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Abstract: This paper presents a wearable wireless system for measuring human body activities,
consisting of small inertial sensor nodes and the main hub for data transmission via Bluetooth for
further analysis. Unlike optical and ultrasonic technologies, the proposed solution has no movement
restrictions, such as the requirement to stay in the line of sight, and it provides information on
the dynamics of the human body’s poses regardless of its location. The problem of the correct
placement of sensors on the body is considered, a simplified architecture of the wearable clothing is
described, an experimental set-up is developed and tests are performed. The system has been tested
by performing several physical exercises and comparing the performance with the commercially
available BTS Bioengineering SMART DX motion capture system. The results show that our solution
is more suitable for complex exercises as the system based on digital cameras tends to lose some
markers. The proposed wearable sensor clothing can be used as a multi-purpose data acquisition
device for application-specific data analysis, thus providing an automated tool for scientists and
doctors to measure patient’s body movements.

Keywords: human movement analysis; wearable sensor network; 3D motion capture; inertial sensors;
kinematics; body area networks

1. Introduction

The development of body movement measuring systems is essential in telemedicine
and the provision of remote medical services, which are topical issues today. A striking
example is an outbreak of the new COVID-19 virus, which has forced people to stay at home,
where they often do not have access to a doctor. With 3-dimensional (3D) body motion
capture, it is possible to draw more complete consultations in areas such as physiotherapy,
rehabilitation, sports and elsewhere.

There are various kinds of motion-sensing technologies. Firstly, optical sensor systems
should be noted. They can consist of optical markers (active or passive), placed on the
human body. They use visual-sensing cameras providing high accuracy, but the downside
for these kinds of sensors is their limited freedom of movement, due to the use of stationary
cameras and occlusion [1].

As well as optical sensors, there are ultrasonic sensors. Unlike optical sensors, ultra-
sonic sensors operate at a close distance, up to 17 m in the line of sight, with state-of-the-art
technology [2].

Furthermore, Metamotion (Metamotion Ltd, London, UK) offers motion-tracking
using an exoskeleton. Compared with other-motion sensing technologies, its exoskeleton
is significantly heavier, and it is harder to hide its visual form. As a result, exoskeletons are
not comfortable to use.

Electromagnetic sensors are also used for movement tracking. They acquire high
accuracy (sub-millimeter and sub-degree) with no motion constraints, such as line of
sight, which is required by optical and ultrasound sensing technologies [1]. However, the
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accuracy of electromagnetic sensors does degrade with increasing distance between the
electromagnetic field generator and sensor locations. The accuracy of this technology also
tends to alter with the changing working environment and orientation of sensors [1].

Last, but not least, there are inertial measurement units (IMUs), which are not limited
to motion constraints, like line of sight, or movement restrictions, like room or lighting
conditions, as is the case for camera systems. An overview of motion capture technologies
is given in Table 1.

IMU-based motion-tracking systems can facilitate the use of 50+ sensors simultane-
ously (Nansense suit from Nansense Inc, Los Angeles, CA, USA), and, for most applica-
tions, are sufficient for body-limb-pose and hands-gesture estimation. Considering the
use of body-movement measurements in medical applications, especially in the case of
telemedicine, IMU-based solutions are potentially the most appropriate technology for
the development of a low-cost, easy-to-use system. In the global market, several IMU-
based motion-capture products, such as Xsens (Xsens Technologies B.V., Enschede, The
Netherlands), Shadow Motion (Motion Workshop, Seatle, WA, USA), STT Systems (STT
INGENIERÍA Y SISTEMAS, SL, San Sebastián, Spain), Nansense (nansense Inc, Los Ange-
les, CA, USA), Rokoko (Rokoko Electronics, Copenhagen, Denmark), Perception Neuron
(Noitom Ltd, Miami, Trivisio, (TRIVISIO Prototyping GmbH, Trier, Germany), Florida),
AiQ-Synertia(AiQ-Synertia Ltd, Tampei, Taiwan), are available. The overview of IMU
motion-capture technologies mentioned above is given in Table 2.

Table 1. Summary of motion-tracking technologies.

Technologies Accuracy Refresh Rate Constraints

Acoustic Low Varies with speed of sound Line of sight, acoustic interference
Electromagnetic High Up to few hundreds of Hz Working volume, metal object interference
Inertial High Up to few hundreds of Hz Magnetic object interference
Mechanical High Up to few hundreds of Hz Mechanical arm paradigm, working volume
Optical High Up to few tens of Hz Line of sight, infrared and visible light inter-

ference

Table 2. Comercial inertial motion unit (IMU) motion-tracking suits (P-Pitch, R-Roll, Y-Yaw).

Brand Title Version Wired/Wireless Dynamic
Accuracy

Static
Accuracy Sensors Hardware

Cost

Xsens Lycra suit
(Link) Wired P/R/Y: 1° P/R: 0.2°, Y:

0.5° 17 9225$

Xsens Strap-based
(Awinda) Wireless P/R/Y: 1° P/R: 0.2°, Y:

0.5° 17 8180$

Shadow Motion
Shadow
motion

capture system
Wired P/R/Y: 2° P/R/Y: 0.5° 17 4000$

STT Systems iSen system Wireless P/R/Y: <2° P:<0.5°R/Y:
<2° 16 10,584$

Nansense

INDIE
full-body
motion

capture suit

Wired P/R:
0.7°,Y:1.4° P/R: 0.5°,Y:1° 16 6300$

Rokoko Smartsuit Pro Wired P/R/Y: 1.5° Not measured 19 2495$

Perception Neuron Perception
Neuron Pro Wireless Not measured P/R: 1°, Y: 2° 17 4000$

AiQ-Synertia IGS Cobra Suit Wired or
wireless Not measured P/R: 1°, Y: 2° 22 14,450$

Several studies comparing IMU-based motion-capture systems with optical systems
for different regions of the body have been carried out in the literature [3–10]. The focus
of our research is a universal, whole-body motion-capture system using wearable IMU
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sensors. Based on the literature mentioned above, the following criteria of movements for
testing such systems are selected:

• Exercise duration is more than 1 min;
• Exercises exploit as many joint degrees of freedom as possible;
• The movements are made with the highest possible amplitude.

The study aims to offer an efficient hardware and middleware solution for IMU-
based sensor clothing, intended as a multi-purpose data acquisition device for application-
specific data analysis. For example, this solution could be used as an automated tool for
scientists and doctors to measure patient body movements. The IMU system performance
summarized in Table 2 defines the system requirements for this study, but its cost is
significantly reduced. This article suggests a simplified architecture, more convenient
sensor connection embedded in the suit and the reconstruction of universally usable data
of body pose.

Figure 1 shows a step-by-step overview of the research conducted in this paper.
Accordingly, the rest of the paper is organized as follows: the next section discusses the
correct placement of sensors on the human body, as this is critical for obtaining correct
data. Section 3 introduces the architecture of the proposed system, followed by a study
of sensor system implementation in clothing to create a safe and user-friendly solution.
Section 5 is devoted to the reconstruction of the human skeleton 3D model and movement.
The developed experimental set-up and obtained results are presented in Section 6, and in
the conclusions, further possible research directions and discussions are summarized.

The analysis of
IMU placement

for body
movement

measurement

The
development of

the sensor
network

architecture

The sensor
network

integration in
clothing and the
development of

the wearable
prototype

The assesment
of the system

compared to the
BTS SMART
DX camera

system

Conclusions

The method for
the 3D human

body model
reconstruction

The assesment
of the system

itself

Figure 1. Flowchart of the proposed research.

2. Sensor Placement

The human body is made up of an average of 206 bones, and forms a complex
mechanical system. For sensor-node-placement selection, it is convenient to divide the
body into zones and perform motion assessment individually to decide which movement is
involved in which zone. Of course, since the human body is a unified whole, all movements
naturally involve all areas of the body. However, in this case, only areas recognized by
the medical staff and patients as making up the movement during a certain exercise or
procedure are considered.

By examining the various movements and evaluating which part of the body is
involved in these movements, the following main areas of focus were selected: neck, spine,
shoulder, elbow, hip, knee, ankle and wrist [11].

To correctly measure the movements of selected areas, it is necessary to choose mea-
surement points accurately. Based on body-part movement directions, there are three types
of joints—uniaxial, biaxial and multi-axial. Each type of joint has dedicated functions
ensuring the mobility and stability of the body, which is an integral part of quality of
life [12,13]. Sensor placement must be chosen so that it is possible to measure key points
for human motion analysis while taking human biomechanics and anatomic structure into
account. Knowing the biomechanics of measured joints allows for the minimization of
the sensor count, a reduction in power consumption and the design of a less cumbersome
sensor network for the user.

Joint movement is created by muscle contractions. Muscles connect two body parts,
and when they change length, the angle between body parts is changed. When muscle
contraction takes place, muscle cells called myofibrils shorten. This causes the whole



Sensors 2021, 21, 2068 4 of 16

muscle to become shorter [14]. As the muscle becomes shorter, it widens as well, causing
errors in sensor readings.

Figure 2 shows the sensor placement on biceps brachii during the elbow flexion and
extension. When in the flexed state, the biceps brachii muscle is shortened and widened in
the center. We can see that, although the orientation of the upper arm does not change, the
sensor orientation changes (green box with red arrow), introducing a measurement error
into the orientation of the upper arm. Therefore, sensor placement on body parts with
minimal muscle tissue can reduce the errors caused by muscle contractions. For ligament
flexion or muscle contraction in a particular body part, sensors must be chosen to minimize
surface relief changes.

Figure 2. Sensor placement error.

Taking previous considerations into account, the sensor placement seen in Figure 3 is
proposed. Spine movements are measured with sensor 1, which is attached to the back of
the head, and spine sensors 2 to 4. Left and right shoulder movements are measured with
sensors 5 and 6, attached on the top surface of the shoulder, while elbow movements are
measured with upper arm sensors 7 and 8 and lower arm sensors 9 and 10. Hip movement
is measured with spine sensor 4 and upper leg sensors 11 and 12. Left and right knee
movement is measured with upper leg sensors 11 and 12 and lower leg sensors 13 and 14.
Left and right ankle movements are measured with lower leg sensors 13 and 14 and feet
sensors 15 and 16. Additional sensors 17 and 18 may be used to measure wrist movement
by measuring the angle between lower arm sensors 9 and 10 and hand sensors 17 and 18.
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Figure 3. Sensor placement.

3. Sensor Network Architecture

To synchronously collect IMU sensor data from the human body locations specified
above, network architectures of IMU-based motion-tracking suits in Table 2 were analyzed.
According to this table, architectures of IMU motion-tracking suits can be classified into two
main categories: wired and wireless. One of the main advantages of wearable systems using
wireless sensors is the convent data transmission over the air (Xsens Awinda, Perception
Neuron Pro, AiQ-Synertial IGS Cobra Suit, STT Systems iSen). In this way, the major
challenge for wire integration into the clothing for wired networks is obsolete. However,
wired IMU motion-tracking systems are still widely exploited (Xsesns Link, Shadow motion
capture system, Nansense INDIE full-body motion capture suit, Rokoko Smartsuit Pro,
AiQ-Synertial wired version of IGS Cobra Suit) because of their higher data rates, easier
power management and more reliable communication channels.

The available information about the implementation of IMU motion-tracking suits
discussed above is very limited. However, based on the technical information published in
the official web pages, they all facilitate multiple branches with a series of sensors connected
to a central hub in parallel for data acquisition and transmission to an auxiliary device
for further processing. The advantage of this sensor network configuration is optimized
wiring, as each branch connects sensors from specific areas of the body.

Often, a multi-branch solution is based on a bus topology that allows each sensor to
be addressed, as well as its data read [15]. Our approach is to take into account that the
data are collected in a certain order from all sensors, which allows the sensors and their
data to be identified by their location in the network topology. In this way, it is possible to
simplify communication between the sensors, because, unlike the bus approach, there is
no need to address the sensors.

Based on the considerations above, the architecture of a sensor network in Figure 4 is
proposed. It facilitates synchronous real-time sensor data acquisition from multiple sensor
branches connecting sensors from different body regions (arms, legs, back, neck, etc.).
In each branch, sensor nodes are connected in enhanced serial peripheral interface (SPI)
daisy-chain configuration, supporting baud rates up to several megahertz without data
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overhead for device addressing. It provides relatively fast data transfer speeds (200 sensor
nodes at 50 Hz), which are feasible for real-time applications [16].

The multi-branch SPI daisy-chain configuration allows for synchronized real-time
sampling design and centralized power supply for sensor nodes with only four wired
connections. Compared to wireless channels, wired connections are less susceptible to en-
vironmental interference sources, especially in the crowded 2.4 GHz ISM band [17]. Wired
connections embedded in the clothing can provide power delivery using one centralized
power source. This simplifies charging and eliminates the need for separate power sources
for each node.
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Figure 4. The architecture of sensor network for motion tracking system.

A detailed architecture of the sensor node is shown in Figure 5. Each sensor node
accommodates a single inertial measurement unit (IMU), comprising an accelerometer,
gyroscope and magnetometer sensors. Advanced IMUs may have additionally embedded
algorithms for sensor data preprocessing, calibration and fusion into orientation data. The
microcontroller (MCU) is used for synchronized sensor data acquisition through an I2C
interface and transmission through an SPI daisy chain configuration to the central data
acquisition node.

Sensor node
VCC

Comparator

MCU

SPI

I2C

IMU
SDA

SCL

CLK

MISO

GND

VCC

CLK

MOSI

GNDAcc,
magn,
gyr

Figure 5. Schematic of a single IMU snsor node.

The architecture of the central node is shown in Figure 4. It has a centralized power
management for all sensor nodes using a single rechargeable battery. The power manage-
ment includes a switch-mode power supply for the efficient stabilization of system voltage,
a battery-charging circuit for battery charging from a computer or a wall adapter and a
battery-level measurement circuit for battery-level monitoring. In the current scenario, the
wire resistance is considered negligible, and the supply voltage is regulated only on the
master node. However, in some scenarios, an excessive voltage drop on power connections
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can disturb reliable operation of the sensor network. In those cases, additional power
management on sensor nodes is required.

The role of the MCU on the central node is to serialize sensor data from multiple
branches of sensor nodes and transfer it to the Bluetooth module through a UART inter-
face. The MCU accommodates a dedicated SPI module for each sensor branch (for our
application, four SPI modules are used) to minimize processing time.

The Bluetooth module provides a standardized wireless link between the motion cap-
ture system and the processing device (this can be a smartphone, tablet, laptop or personal
computer). Depending on power consumption constraints and application throughput,
either classic or low-energy Bluetooth can be used.

An IMU is also integrated into the central node to efficiently use space, as it will be
positioned on the body and used for body-movement measurements.

4. Sensor System Implementation in Clothing

The architecture described in Section 3 comprises multiple electronic components
placed on the whole body for movement measurement, which need to be integrated into
clothing without affecting wearability. The size and current consumption always have to
be considered when designing wearable electronics. However, the main challenge of the
sensor network implementation in the clothing addressed in this paper is the integration of
wired connections.

For efficient power delivery, wire resistance must be kept at a minimum. Metallic
wires provide excellent electrical conductivity. However, their incorporation in fabric poses
multiple challenges for mechanical durability, flexibility and electrical stability during
physical activities and cleaning.

In e-textile (electronics textile) projects for electrical connections, different kinds of
conductive fibers, threads and fabrics can be used in combination with textile techniques
such as sewing, weaving and knitting. Most of these materials are based on blending
materials with good electrical properties and materials with good mechanical properties
(flexibility and strength). Listings and short descriptions of different kinds of conductive
e-textile materials and manufacturers can be found in [18].

Steel threads are made of fine fibers of an alloy of iron and carbon. Steel fibers, spun
together, make mechanically strong, conductive and heat resistant threads, which can also
be mixed with other fibers to vary the resistance. Compared to other metals, steel has a
high resistance and, because of the heat resistance, it is often used for heating. Multiple
threads can be used in parallel to increase the conductivity of the connection. For one of our
prototypes, the stainless steel thread from Sparkfun was used. It features 28 Ω/ft (92 Ω/m)
resistance and, to meet requirements for the resistance of power connections, 40 stainless
steel threads had to be used. This considerably increases the weight of the wearable system
and reduces the flexibility of the clothing. Therefore, alternative solutions were pursued.

To reduce the weight of the connections, materials with better conductivity are used.
Copper has the second best conductivity of metals (59.6 MS/m)—almost as high as silver
(63.0 MS/m)—but it has low mechanical durability compared to steel. To reduce mechanical
stress on copper wires, they are combined with mechanically durable materials such as
polyester ribbon [19]. These ribbons are elastic and mechanically durable, providing
low-resistance metallic connections with a resistance of 0.4 Ω/m.

To connect conductive materials to PCBs, multiple techniques, including soldering
or sewing, are used. However, in these cases, electronics are permanently attached to the
clothing. For removable electronics, specialized connectors for integration in the textile are
used. Some examples are given in [20–23].

In this study, the approach with removable electronic components was implemented.
Sensor nodes and the master hub, including the battery, were placed in rigid 3D-printed
plastic housings, sewn onto the clothing according to the sensor placement described
in Section 2.
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5. Human Skeleton 3D Model and Movement Reconstruction

In this study, the human body approximation is given with a 3D stick figure model, as
illustrated in Figure 6. This approximation is defined by multiple anatomical landmarks,
indicating major joints of the human skeleton (marked with green circles in Figure 6),
and corresponds to the visual marker positions used in this study for the optical sensor
system to capture body movements.The movement of such a 3D model is fully defined
by the time-varying coordinates of joints and, if the lengths and relations of skeleton rigid
segments are known at each point in time, the 3D model can be reconstructed.

Figure 6. Human body approximation model.

For the IMU sensor suit approximation model proposed in Figure 6, the installation is
more convenient for the user, as it is not necessary to place the markers accurately, and each
segment orientation is the same for the whole segment. However, compared to the coining
joint marker coordinates, the 3D model reconstruction using only segment orientations
is complex.

Steps for the proposed skeleton 3D model reconstruction are shown in Figure 7. They
require prior knowledge of human body proportions and sensor orientations with respect
to the patient’s body (used for the pose calibration). Measurements of the body and the
pose calibration are acquired before performing physical activities, and usually do not
change during the physical activity. As visual markers coincide with the joint locations in
the 3D skeleton model (Figure 6), for convenience, the body measurements can be obtained
with the digital cameras used in this study as a reference measurement system.
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Patients body size
measurement

The acquisition of
pose calibration

quaternions

The acquisition body
segment quaternions

during physical
activities

The calculation of
body segment

orientations

The reconstruction of
skeleton pose
coordinates

Body pose
visualization

Figure 7. Flowchart of the proposed method for human skeleton 3D model and movement reconstruction

The reconstruction of body movements is based on continuous measurements of body
segment orientations. A convenient representation for segment rotation is a unit quaternion

q = [qw; qx; qy; qz] = [cos(θ/2); n · sin(θ/2)] (1)

where θ is the rotation angle around axis n. Quaternions can be used to apply rotation to
vectors v representing segments in the base model by using either the Hamilton product
(quaternion multiplication) or a quaternion algebraic manipulation into a rotation matrix
R [24]:

v′ = Rv (2)

R(q) =

q2
w + q2

x − q2
y − q2

z 2qxqy − 2qwqz 2qxqz + 2qwqy

2qxqy + 2qwqz q2
w − q2

x + q2
y − q2

z 2qyqz − 2qwqx

2qxqz − 2qwqy 2qyqz + 2qwqx q2
w − q2

x − q2
y + q2

z

 (3)

Quaternions representing body segment orientations during physical activities are
acquired with the wearable IMU sensor system proposed in this article. IMU sensor
locations based on considerations in Section 2 are shown in Figure 6, with red circles
illustrating which orientations of the body segments can be obtained with the IMU system
proposed in this paper. It is evident that visual markers and IMU positions in Figure 6 may
differ. For example, the segment connecting the shoulder with the elbow differs, thereby
introducing a mismatch between skeleton models. As a result, the 3D model reconstructed
from IMU orientations is not identical to the 3D model reconstructed from the joint markers,
but it contains the same amount of information.

Additionally, a base point has to be selected relative to which 3D Model coordinates
of the skeleton are constructed and compared. The two most commonly used reference
points are the neck and the sacrum.

6. Experimental Setup, Scenario and Results
6.1. Prototype of Wearable Sensor Clothing

The proposed IMU-based system prototype is made on top of a tight-fitting fabric
tracksuit shown in Figures 8a and 9). It accommodates BNO055 smart motion sensors,
covering joint segments chosen in Section 2, and using the architecture of the system
described in Section 3. The head sensor was not included in the prototype for the system
assessment because it is not crucial for the physical activities selected in the net section.
However, a dedicated connector for the head sensor is reserved on the master hub for
future applications.
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(a) (b)

Figure 8. Experimental setup. (a) The sensor clothing with multi-branch IMU sensor network. (b) The custom 3D-printed
housing used for sensor placement.

Sensor nodes are attached to the closing using 3D-printed plastic housings (outer
dimensions: 25 × 18 × 7 mm), as shown in Figure 8b. Housings used for sensor placement
are not humidity-resistant. However, they provide a convenient way of removing electronic
components before washing and returning them when it is done.

The master node accommodates the BGM113 Blue Gecko Bluetooth module,
MSP430F5438A MCU, BNO055 IMU and an 1100 mAh lithium-ion battery, all packed
in a 3D-printed enclosure (outer dimensions: 55 × 55 mm), which is placed on the back
of the body, near to the neck. Sensor nodes are organized in branches, as shown in the
picture, to optimize wiring and data acquisition. Sensors are connected using elastic wires
embedded in a ribbon from Ohmatex A/S. Wires are connected to nodes with right-angle
4-pin Micro Lock Plus connectors from Molex®. Four-wire connections (+3.3 V, SPI data,
SPI clock, GND) are used for sensor data readout with a new solution of multi-branch
enhanced SPI daisy chain topology and sensor powering.

BNO055 sensor nodes are configured to operate in nine degrees of freedom (NDOF)
data fusion mode providing fused absolute orientation data from an accelerometer, a gy-
roscope and a magnetometer in quaternion form. In the NDOF mode, the fast sensor
calibration is turned on, resulting in the quick calibration of all sensors and high output
data accuracy.

Each sensor node is programmed to provide 11 bytes of data during each sampling
event. The data are organized in the following order: quaternion (8 bytes), calibration
status (1 byte), cyclic redundancy check (2 bytes). The master hub collects data from
15 sensor nodes and transfers them, using Bluetooth Low Energy protocol notifications, to
the auxiliary processing device on which the 3D model is constructed.

The 3D model reconstruction, using orientation data from IMU sensors, requires a
predefined base model mapping joint and segment relations at the base posture. In the
experimental setup, the model illustrated in Figure 6 standing in straight posture and
facing North was used.

IMU measurements of the wearable sensor clothing are in unit quaternion form.
Quaternions qsensor provided by BNO055 sensors represent the orientation of the IMU local
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reference frame defined by sensor axis with respect to an absolute reference frame, defined
by the direction of magnetic North and vertical direction of gravity. To obtain orientations
of body parts qbody with respect to the base model, a pose-compensating quaternion qpose is
applied to the corresponding qsensor, using quaternion multiplication

⊗
qbody = qsensor ⊗ q−1

pose (4)

where q−1
pose is the inverse quaternion of qpose.

The qpose is obtained during a pose calibration procedure when a human wearing the
IMU sensor clothing is standing in the base posture facing North. The orientations of the
body parts in the North-facing base pose qnorth have to be predefined by the base model.
Then, qpose can be calculated as follows

qpose = qsensor ⊗ q−1
north (5)

where qsensor is sensor orientation during the pose calibration.
The accuracy of the pose calibration is limited by the accuracy of the posture, which

is taken during the pose calibration procedure. Human posture deviations from the
predefined base model result in pose reconstruction errors.

6.2. Experiments

The assessment of the performance of the system proposed in this article is based on
the results obtained by testing the system itself and comparing it with the SMART DX
motion detection system from BTS Bioengineering Corp. Four different body movement
activities were used for tests: squat, lunge, push-up and bend. The chosen activities
exploit multiple joint degrees of freedom with the highest possible amplitude. They were
performed in sequential order, repeating each activity at least five times. The experimental
studies were performed in cooperation with the Latvian Academy of Sport Education.

BTS SMART DX system provides high-accuracy (<0.1 mm) motion capture for motion
analysis using digital cameras (up to 2048 × 2048 pixels) which record at up to 2000 frames
per second and are equipped with powerful infrared illuminators to guarantee exceptional
performance, even in adverse conditions. Seventeen markers for the BTS SMART DX
system were placed on the person’s body according to the points defining the human 3D
model in Figure 6, and recorded with 250 frames per second during physical activities.
In parallel, a laptop running a Python program was used to calibrate, visualize and
log incoming data from the proposed IMU sensor system. In these experiments, the
configuration with fifteen BNO055 sensors placed on the body locations, also shown in
Figure 6, was used. The test environment with the experimental setup is shown in Figure 9.

6.3. Results

From the performance evaluation of the system itself, the main bottleneck of the
sensor data transmission is the UART connection node between the Bluetooth module and
the MCU on the central. The application throughput of the Bluetooth Low Energy is up
to 1.4 megabits per second [17] (for classical Bluetooth, it is even higher) and baudrates
of the SPI range up to several megahertz. However, UART baudrates supported by
microcontrollers are mostly lower. In the prototype of the wearable sensor clothing, the
MSP430F5438A MCU with the maximum baudrate of 480,600 baud/s [25] was used. With
the UART configuration for eight data sections, no parity bit, 1 start bit and 1 stop bit for
the maximum data rate of the system is 48.060 kilobytes per second. This could provide
48-sensor sampling at 100 Hz or 15-sensor sampling at up to a 320.4 Hz frame rate if
10 bytes per sensor are transmitted. In this parameter, the proposed system outperforms
other systems in Table 2.
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Figure 9. The sensor clothing testing environment with BTS SMART DX system.

The accuracy of the proposed system is limited by BNO055 MEMS sensor technology
and embedded proprietary data calibration and fusion algorithms. In experimental tests,
less than 1 degree accuracy for static orientations and less than 2 degree accuracy for
dynamic orientations was observed in the range of 90 degrees, which complies with other
system accuracies and with the experimental study in [26].

It should also be mentioned that the proposed solution is more energy-efficient and
provides more than 3 h of operation with an 1100 mAh battery, as well as being cheaper
than the systems discussed in Table 2. The estimated price is 500 EUR for a 15-sensor-node
configuration.

For the assessment and comparison, a dataset with 15 IMU sensor orientations at
25 fps (frames per second) and 17 visual marker positions at 250 fps was obtained. The
dataset contains marked data, obtained simultaneously with two motion-capture systems
(sensor clothing presented in this paper and BTS Bioengineering SMART DX) during four
physical activities (squat, lunge, push up and bend). The dataset is used to reconstruct the
skeleton 3D model and evaluate the performance of the IMU sensor clothing described in
this article.

The 3D model of the human body (defined in Figure 6) is the same for both systems.
For the BTS SMART DX camera system, it is defined by joint coordinates (green circles). For
the IMU sensor system, it is defined by lengths and orientations of segments defined by joint
connections (black lines). At the beginning of the experiment, human body proportions
were measured by calculating the distance between the joint markers captured by the BTS
SMART DX system. These measurements are used in a body-pose reconstruction for the
IMU sensor system to ensure that both models have the same properties, and a snapshot of
the pose reconstruction results from both systems is given in Figure 10.



Sensors 2021, 21, 2068 13 of 16

Figure 10. Human body models reconstructed from IMU sensor clothing (left) and BTS SMART DX
camera system (right). Sacrum used for the base point.

According to sensor placement in Figure 6, some segment orientations defined by
joint coordinates acquired with the camera system differ from corresponding body part
orientations acquired with IMU sensor clothing. Therefore, a direct comparison of pose
coordinates is not applicable. However, some specific parts of the skeleton and can be
compared—for example, the knee joint angle defined by connecting segments (7-2)-(2-1)
for the left leg and (8-5)-(5-4) for the right leg. Knee angles θ of both 3D skeleton models
are calculated with dot product of upper and lower leg segments

θ = arccos
vupper · vlower

||vupper|| · ||vlower||
, (6)

where vupper and vlower are vectors representing upper and lower leg segments, respec-
tively. The results of the knee angle comparison are shown in Figure 11. The mean error
between both systems for the knee angle during squats was estimated at 1.89 degrees.

In addition, we would like to note that, during the post-processing phase of the
BTS SMART DX motion detection system, the loss of multiple visual markers caused by
occlusion was observed. The overview of defective frames (if at least one marker is not
detected in the frame) and markers lost (number of lost markers from all markers in all
frames) is given in Table 3. For the IMU sensor clothing measurements, data loss was
not observed.

Table 3. Overview of defective frames of camera system caused by loosing markers during multiple
physical activities.

Activity Total Count of
Frames

Defective
Frames

Total Count of
Markers Markers Lost

Lunges 6016 4058 (67.45%) 102,272 14,982 (14.65%)
Bends 6766 669 (9.89%) 115,022 2142 (1.86%)
Squats 5987 877 (14.65%) 101,779 3501 (3.44%)
Push ups 6521 4695 (72.0%) 110,857 17,098 (15.42%)



Sensors 2021, 21, 2068 14 of 16

Figure 11. Comparison of knee angles during squats.

7. Discussion and Conclusions

This work dealt with the problems of the development and validation of a low-cost,
user-friendly wearable sensor system for body-movement measurements. A system based
on the architecture described in Section 3, with IMU sensors organized in multiple branches,
was developed. The sensor placement was selected, taking the anatomical properties of the
human body and physical exercises chosen for experiments mentioned above into account.

The main result of the paper is an efficient hardware and middleware solution for
IMU-based sensor clothing. The IMU sensor clothing obtains orientations of correspond-
ing human body segments, which can be used for an application-specific patient’s body
movement analysis carried out by scientists and doctors. In the future, research on the
assessment of the proposed wearable-sensor network for patients’ full-body activity recog-
nition and motion analysis using machine learning and artificial intelligence is planned.
Current studies indicate that this has potential for telemedical assessment for health risks
and rehabilitation [15,27].

In this study, the concept of the wearable sensor is implemented with low power,
lightweight electronic components and stretchable wired connections between nodes. The
described prototype is powered by a single lithium-ion battery, in which all nodes are
removable before washing.

Compared to the commercial IMU motion-tracking suits listed in Table 2, the results
of the study showed that the performance of the prototype is competitive by providing
a sampling of up to 48 sensors with 100 fps, 1 degree of static and 2 degrees of dynamic
accuracy, and more than 3 h of operation with 1100 mAh battery. In addition, the estimated
price of the 15-sensor configuration (500 EUR) is many times lower than similar commercial
IMU motion-tracking suits.

In the future, humidity protection and sensor clothing washing are important is-
sues. The current prototype does not facilitate any humidity protection, and all electronic
components must be removed before washing. However, we imagine that sealed con-
nectors would considerably increase the size and the weight of the system, reducing the
wearability. Therefore, an alternative solution would be to completely seal all electronic
components (including wires) in a thin layer of waterproof and stretchable polymer, for
example, thermoplastic polyurethane (TPU).

The concept was successfully evaluated by testing it over four different physical
activities. The results confirm that the proposed wearable clothing could be used as a
relatively low-cost alternative to measure body motion and reconstruct a 3D model of a
skeleton. We note that the head sensor was not used in this study, as the head movement
was not crucial for the physical activities used for the assessment of the proposed sensor
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system. However, for future usage, the addition of the head sensor is supported both by
the system architecture described in Section 3 and the prototype developed in Section 6.1.

In the Section Results, the differences between segment orientations captured by
the IMU sensor system and digital camera system were noted. In the future, to avoid a
mismatch of human 3D body measurements and exploit the accuracy of digital camera
systems for the assessment of IMU sensor systems, visual marker positions should be
chosen more specifically to obtain precise segment orientations measured by the IMU
sensor system.

Unfortunately, the COVID-19 pandemic affected the ability to collect a wider set of
data, especially by involving patients in healthcare institutions, which would have allowed
for a more comprehensive evaluation and a comparison of the proposed solution with
other alternatives.

The proposed solution outperforms similar IMU-based systems that are currently
available in terms of price and characteristic parameters, and, in comparison with the BTS
SMART DX system, no data loss is observed. During some specific exercises, the optical
sensor system lost individual markers in up to two-thirds of the frames. It is undesirable in
medical applications. Additionally, compared to other IMU sensor systems using wires for
communication, our solution facilitates a lightweight solution for permanently embedding
elastic wired connections in the clothing, improving the wearability of the sensor system.

In the future, taking into account that the used architecture easily allows the addi-
tion of other types of sensors, the proposed wearable sensor clothing is planned to be
supplemented with EMG sensors, similar to that used in [28–30].
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