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Abstract: With the growing need to understand our surroundings and improved means of sensor
manufacturing, the concept of Internet of Things (IoT) is becoming more interesting. To enable
continuous monitoring and event detection by IoT, the development of low power sensors and
interfaces is required. In this work we present a novel, switched inductor based acoustic sensor
interface featuring a bandpass filter and envelope detector, perform a sensitivity, frequency selectivity,
and power consumption analysis of the circuit, and present its design parameters and their qualitative
influence on circuit characteristics. We develop a prototype and present experimental characterization
of the interface and its operation with input signals up to 20 mV peak-to-peak, at low acoustic
frequencies from 100 Hz to 1 kHz. The prototype achieves a sensitivity of approximately 2 mV/mV
in the passband, a four times lower sensitivity in the stopband, and a power consumption of
approximately 3.31 µW. We compare the prototype interface to an interface consisting of an active
bandpass filter and a passive voltage doubler using a prerecorded speedboat signal.

Keywords: sensor signal conditioning circuit; event detection application; switched inductor filter;
weak signal detection

1. Introduction

The growing need to understand and manage our surroundings, coupled with ad-
vances in sensor technologies and manufacturing processes [1], has led to an increased
interest in the concept of Internet of Things (IoT), which envisions sensor networks con-
sisting of hundreds of thousands of small, robust sensor nodes utilized to continuously
monitor real-world events and processes [2–4]. Continuous monitoring and event detection
emphasize the need for low-power sensors and sensor signal conditioning circuits which
enable the node to achieve long life-times, even when powered by small batteries [3–5].

Acoustic sensors present an attractive choice for IoT applications because they gen-
erate signals that are rich in information and can be processed using relatively simple
hardware [6–8] that powers up the rest of the sensor node only upon detection of an event
of interest [4,5], thereby reducing the power consumption of an acoustic sensor node. These
wake-up sensor interfaces utilize bandpass filtering, envelope detection, quantization, and
some rudimentary form of classification to determine if an event of interest occurred. Imple-
mentations of the wake-up interface with an active bandpass filter, diode envelope detector,
and microcontroller-based classification are presented in [9,10]. The power consumption of
the bandpass filter and the envelope detector is reported as 8.25 µW in [9] and 20.74 µW
in [10].

The envelope detector is one of the critical elements in the weak signal front ends
in various applications (sensing, communications, energy harvesting) due to its power-
consumption to sensitivity trade-off [11–16]. In [17] we studied the impact of the envelope
detector on sensitivity and power consumption of the wake-up sensor interface in the lower
audio frequency range. Based on the mechanically switched inductor energy harvester [16],
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in [18] we demonstrated that a piezoelectric energy harvester can be used as a vibration
sensor utilizing a mechanically switched inductor driven by the sensed vibrations.

In order to increase the sensitivity of low-power acoustic wake-up sensor interfaces,
and at the same time lower their power consumption, in this work we propose a novel
approach, utilizing an electrically switched inductor as a replacement for conventionally
used bandpass filter and envelope detector functional blocks. Using this approach, in-
spired by the switched inductor bandpass filter [19,20], and the switched inductor energy
harvester [12,13,16], we devise a novel, low-power wake-up sensor interface, operational
with weak input signals (around 5 mV) in the low acoustic frequency range (100 Hz–1 kHz)
and applicable in low-power always-on acoustic event detectors.

With this work we present several contributions: a novel, frequency-selective, voltage-
boosting, low-power, weak-signal acoustic sensor interface; a sensitivity, frequency se-
lectivity and power consumption analysis of the circuit; design parameter selection, and
their influence on interface characteristics; experimental characterization of a prototype,
and its comparison to an interface consisting of an active bandpass filter and a passive
voltage doubler.

The rest of this paper is organized as follows: Section 2 presents related circuits and
principles of operation. Section 3 shows the proposed interface characteristics and design
parameters. Section 4 presents a simulation study of the sensor interface, determining its
key design parameters and desired functionality. Section 5 shows the developed prototype
and its experimental characterization. In Section 6 a set of design recommendations for
interface synthesis are given. Section 7 presents a comparison of the novel sensor interface
and interface presented in [9,18] and Section 8 states the concluding remarks of the paper
and presents future work.

2. Related Circuits and Principles of Operation

The proposed sensor interface utilizes the switched inductor for filtering the sensor
signal and extracting and boosting its envelope. This concept was inspired by two previous
lines of work, the switched inductor filter and the switched inductor energy harvester.

2.1. Switched Inductor Filter

The switched inductor filter (shown in Figure 1a) consisting of a capacitor, Cf, inductor,
Lf, and two switches Sf1 and Sf2, is used in power electronics to electrically tune the
frequency characteristic of inverter outputs, suppressing unwanted harmonics [19,20].
Figure 1b shows the electrically tunable frequency characteristic of such a filter and the
impact of the switch control function duty cycle as its tuning parameter. The input signal
frequency was normalized with regards to the filter central frequency and the output
voltage root mean square (RMS) was normalized with regards to the maximal filter output
RMS voltage (obtained with the 90% duty cycle when the input signal frequency was equal
to the filter central frequency).

Figure 1. Cont.
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Figure 1. (a) Switched inductor filter and (b) its qualitative frequency characteristic with the duty 
cycle of 25% (purple), 50% (blue), 75% (green), and 90% (red). Filter output voltage RMS is nor-
malized with regards to maximal output voltage RMS (obtained with the 90% duty cycle at the 
input frequency equal to filter central frequency), input signal frequency normalized with regards 
to the filter’s central frequency. 
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the inductor on and off, its effective value, Lfeff, seen at the circuit input, is changed, which 
changes the filter’s frequency characteristics. The two switches, Sf1 and Sf2, (Figure 1a) are 
driven by two antiparallel square signals, with switch Sf2 closing when Sf1 opens to pro-
vide a discharge current path for the inductor. The switching function F1(t) of the switch 
S1 is given as [20]: 
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where t denotes time, d and θ are the pulse duration and the phase delay of the switch 
control function, respectively, ω is the angular frequency of the switch control signal, n is 
a positive integer, and A0 is the average value of the switching function on its single period 
T. The average value of the switching function is determined by its duty cycle, i.e., the 
ratio of the duration of the function’s high state and its period, A0 = d/T. The switching 
function takes on the value of 1 when the switch is closed and 0 when it is open. 

The authors of [19,20] do not analyze the influence of the switch control function 
frequency on the filter functionality. They only state that it should be higher than input 
signal frequency fin. 

The filter output voltage, Vfo(t), is determined by the voltage of the node between the 
filter capacitor Cf and switch Sf1, Vc-s(t), and the switching function F1(t): 𝑉௙௢(𝑡) = 𝐹ଵ(𝑡) ∙ 𝑉௖ି௦(𝑡) (3) 

From Equations (2) and (3) and a few steps presented in [20], it can be determined 
that the effective value of the filter inductance Lfeff is proportional to: 

Figure 1. (a) Switched inductor filter and (b) its qualitative frequency characteristic with the duty cycle of 25% (purple),
50% (blue), 75% (green), and 90% (red). Filter output voltage RMS is normalized with regards to maximal output voltage
RMS (obtained with the 90% duty cycle at the input frequency equal to filter central frequency), input signal frequency
normalized with regards to the filter’s central frequency.

The passive LC filter has a resonant frequency, fres:

fres =
1

2π
√

L f C f

(1)

where Lf and Cf are the values of inductance and capacitance, respectively. By switching
the inductor on and off, its effective value, Lfeff, seen at the circuit input, is changed, which
changes the filter’s frequency characteristics. The two switches, Sf1 and Sf2, (Figure 1a)
are driven by two antiparallel square signals, with switch Sf2 closing when Sf1 opens to
provide a discharge current path for the inductor. The switching function F1(t) of the switch
S1 is given as [20]:

F1(t) = A0 + 2
∞

∑
n=1

sin
(

nω d
2

)
nπ

cos(nωt− nθ) (2)

where t denotes time, d and θ are the pulse duration and the phase delay of the switch
control function, respectively, ω is the angular frequency of the switch control signal, n is a
positive integer, and A0 is the average value of the switching function on its single period
T. The average value of the switching function is determined by its duty cycle, i.e., the ratio
of the duration of the function’s high state and its period, A0 = d/T. The switching function
takes on the value of 1 when the switch is closed and 0 when it is open.

The authors of [19,20] do not analyze the influence of the switch control function
frequency on the filter functionality. They only state that it should be higher than input
signal frequency fin.

The filter output voltage, Vfo(t), is determined by the voltage of the node between the
filter capacitor Cf and switch Sf1, Vc-s(t), and the switching function F1(t):

Vf o(t) = F1(t)·Vc−s(t) (3)
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From Equations (2) and (3) and a few steps presented in [20], it can be determined
that the effective value of the filter inductance Lfeff is proportional to:

L f e f f ∝
L f

A02 (4)

and therefore, dependent on the average value of the switching function, which is, as
shown previously, determined by the switching function’s duty cycle that can be used to
tune the filter’s frequency characteristic, as shown in Figure 1b.

2.2. Switched Harvester on Inductor

The switched harvester on inductor (one version shown in Figure 2a) is used to
increase the efficiency in energy harvesting, by boosting the harvester’s transducer voltage,
Vtr(t), prior to rectification (as shown in Figure 2b) [12,13,16].
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Figure 2. (a) Switched harvester on inductor with marked inductor current, iLcl(t) (green) and iLo(t) 
(purple) with the switch closed and opened, respectively. (b) Switched harvester on inductor out-
put signal waveform (red) compared to a rectifier without the switched inductor (blue). Input sig-
nal (yellow): 500 ms of sinusoidal signal, 20 mV peak-to-peak, 100 Hz, followed by a 1.5 s pause. 
Cr1 = Cr2 = 1 µF, Lr = 100 mH, switch control frequency fswitch = 256 Hz, duty cycle 50%. 

While the switch Sr is closed, the energy of the harvester’s transducer signal is stored 
in the magnetic field of the inductor, Lr, changing the inductor’s current by ΔiL with: ∆𝑖௅ = 1𝐿௥ න 𝑉௧௥(𝑡)𝑑𝑡௧మ௧భ  (5) 

Figure 2. (a) Switched harvester on inductor with marked inductor current, iLcl(t) (green) and
iLo(t) (purple) with the switch closed and opened, respectively. (b) Switched harvester on inductor
output signal waveform (red) compared to a rectifier without the switched inductor (blue). Input
signal (yellow): 500 ms of sinusoidal signal, 20 mV peak-to-peak, 100 Hz, followed by a 1.5 s pause.
Cr1 = Cr2 = 1 µF, Lr = 100 mH, switch control frequency fswitch = 256 Hz, duty cycle 50%.
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While the switch Sr is closed, the energy of the harvester’s transducer signal is stored
in the magnetic field of the inductor, Lr, changing the inductor’s current by ∆iL with:

∆iL =
1
Lr

∫ t2

t1

Vtr(t)dt (5)

where t1 and t2 are, respectively, the beginning and ending moment of observing the storing
of energy in the inductor’s magnetic field, and Vtr(t) is the harvester’s transducer voltage.

At the moment to, when the switch opens, the energy stored in the inductor generates
an induced voltage, Vind:

Vind = Lr
diL(t)

dt

∣∣∣∣
t=to

(6)

We can approximate the time derivation of the inductor current at the moment to as:

diL(t)
dt

∣∣∣∣
t=to

=
iL(tO)

∆t
=

1
Lr

∫ tO
tC

Vtr(t)dt

∆t
(7)

where iL(to) is the inductor current at the instant of the switch opening, tc the time instant
when the switch is closed, and ∆t is the time required for the inductor current to fall to zero.

If the voltages induced on the inductor are high enough to pass over the diodes, they
will charge the output capacitor to the steady state voltage:

Vro_ss = 2·

∫ tO
tC

Vtr(t)dt

∆t
−VD

 (8)

where VD is the diode threshold voltage.
Neglecting energy losses, the maximal obtainable rectifier output voltage Vro_max

depends on the inductance Lr, capacitance Cr1,2, and the current through the inductor at
the instant the switch opens, iL(to) (9) [21].

Vro_max = iL(tO)·
√

Lr

Cr1,2
(9)

The output capacitor Cr2 gradually discharges when no signal is coming from the
harvester’s transducer (as seen in Figure 2b) because of the leakage currents of the reversely
polarized diodes, or the input impedance of the next interface stage.

3. Proposed Sensor Interface Characteristics and Design Parameters

Combining the two functionalities explored in the literature, in this work we devise
a low-power, frequency selective, voltage boosting sensor interface (Figure 3a), capable
of operating with signals under 5 mV peak-to-peak and in the low acoustic frequency
range, from 100 Hz to 1 kHz. For the interface to meet these demands, several of its
characteristics should be considered. The first is the interface’s sensitivity (Figure 3c), the
ratio of output headroom voltage and input voltage, with the headroom voltage defined as
the voltage difference between the interface output voltage with no input and the interface
lowest steady-state output voltage with a given input, as shown in Figure 3b. The stopband
sensitivity should also be considered, as the maximal expected stopband voltage defines the
lowest passband voltage levels with which the interface can operate (spurious-free range,
Figure 3c). This leads to the next characteristic, the frequency selectivity, i.e., the difference
between its passband and stopband sensitivities (Figure 3c,d). The final characteristic is
the power consumption.
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From the presented principles of operation and the desired characteristics of the
proposed interface, we determined its key design parameters that can be divided in two
groups: switch control signal parameters and passive component values.

The switch control signal parameters of interest are: switch control signal frequency,
duty cycle, and delay between the switch control and input signal (the switch is controlled
by an independent voltage signal Vosc(t), as shown in Figure 3a).

The passive components of interest are: input capacitor Cin, inductor L, Q factor of the
input switched inductor filter, and output capacitors, Cout1 and Cout2, which we analyzed
in detail in our previous work [17,18]. The diodes were also chosen based on previous
work analyzing their influence on weak-signal rectifier performance [14,22].

4. Proposed Sensor Interface Simulation Study
4.1. Simulation Model

In order to both characterize the proposed sensor interface and narrow the parameter
selection for the prototype realization, a SPICE model has been implemented and simulated
in Texas Instruments’ PSpice (Dallas, Texas, TX, USA) following the schematic shown in
Figure 3a. The obtained simulation results were further processed and presented using
MathWorks’ MATLAB® (Natick, Massachusetts, MA, USA).

The following parameters were varied to determine their influence on the output
voltage characteristics and power consumption: switch control signal frequency and
duty cycle, delay between the switch control signal and input signal, input capacitor, Cin,
inductor, L, and resistance, RL, filter quality factor, Q, defined as:

Q =
1

RL
·

√
L

Cin
(10)

The output capacitors, Cou1 and Cout2 were both 1 µF, following previous research
conclusions and the diodes chosen for the simulation model were the HSMS-282x (Agilent
Technologies, Santa Clara, California, CA, USA), because of their low forward voltage,
low reverse current, and high saturation current. For simulation analyses showing the
frequency characteristics, the input, Vin(t), was a sinusoidal signal with frequency varied
from 50 Hz to 2000 Hz, with a 50 Hz step and 20 mV peak-to-peak, while the simulation
analyses showing the sensitivity were done with an input sinusoidal signal of a fixed
frequency in the range from 100 Hz to 600 Hz and voltage from 1 mV to 20 mV peak-to-
peak with a 1 mV step.

4.2. Simulation Results
4.2.1. Switch Control Signal Parameters—Duty Cycle and Frequency

Figure 4a,b show the interface frequency characteristic and the relation of output
headroom voltage and input voltage with switch control signal duty cycle. The filter
central frequency was 512 Hz (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω (Q = 4.8335)). The switch
control signal frequency was 1024 Hz and duty cycles were 25%, 33%, 50%, 66%, and 75%.

From Figure 4a,b we see that increasing the switch control signal duty cycle leads
to an increased sensitivity and a narrower frequency characteristic, both of which are
desired traits. It also increases the central frequency of the interface passband towards the
one of a fixed passive LC filter. These results adhere to the theoretical switched inductor
filter performance presented in Section 2.1 and Figure 1b. We can also conclude that
duty cycles under 50% should not be utilized, as they lead to low sensitivity and poorer
frequency selectivity.
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Figure 4. (a) Frequency characteristic and (b) output headroom voltage to input voltage relation of
the sensor interface with switch control signal duty cycle. Filter central frequency 512 Hz (L = 100 mH,
Cin = 1 µF, RL = 66.6 Ω). Switch control signal frequency fswitch = 1024 Hz and duty cycle from 25% to
75%. (a) Input voltage 20 mV peak-to-peak and frequency from 50 Hz to 2000 Hz with a 50 Hz step.
(b) Input signal voltage from 1 mV to 20 mV with a 1 mV step. Input signal frequency 450 Hz.

However, increasing the duty cycle leads to longer periods of time in which the sensor
drives the interface, leading to an increased sensor current. This is shown in Figure 5,
which depicts the inductor current with switch control signal duty cycle. The simulation
model was the same as for Figure 4a,b, and the switch control signal duty cycle was 25%,
50%, and 75%.
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Figure 5. Inductor current of the sensor interface with switch control signal duty cycle. Filter
central frequency 512 Hz (L = 100 mH, Cin = 1 µF, RL = 66.6 Ω). Switch control signal frequency
fswitch = 1024 Hz and duty cycle 25%, 50%, and 75%. Input signal voltage 20 mV peak-to-peak and
frequency 450 Hz.

As we can see from Figure 5, both peak and mean inductor currents are determined
by the switch control signal duty cycle. The peak and mean currents were around 23 µA
peak and 2.88 µA mean for 25% duty cycle, 42 µA peak, and 10.5 µA mean for 50% duty
cycle, and 70 µA peak and 26.25 µA mean for 75% duty cycle.

Figure 6 shows the interface frequency characteristics with switch control signal fre-
quency, fswitch. The filter central frequency was 512 Hz (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω
(Q = 4.8335)). The switch control frequency was 256 Hz, 512 Hz, 1024 Hz, and 2048 Hz. The
switch control signal duty cycle was 75%.
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Looking at Figure 6 we see that there is a switch control signal frequency that, with a
given filter central frequency and Q factor, leads to the most frequency selective interface,
with the highest sensitivity (in this case it is 1024 Hz, i.e., double the filter central frequency).

The dependency of the frequency characteristic and sensitivity on the switch control fre-
quency can be explained by energy transfer from the input LC circuit to the output capacitors.

The maximal energy transfer occurs if the switch opens twice per inductor current
period, precisely at maximal positive and negative inductor current values. The switch
control signal frequency should be set slightly above double the frequency of the input
signal of interest, to avoid the influence of time delay between the input and switch control
signal on the output voltage (explained in the following text).

More than two switch openings per inductor current period cause more generations
of induced voltage, but of lower value, which reduces the overall energy transfer effi-
ciency, because of the exponential dependency of the diode current on the voltage on it,
i.e., the induced voltage. Having more than two openings per input signal period also
leads to a broader frequency characteristic (output voltage less dependent on the switch
opening instant).

Finally, when considering the switch control signal parameters, it should be mentioned
that the proposed sensor interface output voltage can also be influenced by the time
delay between the input signal onset and the switch control signal. This effect explains
the small discontinuities, like the one visible in Figure 6 at 500 Hz, on the red curve.
However, this delay can substantially influence the interface output voltage only if the
input signal frequency matches the switch control signal frequency or one of its specific
rational multipliers (1/4, 1/2, 2, 3 . . . ). For all other input signals, this time delay can
change the output voltage by no more than 10%. Therefore, this effect will not substantially
impact the device’s application and performance with transducer inputs (which consist of
frequencies of interest, other frequencies, noise, and interference).

4.2.2. Passive Component Selection—Capacitor and Inductor

From Equation (1) it is clear that the same central frequency can be obtained with
different values of inductance, L, and capacitance, C. This is shown in Figure 7a,b, which
present the frequency characteristics and the relation of the output headroom voltage and
input voltage of interfaces with different inductance and capacitance. The filter central
frequency was 512 Hz, the switch control frequency was 1080 Hz, and the duty cycle
was 75%. L were 100 mH, 350 mH, and 590 mH, and Cin, were 1 µF, 276 nF, and 164 nF,
respectively. The Q factor was kept constant (Q = 267.3) by setting the resistance, RL, to
1.2 Ω, 4.2 Ω, and 7.1 Ω, respectively.

From Figure 7a,b we see that interfaces with filters set to the same central fre-
quency, have lower sensitivity the higher their inductance is. Furthermore, if we
compare the results from Figure 4b with the results from Figure 7b we can see that an
interface with a significantly lower Q factor (Figure 4b, Q = 4.8335) still has higher sen-
sitivity than the two interfaces with higher inductances and higher Q factor (Figure 7b,
Q = 267.3).
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5. Proposed Sensor Interface Experimental Characterization

The goal of these measurements was to provide experimental verification of the
simulation results and characterize the proposed sensor interface prototype in terms of
frequency selectivity, sensitivity, and power consumption.

5.1. Measurement Setup

Figure 8a shows a photograph of the measurement setup. The measurement setup
consisted of a Keysight 33500B waveform generator (Keysight Technologies, Santa Rosa,
California, CA, USA) for generating the input and switch control signal, the prototype
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sensor interface (shown in Figure 8b), and an NI USB-6211 (National Instruments, Austin,
Texas, TX, USA) data acquisition card connected to a PC for recording the output voltage.
The power consumption of the interface was measured using a Fluke 45 multimeter (Fluke
Corporation, Everett, Washington, WA, USA). The interface was powered by a DP832
power source from RIGOL (RIGOL Technologies, Beijing, China).
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Figure 8. (a) A photograph of the measurement setup. (1) Keysight 33500B waveform generator, (2)
sensor interface prototype, (3) NI USB-6211 data acquisition card. (4) Power supply (RIGOL DP832)
and a multimeter for supply current measurement (Fluke 45). (b) Proposed frequency-selective
voltage-boosting sensor interface prototype.

The prototype of the proposed frequency-selective voltage-boosting sensor interface
was designed according to the schematic in Figure 3a, with components shown in Table 1.

Table 1. Prototype components.

Integrated Components

Component Manufacturer Supply Voltage Supply Current
(Typical)

Transition Times
(Typical)

switch TMUX1101 Texas Instruments 1.8 V 3 nA 12 ns

oscillator SiT1569 SiTime 1.8 V 1.7 µA–3.3 µA 200 ns

Discrete Semiconductor Components

Component Manufacturer Reverse Current (at 1V) Saturation Current Forward Voltage
(Maximal)

diodes HSMS-282x Agilent 100 nA 22 nA 0.34 V

Discreet Passive Components

Component Value Type

Output capacitors Cout1 = Cout2 = 1 µF Multilayer ceramic

Input capacitors Cin1 = 100 nF, Cin2 = 1 µF, Cin3 = 2.2 µF Multilayer ceramic

Inductors
L1 = 100 mH, RL1 = 66.6 Ω Air-core

L2 = 590 mH, RL2 = 7.1 Ω Ferrite-core

5.2. Measurement Procedure and Results

The measurement results were recorded by a National Instruments NI USB-6211 data
acquisition card. The data acquisition control, data processing, and presentation were
implemented using MathWorks’ MATLAB® (Natick, Massachusetts, MA, USA).
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5.2.1. Frequency Selectivity

The goal was to characterize the sensor interface frequency selectivity with different
input capacitors, Cin, inductors, L, and switch control signal frequencies.

The filter central frequencies were: 139 Hz (Cin3, L2), 211 Hz (Cin2, L2), 512 Hz (Cin2,
L1), and 655 Hz (Cin1, L2). The switch control signal duty cycle was 50% and the frequency
was 256 Hz, 278 Hz, 422 Hz, 512 Hz, 1024 Hz, and 1310 Hz. The input signal voltage
was 20 mV peak-to-peak and the frequency was ranging from 50 Hz to 2000 Hz, with a
50 Hz step.

Figure 9 shows the frequency characteristics of the interface with four filter central
frequencies and Figure 10 shows the frequency characteristics of an interface with a filter
central frequency of 512 Hz and three different switch control signal frequencies. In
addition to the measurement results, both figures show the simulation results for the
same setups.
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Figure 9. Frequency characteristic of the sensor interface prototype with different Cin, L and RL. The
switch control duty cycle 50%. The switch control frequencies were 278 Hz (blue), 422 Hz (purple),
1024 Hz (green), and 1310 Hz (red). The dashed lines show simulation results, paired with the
experimental results by color and same markers.
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Comparing the experimental and simulation results shown in Figures 9 and 10, we see the
frequency characteristics of the prototype interface match those of the simulated interfaces.

In [6,23] the authors presented the idea of reducing power consumption of wake-
up interfaces and increasing their flexibility with reconfigurability, while in [10] digital
setting of the filter central frequency was presented as an interesting feature for a wake-up
interface. From the results in Figure 9, the filter central frequency of this interface can be
digitally set by simultaneously selecting the input capacitor and switch control frequency.
The settling time of the reconfigurable switched inductor circuit can be shorter than of that
of a circuit utilizing an operational amplifier-based active bandpass filters.

5.2.2. Sensitivity

The goal was to determine the sensor interface sensitivity with different filter central fre-
quencies (different input capacitors, Cin, and inductors, L) and switch control signal frequencies.

The prototype setup was identical to the one described for frequency selectivity
measurement. The input signal frequency was 100 Hz, 200 Hz, 450 Hz, and 650 Hz and,
the voltage was ranging from 2 mV peak-to-peak to 20 mV peak-to-peak with a 2 mV step.

Figure 11 shows the measured and simulated output headroom voltage with input
voltage of the interface whose frequency characteristics are shown in Figure 9, while
Figure 12 shows the measured passband and stopband output-to-input voltage relation of
two setups of the interface, with an input signal frequency of 200 Hz and 500 Hz for the
211 Hz filter central frequency setup, and 450 Hz and 1200 Hz for the 512 Hz filter central
frequency setup.
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Figure 11. Sensor interface output headroom voltage to input voltage relation with different Cin, and L. Switch control
frequency 278 Hz (blue), 422 Hz (purple), 1024 Hz (green), and 1310 Hz (red), and duty cycle 50%. Input signal frequency
100 Hz (blue), 200 Hz (purple), 450 Hz (green) and 650 Hz (red), and voltage from 2 mV to 20 mV peak-to-peak with a 2 mV
step. The dashed lines show simulation results, paired with the experimental results by color and same markers.
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From Figure 11 we can see that the sensitivity of the proposed sensor interface reaches
up to approximately 2 mV/mV and it can be adjusted by choosing the input capacitor,
Cin, inductor, L, and switch control signal frequency. Comparing the experimental and
simulation results shown in Figure 11, we see that the sensitivities and their trends of the
developed prototype match those of the simulated interfaces.

From Figure 12 we can see that when the interface filter is set to 512 Hz, the interface
has a higher passband sensitivity (around 1.66 mV/mV) than when it is set to 211 Hz
(around 1.38 mV/mV), but also, due to the lower Q factor, it leads to a higher stopband
sensitivity (0.87 mV/mV compared to around 0.3 mV/mV), making the 211 Hz interface
setting more than twice more frequency selective than the 512 Hz one.

5.2.3. Power Consumption

The goal was to determine the power consumption of the proposed sensor interface
prototype with selected components: the 1024 Hz SiT1569 oscillator, the input capacitor
Cin2 and inductor L1. The power consumption was determined by multiplying the interface
supply voltage of 1.8 V with its supply current, measured by a Fluke 45 multimeter.

The measured interface current consumption, consisting of the oscillator and switch
current consumptions, was 1.84 µA, with a 1.8 V power supply, resulting in a power
consumption of 3.31 µW.

The overall power consumption was predominantly defined by the oscillator, further
emphasizing the crucial role of the switch control signal generator selection in achieving
low power consumption.

6. Design Recommendations

Following the numerical and experimental analyses of the interface’s functionality and
design parameters, this section presents a set of recommendations for interface synthesis.

The interface synthesis is performed in a series of steps:

1. Choosing the output capacitors Cout1 and Cout2 to ensure the desired output signal
waveform and its key parameters (more details in [17,18]).
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2. Determining the wanted frequency characteristic of the interface, by choosing its
resonant frequency, fres, (and angular frequency ωres = 2π fres) and Q factor. This
choice is made considering the frequency characteristic of the input signal of interest.

3. Setting the desired sensitivity at the resonant frequency.

When considering Equation (9) for determining the maximal obtainable output voltage
of the proposed interface, the inductor current can be expressed using the input voltage
and input circuit impedance, Zin:

Vout =
Vin
|Zin|

√
Lr

Cout1,2
(11)

with Zin given as:

|Zin| =

√(
ωin·L−

1
ωin·Cin

)2
− RL2 (12)

where ωin is the input signal angular frequency.
From this, we can get an expression for the maximal sensitivity (at the resonant frequency):

Vout

Vin
=

1√
L
· Q
ωres·

√
Cout1,2

(13)

where ωres is the input circuit resonant angular frequency, and Q the quality factor, given
in Equation (10).

From Equation (13), it is clear that, with a chosen output capacitance, input circuit
resonant frequency and Q factor, the interface sensitivity at the resonant frequency is set by
choosing the appropriate inductance value.

4. Setting the switch control signal duty cycle to 50%, as this provides a suitable sensitiv-
ity, frequency selectivity and power consumption. Small increases of the duty cycle
can be considered for slight central frequency tuning, despite of increasing the design
complexity, but not over 60%, due to increased power consumption.

5. Setting the switch control signal frequency, fswitch, to around 2% to 5% higher than
double of the frequency of the input signal of interest.

fswitch = (1.02 ∼ 1.05)·2 fin (14)

To conclude this set of design guidelines, an exemplary evaluation of the maximal
obtainable sensitivity is shown for one interface setup utilized in the experiments and
simulations. With a filter central frequency of fres = 512 Hz, a Q factor of around 4.8, an
inductor of L = 100 mH, and output capacitors of Cout1,2 = 1 µF, we get a maximal obtainable
interface sensitivity of around 4.7 mV/mV.

7. Functional Test and Comparison
7.1. Measurement Setup

The measurement setup for comparison of the proposed interface and one consisting
of an active bandpass filter and a passive voltage doubler [9] was the same as for the
experimental characterization of the proposed sensor interface (Figure 8a).

The proposed sensor interface’s (Figure 3a) filter central frequency was 512 Hz with
a 400 Hz bandwidth (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω). Its switch control signal duty
cycle was 50% and the frequency was 1024 Hz. The output capacitors, Cout1 and Cout2, were
1 µF, and the HSMS-282x diodes, the TMUX1101 switch, and the SiT1569 1024 Hz oscillator
were used.

It was compared to a sensor interface consisting of an active general impedance
converter (GIC) bandpass filter and a passive two-diode voltage doubler, as shown in
Figure 13 [9,18]. The filter central frequency was 500 Hz, with a passband bandwidth of
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around 300 Hz. The rectifier capacitors Cr1 and Cr2 were 22 nF, to allow the capacitor to
fully charge and achieve maximal headroom voltage during each event of interest [17,18].
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Figure 13. Schematic of the sensor interface consisting of an active GIC bandpass filter and a passive
two-diode voltage doubler [9,18].

7.2. Measurement Procedure

The two compared interfaces consist of the same two functional blocks (bandpass
filter and envelope detector) and perform the same function of frequency signal decompo-
sition and envelope extraction. To establish if the previously developed interface can be
replaced by the one proposed in this work, a comparison of their output headroom volt-
ages (Figure 3b) was performed, using a prerecorded speedboat signal input (twin-engine
speedboat passing over a hydrophone submerged approximately 1 m under the surface in
shallow water) [24].

The signal waveform with normalized amplitudes and its spectrogram are shown
in Figure 14a,b, respectively. The input signal is periodical, each period consisting of
approximately 3 seconds of the passing speedboat, followed by around 3seconds of pause.
The maximal input signal voltage was scaled from 2 mV to 20 mV peak-to-peak, in steps of
2 mV.

7.3. Results

The two sensor interfaces’ comparison with the prerecorded speedboat signal input is
shown in Figure 15.

The results show that the proposed sensor interface outperforms the previously
developed one, being able to operate with signals around 5 mV peak-to-peak, while the
previously developed one required over 20 mV peak-to-peak. The 1.5 mV/mV sensitivity
of the proposed interface stems from the increased rectification efficiency provided by the
switched inductor.

In addition to the mentioned improvements, it should also be noted that the proposed
sensor interface has a power consumption of 3.31 µW compared to 8.25 µW consumed by
the previously developed one, which represents a reduction of around 60%. This means
that replacing the previously developed interface with the interface proposed in this work,
would either extend the sensor node life-time, or allow for more sensors with the same
power budget, leading to increased event detection accuracy.

To conclude the demonstration of applicability of the proposed interface in low-power
analog acoustic event detection, Table 2 shows a comparison of its functionality and power
consumption to state-of-the-art similar interfaces.
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low-power analog acoustic event detection, Table 2 shows a comparison of its functional-
ity and power consumption to state-of-the-art similar interfaces. 
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proposed interface. 
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This work Embedded design, COTSC frequency decomposition and envelope detection 3.31 
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[9] Embedded design, COTSC frequency decomposition, envelope detection, 1-bit quantization (adjustable) 11.52 

[25] Embedded design, COTSC frequency decomposition, amplification, template matching (adjustable) 9.32 

[6] Custom FPAA 
frequency decomposition, amplification, peak detection, quantization, pattern 

recognition (programmable) 
5.38 

[26] ASIC 
energy threshold detection, 16 feature extraction based on amplification, fil-

tering and absolute value detection, and classification 6 

[27] ASIC 
frequency decomposition, magnitude detection, quantization, template 

matching 
2.92 

COTSC—commercial of-the-shelf components; FPAA—field-programmable analog array; ASIC—application specific in-
tegrated circuit. 
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Low-power analog sensors and interfaces present a necessity in IoT development. 

Following previous research on switched inductor filters and energy harvesters, a novel 

Figure 15. Comparison of outputs of the proposed sensor interface and one consisting of a bandpass filter and a passive
voltage doubler. Input—prerecorded speedboat signal, 3 s of signal, 3 s of pause, scaled from 0 mV peak-to-peak to 40 mV
peak-to-peak.

Table 2. Per channel power consumption comparison of state-of-the-art acoustic event detector sensor interfaces with the
proposed interface.

Reference Technology Functionality Power Consumption (µW)

This work Embedded design, COTSC frequency decomposition and envelope detection 3.31

[10] Embedded design, COTSC frequency decomposition, envelope detection,
1-bit quantization (adjustable) 22.59

[9] Embedded design, COTSC frequency decomposition, envelope detection,
1-bit quantization (adjustable) 11.52

[25] Embedded design, COTSC frequency decomposition, amplification,
template matching (adjustable) 9.32

[6] Custom FPAA
frequency decomposition, amplification, peak

detection, quantization, pattern recognition
(programmable)

5.38

[26] ASIC
energy threshold detection, 16 feature extraction

based on amplification, filtering and absolute
value detection, and classification

6

[27] ASIC frequency decomposition, magnitude detection,
quantization, template matching 2.92

COTSC—commercial of-the-shelf components; FPAA—field-programmable analog array; ASIC—application specific integrated circuit.

8. Conclusions

Low-power analog sensors and interfaces present a necessity in IoT development.
Following previous research on switched inductor filters and energy harvesters, a novel
switched inductor frequency selective sensor interface is proposed. A simulation study was
done to determine the key design parameters and characterize the interface performance
with input signals up to 20 mV peak-to-peak, at low acoustic frequencies from 100 Hz to
1 kHz. A prototype interface was developed and characterized, achieving the maximal
sensitivity of approximately 2 mV/mV in the passband, four times lower sensitivity in
the stopband, and a power consumption of approximately 3.31 µW. The novel sensor
interface can operate with inputs around 5 mV compared to over 20 mV needed for
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the one consisting of an active bandpass filter and a passive voltage doubler, having
around 60% lower power consumption (3.31 µW compared to 8.25 µW), thus enabling
life-time extension or improved detection. The future work will focus on reconfigurable
switched inductor sensor interfaces and lowering the power consumption of the switch
control oscillator.
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