
sensors

Article

Multi-Sensor Information Ensemble-Based Automatic Parking
System for Vehicle Parallel/Nonparallel Initial State

Changhao Piao 1, Jun Zhang 1, KyungHi Chang 2 , Yan Li 2 and Mingjie Liu 1,*

����������
�������

Citation: Piao, C.; Zhang, J.; Chang,

K.; Li, Y.; Liu, M. Multi-Sensor

Information Ensemble-Based

Automatic Parking System for Vehicle

Parallel/Nonparallel Initial State.

Sensors 2021, 21, 2261. https://

doi.org/10.3390/s21072261

Academic Editor: Felipe Jiménez

Received: 7 January 2021

Accepted: 10 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
piaoch@cqupt.edu.cn (C.P.); s180302001@stu.cqupt.edu.cn (J.Z.)

2 Department of Electrical and Computer Engineering, Inha University, 100 Inha-ro Michuhol-gu,
Incheon 22212, Korea; khchang@inha.ac.kr (K.C.); leeyeon@inha.ac.kr (Y.L.)

* Correspondence: liumj@cqupt.edu.cn

Abstract: The goal of automatic parking system is to accomplish the vehicle parking to the specified
space automatically. It mainly includes parking space recognition, parking space matching, and
trajectory generation. It has been developed enormously, but it is still a challenging work due to
parking space recognition error and trajectory generation for vehicle nonparallel initial state with
parking space. In this study, the authors propose multi-sensor information ensemble for parking space
recognition and adaptive trajectory generation method, which is also robust to vehicle nonparallel
initial state. Both simulation and real vehicle experiments are conducted to prove that the proposed
method can improve the automatic parking system performance.

Keywords: automatic parking system; parking space recognition; parking space matching; trajec-
tory generation

1. Introduction

Automatic parking systems (APS), as one of the main functions in advanced driver as-
sistance systems (ADAS) and autonomous driving, is the key technology of transportation
and traffic management [1–3]. It refers to the Internet of Things (IoT) [4] and artificial intel-
ligence [5]. In addition, with the development of increased computing power, multi-sensor
fusion technology has made a great contribution to smart parking systems.

To design an automatic parking system, it should consist of parking space recognition,
parking space matching, trajectory generation [6–8], and vehicle control [9]. Parking
space recognition [10,11] is one of the crucial components for APS, which is commonly
realized based on machine vision technique. Following parking space recognition, parking
space matching [12,13] requires the positioning information of the target parking space
to guarantee the precision of the trajectory generation. From the trajectory generation
perspective [14,15], it needs to establish the vehicle dynamics and obstacle avoidance
models to generate available parking trajectory.

2. Related Works

This Section introduces related works that motivate this study: parking space recogni-
tion, parking space matching, trajectory generation, and vehicle control.

Jung et al. [16] describe a monocular vision-based parking-slot-markings recognition
selection of automatic parking assist system. Hsu et al. [17] propose a configuration
of the APS including sensors information fusion, position estimation, path planning,
and tracking algorithm, which shows a good maneuver performance for vehicle. Ma
et al. [18] develop an automatic parking system based on parking scene recognition. It
introduces machine vision and pattern recognition techniques to intelligently recognize
a vertical parking scenario, plan a reasonable parking path, develop a path tracking
control strategy to improve the vehicle control automation, and explore a highly intelligent
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automatic parking technology road map. Liu et al. [19] focus on positioning accuracy and
stability research, which is crucial for automatic parking system. They propose a new
adaptive robust four-wheel calculation positioning method to address the problems of low
precision and poor stability. It is based on the local outlier factor detection algorithm, in
which adaptive diagnosis and compensation are made for data anomalies of four-wheel
speedometers. The preview correction method is used for parking path planning in [20].
This method can not only detect the curvature outliers in the parking path, but also correct
and optimize a reasonable parking trajectory in advance. Based on the Dijkstra algorithm,
a scheme that can consider dynamic influence factors [21] is proposed to solve the lane
occupancy caused by parking. Zhao et al. [22] designed an indoor automatic parking
system based on indoor positioning and navigation technology. The power-aware path
planning algorithm was proposed in [23]. This method determines the best parking place
in the automatic parking system, calculates the best path, and can greatly reduce power
consumption. Considering the possibility of collision between the car body and obstacles
in the parking space and the continuity of parking needs, a Bezier curve is used in [24] to fit
the trajectory of automatic parking. An improved genetic algorithm and time-enhanced A*
algorithm trajectory calculation method [25] is used to solve the problem of high-density
parking lot path planning. This method has been effectively improved in terms of driving
distance and safety. In [26], parallel line pairs are extracted from the AVM image to
detect the dividing line. According to the geometric constraints of the parking spaces,
the separation lines are paired to generate candidate parking spaces. By using line and
corner features to identify where they entered, and using ultrasonic sensors to classify
their positions, the candidates are determined. In [27], a novel detection method based
on deep convolutional neural network is proposed, and the largest data set in the field
of parking space recognition is established to overcome various unpredictable factors
affecting parking spaces. The parking space detection method based on the direction entry
line regression and classification of the deep convolutional neural network [28] can easily
detect parking spaces of different shapes from different angles. The parking space marking
detection method based on the geometric features of parking spaces [29] mainly includes
separation line detection and parking space entry detection. This method can identify
typical vertical and parallel rectangular parking spaces with high accuracy.

Most of the existing methods are applicable when the initial state of a vehicle is
parallel to the target space and can only generate a fixed-point trajectory [30]. Further,
narrow parking area and limited parking points are also serious problems to APS. To
overcome these limitations, we design an automatic parking system design, which can
realize precision parking with different vehicle initial states (parallel/nonparallel to the
target parking space). The primary study objective is to develop a novel APS in the
engineering practice context as it overcomes the aforementioned shortcomings. This
paper adopts the idea of data fusion, and then designs a multi-sensor data fusion method.
The parking space matching uses the visual positioning method, and this paper also
uses the experimental method to correct the image distortion caused by the optical lens.
The trajectory calculation method is a traditional geometric method because it has an
irreplaceable and efficient calculation speed. To sum up, the main contribution of this
paper can be summarized as follows: (I) Multi-sensor information is fused to recognize the
parking space, which can not only enhance the recognition performance, but also provide
support for parking space matching. (II) A self-adaptive trajectory generation method is
proposed to satisfy both parallel and nonparallel initial state. Moreover, some simulation
and real vehicle experiments are conducted to demonstrate our method. Through the
scheme designed in this paper, the probability of correct parking space matching reaches
94%, the maximum matching error of parking space is only 5 cm, and the parking success
rate is as high as 90%.

The remainder of this paper is organized into four sections. Section 2 introduces
related works. The proposed method is described in detail in Section 3. Section 4 designs
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the simulation and real vehicle experiment. Section 5 demonstrates the experimental results
and contains a discussion on the specific analysis. Section 6 provides concluding remarks.

3. Automatic Parking System
3.1. Multi-Sensor Information Ensemble-Based Parking Space Recognition

Parking space recognition, as the first step for automatic parking system, highly
depends on the information collected by sensors such as ultrasonic or cameras. Multi-
sensor information ensemble can improve recognition performance. The parking space
consists of an upper edge and a lower one. Ultrasonic sensors, which are installed on the
right-hand side of the vehicle, are used for edge detection. The installed ultrasonic model
is LGCB1000-18GM-D1/D2-V15, and the detection range is 70−1000 mm. The mimic
diagram of a parallel parking spot is shown in Figure 1.
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Figure 1. Mimic diagram of parallel parking spot.

A range including target parking space is obtained by ultrasonic sensors, and the
image collected by sensors is smoothed by filtering. Thereafter, the distance between the
upper and lower edges is measured, and also the displacement of the vehicle to the target
parking spot. Subsequently, the data measured by the two sensors are fused through the
data fusion algorithm proposed in this paper.

Parking spot detection is of great importance to parking space recognition. We design
a parking spot detection algorithm consisting of ultrasonic range determination, edge
detection, and spot length calculation, as shown in Figure 2. In this study, polling-driven
mechanism is introduced to trigger the sensors, which means one of the sensors is firstly
triggered to produce ultrasonic waves with a fixed cycle. If the echoes are received by the
triggered one, then the system polls the next channel for the other sensor.

The process is repeated in cycles. Time of flight (ToF) is calculated by the time capture
register of the micro control unit (MCU), and the measured distance is obtained as follows:

d =
vs · t

2
(1)

where vs = 340 m/s at 20 ◦C; t is the travel time.
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Figure 2. The structure of parking spot detection algorithm.

Edge detection, which is crucial for the accuracy of parking spot detection, comprises
upper edge detection and lower edge detection. In the case of parallel parking, the threshold
of distance hop, which includes the hop threshold of the upper Hupper and lower Hlower
edges, is calculated based on the threshold of the ultrasonic sensors Dth and the cross
range Dcross between the target vehicle and parked vehicles, which is adjacent to the
target parking spot. The threshold is determined by the width of the vehicle Wvehicle and
maximum range of the ultrasonic sensor Dmax.

Dth = Wvehicle + Dmax (2)

The edge thresholds are expressed as follows:{
Hupper = Dth − Dcross
Hlower = Dcross − Dth

(3)

where Dth −Wvehicle − Dcross ≤ Hupper < Dth −Wvehicle and Wvehicle − Dth ≤ Hlower <
Wvehicle − Dth + Dcross.

The spot length is calculated by the driving speed and time:

L =
N

∑
k=1

V(k) ∗ T (4)

where N is the cumulative number of vehicle displacements; V(k) is the running speed in
cycle k Further, and T is the cycle time.

In multi-sensor information ensemble, a similarity model fusion is proposed. Com-
pared with other methods such as D-S theory [31], Bayes theory [32], Kalman filter [33], and
optimal statistical decision [34], the proposed method is suitable for the situations where
prior knowledge is not available. In our method, multiple sensors are used to measure
the same object, and the measured values are independent of each other. The process
of information ensemble can be divided into several phases, as shown in Figure 3. The
ensemble data sources are from the referential spot length and the measured values by two
sensors. In the process of sensor measurement, the measurement result will be inaccurate
due to the influence of the environment. Therefore, Formula (5) is used to compensate the
measurement results of the ultrasonic sensor. Referential spot length is calculated by the
difference between the average error of the sensors and corrected error. It can improve the
data ensemble accuracy.

Lre f =
L1 + L2

2
− E (5)

where L1 and L2 are the measured lengths of sensors 1 and 2, respectively; E is the corrected
error computed using multiple linear regression model.
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Figure 3. Flowchart on multi-sensor information ensemble.

To quantify the similarity among the sensors at a particular moment, exponential
decay function (EDF) [18] is employed to calculate the similarity and construct the similarity
matrix. The conventional EDF is expressed as below:

Sij(k) = e−λsys(zi(k)−zj(k))
2

(6)

where λsys is a hyper-parameter; Sij(k) is the similarity between observed values of the ith
and jth sensors; and e is the natural base. The measured value of the ith sensor at time k is
denoted as zi(k). If zi(k) and zj(k) are considerably different, then the similarity between
the ith and jth sensors is weak. Due to real world application, parking spot detection
emphasizes real-time implementation in the embedded system. To this end, we define a
new EDF function to avoid setting the experience value λsys manually, which can brief the
calculation process.

Sij(k) = (1 +
1
N
)
−N|zi(k)−zj(k)|

(7)

where N is the number of fused data sources; in our study, it is 3, including the referential
length, data of sensor 1, and data of sensor 2. The similarity matrix at moment k can be
expressed as follows:

S(k) =


1 s12(k) · · · s1n(k)

s21(k) 1 · · · s2n(k)
...

...
...

...
sn1(k) sn2(k) · · · 1

 (8)

where n is the number of fused data sources. It combines the similarity among sensors

as a matrix where each line indicates the support degree among the sensors.
n
∑

j=1
sij(k)

indicates the consistency among the ith sensor and others. The higher the value is, the
more consistent it is. Therefore, the consistency measurement approach is defined as the
assessment criteria:

ci(k) =

n
∑

j=1
sij(k)

n
(9)

where ci(k) is the proximity degree between the ith sensor and all the sensors (including

the ith sensor) at k moment. Further,
n
∑

j=1
sij(k) is the sum of matrix line in Equation (8) and
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0 < ci(k) ≤ 1. Target estimation only focuses on the consistency measurement ci(k) at a

particular observation time. The target fusion value at time k[
∧
sl(k)] is expressed as follows:

∑
sl(k) =

n
∑

i=1
ci(k) ∗ zi(k)

n
∑

i=1
ci(k)

(10)

where
n
∑

i=1
ci(k) is the sum of proximity degree of all the sensors at time k.

3.2. Parking Space Matching

The proposed parking space matching method uses image information collected by a
wide-range camera installed in the rear portion of the vehicle. The purposes of parking
space matching are to confirm the target parking space and to determine the target parking
position as well as the distance with a vehicle [35,36]. The viewing angle range of the
camera used is 120 degrees, the resolution is 640 × 480, and the chip is MT9V136. In
our study, instead of employing an expensive positioning system such as GPS or inertial
navigation, a convenient and accurate image ranging method is proposed. The common
monocular camera is to solve object location problem based on the geometrical imaging
model of the camera. The imaging model of the camera is shown in Figure 4. P′ (u, v)
and P(x, y) are the coordinate of the object in the world and image coordinate system,
respectively; Sx and Sy are the width and height of the image. From the camera imaging
geometry model, we obtain

y = hcam ∗ tan((90− αcam) + ((1− v
Sx
) ∗ (αcam − βcam)))

x = y ∗ ((1− u
Sx
) ∗ θcam)

L =
√

x2 + y2
(11)

where L is the distance between the target point and camera. hcam is the distance between
the camera and the horizontal ground. This method can be successfully employed when the
distance range is from 0.5–3.0 m. However, it does not satisfy the parking requirements that
a minimum positioning distance range should be between 0.5 m and 9.0 m. In this study,
the image coordinates and mapping points in the world coordinate are measured and some
relationships are derived by analyzing and processing the measured data. There is an
inverse proportional function relationship between the y-axis in an image coordinate and
its corresponding longitudinal distance on the y-axis in the world coordinate system. For
the x-axis, it has a proportional function relationship. The conversion relationship between
(x, y) in image coordinates and (U, V) in world coordinates is given by Equation (12)

X = 0.84 ∗ y + 6

V = 22,139
y+18 + 174

U = 320− 320/X ∗ x

(12)

where X represents the maximum horizontal distance that corresponds to line y in the
world coordinates. The size of the captured images is 640× 480. The center axis coordinates
of the image are (320, 0). The location data of the camera is shown in Table 1.
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Table 1. Performance comparison with other state-of-the-art methods on the various datasets.

Number Pixel
(U,V) X [cm] Y [cm] Calculated

Distance [cm]
Actual Distance

[cm]
Relative

Error

1 (168,478) 24.3 54 59.2 56.5 4.8
2 (228,305) 37.9 151 155.7 150.3 3.6
3 (140,258) 118.8 245 272 268.2 1.4
4 (83,235) 218.2 344 407.4 402.7 1.2
5 (245,222) 87.7 443 451.6 446.4 1.3
6 (196,212) 184.9 564 593.5 586.8 1.1
7 (88,206) 413.7 673 789.7 781.2 1.1
8 (76,203) 481.3 745 885.9 877.1 1.2
9 (273,201) 97.88 801 806.9 796.6 1.3

10 (115,198) 489.4 904 1027.9 1012 1.5

In this manner, a virtual space that has the same size with a parking space and the
function of location can be established in the image systems. In this system, the virtual
and real spaces can be matched by translation and rotation. Figure 5 shows the matching
results.
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3.3. Self-Adaptive Trajectory Generation for Vehicle Nonparallel/Parallel Initial State

To develop an automatic parking system, the direction of motion and trajectory of the
vehicle should be known [37]. To this end, a vehicle kinematics model is established. Since
automatic parking system always works with a low speed, the model can eliminate the
possibility of sliding and lateral movements. The proposed vehicle kinematics model is
shown in Figure 6.

The kinematic equations of the vehicle are expressed as:
•
hc = (vc/lc) ∗ tan sc
•

xrc = vc ∗ cos hc
•

yrc = vc ∗ sin hc

(13)

where hc is the angle between the horizontal and the vehicle axle; sc is the angle between
the vehicle front wheel and the vehicle axle. Further, xrc and yrc are the abscissa and
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ordinate of the rear axle center, respectively; vc and lc are the moving speed and wheelbase
of the vehicle, respectively.
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Figure 6. Kinematics model of vehicle.

The trajectory is constituted from numerous sections of equal tangent arcs by analyzing
the kinematics model. Typically, the trajectory is generated by using minimum radius
method, in which the trajectory consists of two arcs with vehicle minimum radii. However,
this kind of method requires that the vehicle body must be parallel to the parking space
in the initial state. To overcome this limitation, a new trajectory generation method is
proposed, which can process both parallel and nonparallel initial states. As shown in
Figure 7, the vehicle rear axle center coordinates represent the entire vehicle trajectory, and
each coordinate position of the vehicle can be calculated from the vehicle geometry and the
current steering angle θ. The initial position of the vehicle is S0, and the target position is
Sd. The parking trajectory comprises arcs S0S1, S1S2, S2S3, and S3Sd. The generated radius
is different from the minimum radius; thus, its radii is unequal.
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Considering the actual parking condition, the initial state of a vehicle is always
nonparallel to parking spaces. It is always right or left skewed as shown in Figure 7. In our
study, we consider these two conditions independently.

In the right skewed condition, as shown in Figure 7a, the car firstly turns left with
center point O1, and its radius is Rmin. When the rear axle center point reaches point S1,
the car moves straight up to point S2. The car then turns right with center point O1, and
the corresponding radius is R1. It maintains this state until arriving at point S3. Finally, the
car turns left with center point O2 until reaching point Sd, and its radius is Rmin. From the
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geometric relationship and parking process perspective, the relationship between circles
O1 and O2 can be expressed as follows:{

dx = x0 = (R1 + Rmin) ∗ (cos β− cos α)
dy = y0 = (R1 + Rmin) ∗ (sin β + sin α)

(14)

where dx and dy are the horizontal and vertical distances of the parking space obtained
from the ultrasonic sensors, respectively; β is the initial attitude angle of the vehicle.

Then, α and R1 can be calculated as follows:

α = sin−1(
y0 − R1 ∗ sin β

R1 + Rmin
) (15)

R1 =
x2

0 + y2
0 − 2Rmin ∗ x0

2[cos β ∗ (Rmin − x0)− y0 ∗ sin β + Rmin]
(16)

The trajectory for the right skewed initial state can be generated as follows:
(x− Rmin ∗ β)2 + (y− Rmin ∗ sin β)2 = R2

min(0 ≤ y ≤ y1)
x = Rmin ∗ cos β− Rmin(y1 ≤ y ≤ y2)
(x− Rmin ∗ cos β)2 + [y− dy −

√
4Rmin ∗ dx − d2

x] = R2
min(y2 ≤ y ≤ y3)∣∣∣x− (dx − Rmin)

∣∣∣2 + (y− dy)
2 = R2

min(y3 ≤ y ≤ yd)

(17)

The left skewed condition, as shown in Figure 7b, is similar with the right skewed
condition. The relationship between circles O1 and O2 for left skewed condition can be
expressed as follows: {

dx = (R1 + Rmin) ∗ (2− cos α− cos β)
dy = (R1 + Rmin) ∗ sin α + R1 ∗ sin β

(18)

The trajectory for the left skewed initial state can be generated as follows:
(x− Rmin ∗ cos β)2 + (y− Rmin ∗ sin β)2 = R2

min(0 ≤ y ≤ y1)
x = Rmin − Rmin ∗ cos β(y1 ≤ y ≤ y2)
(x− 2Rmin + Rmin ∗ cos β)2 + [y− dy −

√
4Rmin ∗ dx − d2

x] = R2
min(y2 ≤ y ≤ y3)∣∣∣x− (dx − Rmin)

∣∣∣2 + (y− dy)
2 = R2

min(y3 ≤ y ≤ yd)

(19)

3.4. The Workflow of the Automatic Parking System

The previous sections introduced the various components of the automatic parking
system, but the entire system requires their cooperation to complete. The entire system
first needs ultrasonic sensors and cameras to obtain parking space coordinate information,
parking space size information, and obstacle location information, and then lock the
matched parking space and generate a suitable parking track. In the parking process, the
vehicle control system generates angle control signals and vehicle speed control signals
based on the fuzzy control algorithm [38,39], transmits them to the electric power assist
system and the vehicle speed control system, and ends the parking process when it reaches
the end of the target trajectory. In order for the driver to operate more conveniently,
the driver can see the parking space image information and select the parking space he
wants on the human–computer interaction interface. The workflow of the entire automatic
parking system is shown in Figure 8.
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4. Vehicle Testing
4.1. Simulation Model-Based Experiment

To demonstrate the proposed automatic parking system, a simulation model is built
through the Simulink. The simulation of the automatic parking system is conducted under
nonparallel initial state conditions based on the actual parameters of the test vehicle. It is
shown in Table 2.

Table 2. Simulation parameters [mm].

Vehicle length 4600
Vehicle width 1800
Front-wheel gauge 1500
Rear-wheel gauge 1487
Wheelbase Front overhang 2650
Front overhang 970
Rear overhang 980
Minimum turning radius 4200
Parking space length 600
Parking space width 240

The simulation model is shown in Figure 9, which is mainly for trajectory generation
evaluation. The simulation results with different initial attitude angle conditions are shown
in Figure 10. Figure 10a–d shows the simulation results with different initial attitude angles
of the vehicle including −15◦, −8◦, 0◦, and 7◦. It can be seen that the proposed trajectory
generation method can satisfy the parking requirement with nonparallel initial state.
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Figure 10. Parking simulation results under nonparallel initial state condition. (a–e) respectively are
the simulation results of different initial conditions

4.2. Real Vehicle Experiment

In Equation (5), Lre f , which is introduced as the referencing target value in the data
fusion step, is related to recognition error. It is mainly affected by two factors: driving
speed and cross range. To evaluate two factors, all experiments are conducted in a virtual
environment as shown in Figure 11, where the ultrasonic sensors are mounted 70 cm above
the ground in a 4.6 m× 1.8 m vehicle. The role of the stake not only simulates the parking
spot, but also represents other vehicles existing, which means if the target vehicle strikes
the stake, the experiment is a failure.
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We first evaluate driving speed and cross range independently. Also, both the single
sensor and the average of double sensors, respectively, are used to do the experiment.
Moreover, considering the influence of the other factors, we must ensure that the sensors
are stable during the experiment.

First, keeping driving speed at 5 km/h and target parking space length at 6.35 m,
seven different cross ranges (0.8 m, 1.0 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, and 2.0 m) between
the target parking space and vehicle are tested. The experiment is repeated 10 times for
each condition. We compute the average error of the 10 groups for each distance as the
final error. Figure 12a shows the experiment results including single sensor and average of
double sensors. It can be seen that they have similar curves.

Then, the cross range is kept at 1.0 m and target parking space length at 6.35 m. Six
different driving speed (2 km/h, 3 km/h, 4 km/h, 5 km/h, 6 km/h, and 7 km/h) are tested.
The experiment is repeated 10 times for each driving speed. We compute the average
error of the 10 groups for each driving speed as the final error. Figure 12b shows the
experiment results including single sensor and average of double sensors. It can be seen
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that recognition error approximately keeps a linear relationship with driving speed for
both methods.
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Figure 12. Results on single factor experiment: (a) Results on fixed driving speed, (b) Results on
fixed cross range.

Figure 12 shows that both driving speed and cross range have a nearly linear influence
on parking spot length error. Based on the analysis and synthesizing the linear influence of
the two factors, we formalize a linear formula for error correction.

From the comprehensive factors experiment perspective, we consider the average
error of double sensors to be the final measured value. The multilevel design includes
seven different cross ranges (0.8 m, 1.0 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, and 2.0 m) and six
different driving speeds (2 km/h, 3 km/h, 4 km/h, 5 km/h, 6 km/h, and 7 km/h). A total
of 42 groups of experiments are conducted. Each group of experiment is repeated three
times and the average value is calculated. Based on the experiment results, a 3D error
curve is obtained as shown in Figure 13. Here, T indicates the cross range. vrun and δavg
are the driving speed and average error of double sensors, respectively.
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The value measured by the sensor is usually affected by external conditions, so
the sensor requires a separate correction equation. In mathematical models, multiple



Sensors 2021, 21, 2261 13 of 19

regression models [40] that can consider surrounding environmental factors have been
used to establish relevant correction formulas. According to the results, the mathematical
model of multiple linear regression is given as follows:

y = 0.150196x1 + 0.010583x2 − 0.2452 (20)

where y is the measured average error of double sensors; and x1 and x2 are the horizontal
distance and driving speed, respectively. To assure scientific rationality of error correction,
x1 is the average value of cross range through the upper and lower edges of the target
space, and x2 is the average driving speed through the target space.

To verify the validity of the regression formula, we use F-value and present the
results in Table 3. When α is at level 0.05, the F-value from Equation (20) is 311.3356,
and F2,39,0.95 = 4.08. The results show that if F-value is greater than Fm,n−m−1,1−α, the
regression function is significant at level 0.05. Moreover, the residual standard deviation
(σ) is 0.016294, and 2σ is 0.032588. Therefore, 95% deviations of the detected errors are
within 0.032588 m with this regression function and satisfy the experimental requirements.

Table 3. Test of multiple linear regression model.

α F-Value F0.95 (2,39) Results

0.05 311.3356 4.08 significant

5. Experimental Results and Discussion
5.1. Analysis and Comparison

We next aim to improve the success parking space recognition rate under the simulated
parking environment shown in Figure 10. We compare our multi-sensor information
ensemble method with single sensor application and the average of double sensors. It
should be noted that the cross range is the average value of measured distance through the
edges of the target space, and the driving speed is the average value of the speed recorded
while driving through the target space.

The experimental results of the single sensor application are shown in Figure 14. The
x-axis and y-axis represent the number of experiments and measured length of the target
space, respectively. It can be seen that nine groups of experiment results are larger than
the target data (6.35 m). The success rate of recognition is approximately 45%, and the
maximum recognition error is about 15 cm.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 14. Experimental results of single sensor application. 

In the double sensor method experiments, the ranging sensors are located on the 

right-hand side of the vehicle. The driver controls the speed and cross range at a rela-

tively stable level. The experimental process is the same as that of single sensor applica-

tion. Figure 15 shows the measured and reference data obtained by Equation (20). 

 

Figure 15. Recognition data of two sensors and reference target data. 

Figure 16 shows the average of data of the double sensors shown in Figure 15. The 

x -axis and y -axis represent the number of experiments and measured data, respec-

tively. As shown in Figure 16, 32 groups of experiment results are above the expected 

target value of 6.35 m. The success rate of the average method is 64%, and the recogni-

tion error is within 9 cm, which means recognition results are better than those obtained 

with the single sensor method. 

Figure 14. Experimental results of single sensor application.

In the double sensor method experiments, the ranging sensors are located on the
right-hand side of the vehicle. The driver controls the speed and cross range at a relatively
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stable level. The experimental process is the same as that of single sensor application.
Figure 15 shows the measured and reference data obtained by Equation (20).
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Figure 15. Recognition data of two sensors and reference target data.

Figure 16 shows the average of data of the double sensors shown in Figure 15. The
x-axis and y-axis represent the number of experiments and measured data, respectively. As
shown in Figure 16, 32 groups of experiment results are above the expected target value of
6.35 m. The success rate of the average method is 64%, and the recognition error is within
9 cm, which means recognition results are better than those obtained with the single sensor
method.
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Figure 16. Results of average of double sensors method.

Our proposed multi-sensor information ensemble method results are shown in Figure 17.
The x-axis and y-axis represent the number of experiments and measured data, respectively.
As shown in Figure 16, 47 groups of experimental results are greater than the expected
value of 6.35 m. The success rate of multi-sensor information ensemble method is 94%,
and the recognition error is within 5 cm, which means our proposed method is better than
the single sensor and average of double sensors methods. The experimental results are
summarized in Table 4.

The comparison results shows that our proposed multi-sensor information ensem-
ble method can enhance the success rate and reduce recognition error in parking space
recognition.
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Table 4. Comparison results on parking space recognition.

Method Times Success Rate Max. Recognition Error [cm]

Single sensor 20 45% 15
Double sensors 50 64% 9

Ours 50 94% 5

5.2. Parking Space Matching and Final Auto-Parking Test Results

For the automatic parking system testing, the parking space recognition, parking
space matching, and trajectory generation algorithm are combined. The whole process is
shown in Figure 18.
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While parking the vehicle, the image sensor recognizes the parking space. The virtual
space is then established by parking space matching algorithm. A number of parking space
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matching tests are performed with different parking initial vehicle states. The parking
space matching result is shown in Figure 19.
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Figure 19. Parking space matching and trajectory generation.

The longitudinal and horizontal distance between the vehicle and the parking space
can affect the trajectory generation. If the size of parking spaces is fixed, the length and
width of the parking space can be determined. Therefore, only the coordinates of the red
point (reference point) in Figure 18 should be confirmed. The longitudinal and horizontal
distance between the vehicle and the parking space can then be calculated based on the
confirmed reference point. We measure the reference point 10 times and compare errors
between the actual coordinates and measured results as shown in Table 5. It can be viewed
that the errors on x and y directions are within 4 cm and 5 cm, respectively, which satisfy
the parking requirement.

Table 5. Range data of reference points.

Num Reference Point Actual Coordinates [cm] Measured Coordinates [cm]

1 P0 (89, 187) (86, 190)
2 P0 (76, 195) (80, 198)
3 P0 (103, 229) (100, 230)
4 P0 (95, 234) (94, 239)
5 P0 (62, 255) (66, 258)
6 P0 (123, 278) (119, 282)
7 P0 (115, 194) (114, 192)
8 P0 (134, 298) (137, 301)
9 P0 (89, 238) (92, 241)
10 P0 (154, 219) (151, 214)

The trajectory generation algorithm can directly reflect the success parking rate. After
finishing parking, we can determine the effectiveness of the generated trajectory from the
attitude angle of the vehicle. During the parking process, if no collisions occur and the
attitude angle of the vehicle is within ±5◦, the parking can be considered to be successful.
From the numerous parking experiments, 10 experimental results are randomly selected
and shown in Table 5. The left, right, front, and rear columns show the respective distances
from the parking space when the vehicle is parked in the parking space.

In Table 6, the initial attitude angle of the vehicle is within 15◦. The parking process
is a success when the angle is within 9◦. Whereas it may fail when the initial angle is 15◦.
The experimental results show that the proposed automatic parking system algorithms are
successful and effectively solve the collision problem during the parking process. The first
nine experiments in which attitude angle is within ±15◦ are successful with no collisions
when the vehicle is parked in the parking space. Only one experiment is unsuccessful
because the attitude angle is about 15◦. Therefore, the success rate of parking is 90% with
the proposed methods.
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Table 6. Parking results under nonparallel initial state and unequal radii conditions.

Number Collision Left
[cm]

Right
[cm]

Front
[cm]

Rear
[cm]

Angle
[degree] Results

1 NO 23 26 82 56 1 Success
2 NO 24 25 86 55 3 Success
3 NO 22 27 85 57 4 Success
4 NO 29 20 88 52 −4 Success
5 NO 25 26 84 56 5 Success
6 NO 28 23 86 55 −5 Success
7 NO 29 18 88 52 −7 Success
8 NO 23 26 86 55 9 Success
9 NO 24 25 81 59 15 Success

10 NO 38 12 88 52 −15 Failure

6. Conclusions

This paper has developed the parking space recognition, parking space matching, and
trajectory generation-based approach for automatic parking system, which successfully
overcomes the drawbacks associated with existing traditional methods. The proposed
approach significantly improves the parking performance. In particular, we propose multi-
sensor information ensemble algorithm for parking space recognition. Then, the linear
mapping is applied to match the parking space. Subsequently, the nonparallel initial
state-based trajectory generation algorithm is investigated. Simulation and real vehicle
experimental results have been conducted to demonstrate the superior performance with
respect to the accuracy parking performance. In detail, the success rate of parking space
recognition reaches 94% and its identification error is within ±5 cm. When the initial angle
of the vehicle is within ±15◦ and the length and width of the parking space are 6 m and 2.4
m, respectively, the parking success rate can reach 90%.
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