calibration board location.

5. Conclusions

We propose an AVM calibration method using four randomly placed calibration
boards and define a novel loss function to utilize the MLE for AVM calibration without the
need for information regarding the calibration board locations. The proposed method offers
more advantages than the conventional method. The most important advantage is that
the proposed method does not require the procedure of measuring the calibration board
locations. With this advantage, we can save time and costs that would otherwise be spent
on accurately measuring the calibration board locations over a large area. Additionally, as
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the size of the vehicle increases, the time and cost in using the conventional method also
increase, but this is not the case when using the proposed method.

The second advantage of the proposed method is the ability to use the MLE. The most
recent AVM calibration method using only two circle-shaped calibration boards cannot
utilize the MLE because the MLE requires multiple calibration boards. In contrast, the
AVM errors of the proposed method are evenly distributed in all images because we are
able to utilize the MLE. The human eye cannot detect the evenly distributed errors.

Flexibility regarding the vehicle size and board size is the third advantage offered by
the proposed method. We verify through various experiments that the proposed method
can generate AVM images for both real-sized vehicles with large-sized calibration boards
and electric vehicles for children with small-sized calibration boards.

Lastly, it is simpler to calibrate AVM systems in the proposed method because there is
no need for expert handling facilities for AVM calibration. These advantages were verified
through experiments with the vehicle in a parking lot. Based on these advantages, we
expect that AVM calibration will be possible in a small repair shop or even in parking lots,
resolving the inconvenience of having to visit a large repair shop with AVM facilities for
AVM calibration.
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