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Abstract: The rapidly increasing expansion of distributed energy resources (DER), such as renewable
energy systems and energy storage systems into the electric power system and the integration of
advanced information and communication technologies enable DER owners to participate in the
electricity market for grid services. For more efficient and reliable power system operation, the
concept of peer-to-peer (P2P) energy trading has recently been proposed. The adoption of blockchain
technology in P2P energy trading has been considered to be the most promising solution enabling
secure smart contracts between prosumers and users. However, privacy concerns arise because the
sensitive data and transaction records of the participants, i.e., the prosumers and the distribution
system operator (DSO), become available to the blockchain nodes. Many efforts have been made to
resolve this issue. A recent breakthrough in a P2P energy trading system on an Ethereum blockchain
is that all bid values are encrypted using functional encryption and peer matching for trading
is performed securely on these encrypted bids. Their protocol is based on a method that encodes
integers to vectors and an algorithm that securely compares the ciphertexts of these vectors. However,
the comparison method is not very efficient in terms of the range of possible bid values because
the amount of computation grows linearly according to the size of this range. This paper addresses
this challenge by proposing a new bid encoding algorithm called dual binary encoding, which
dramatically reduces the amount of computation as it is only proportional to the square of the
logarithm of the size of the encoding range. Moreover, we propose a practical mechanism for
rebidding the remaining amount caused when the amounts from the two matching peers are not
equal. Finally, the feasibility of the proposed method is evaluated by using a virtual energy trade
testbed and a private Ethereum blockchain platform.

Keywords: integer comparison; inner product; functional encryption; blockchain; energy trading

1. Introduction

The issue of critical shortage and depletion of natural resources worldwide has been
one of the most significant discussions in the energy sector [1]. Meanwhile, the con-
sequences of climate change have global effects on every region of the world, but the
distribution of impacts is likely to be inherently unequal [2]. It affects more seriously the
developing countries and especially the poor, as they have the least economic, institutional,
scientific, and technical capacity to adapt [1,2]. To cope with these issues, there have been
many global activities to achieve inclusive and sustainable development, including the
United Nation (UN)’s long-term agenda for Sustainable Development Goals [3] which
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replaced the previous Millennium Development Goals, and the UN Development Pro-
gramme’s Social and Environmental Standards [4]. These activities are also transforming
business, corporate governance, and corporate social responsibility models, by ensuring
that limited resources are used responsibly and efficiently [1]. In this context, comprehen-
sive reforms to the energy sector are also necessary. The International Energy Agency (IEA)
recommends promoting market-oriented energy sector reform, improving energy security
and diversification, and increasing and reinforcing measures for environmental protection,
especially emissions reduction [5]. Renewable energy has a key role in these reforms.

The legacy power grids were designed to send energy in one way from the generator
to the consumers. However, current electric power grids are undergoing a rapid transi-
tion because of the increasing expansion of distributed energy resources (DER), such as
renewable energy systems (RES), energy storage systems, electric vehicles, and controllable
loads in subtransmission systems (i.e., large-scale DER) and distribution systems (i.e.,
middle- or small-scale DER) [6]. For example, households with a photovoltaic system
can generate electricity as a small-scale DER, whereas a large wind farm connected to
subtransmission systems is a large-scale DER. At the same time, advanced information and
communication technologies (ICT) such as the Internet of Things (IoT), cloud computing,
and 5G technology adopted for power systems and DER have provided advanced metering
and real-time operational tools, allowing dynamic automated management of DER at large
scale [7]. Presently, DER provides grid services such as demand response, which usually
changes power consumption to balance the power supply with the demand in distribution
systems [8], mitigation of RES oversupplies [9], and fast grid recovery from blackouts (i.e.,
black start [6]). Therefore, DER owners can have opportunities to participate in electric-
ity markets as prosumers for grid services managed by a distribution system operator
(DSO). Furthermore, the concept of peer-to-peer (P2P) energy trading has been proposed
for further flexible and resilient local grid services under a more complex future power
grid environment with prosumers, decentralized energy systems, and new generation and
consumption patterns, as well as for increasing the benefits to DER owners [10]. This
localized P2P trading is the most recent trend regarding the energy industry and adopting
inclusive sustainable models. Recently, blockchain has emerged as the best method for P2P
energy trading because of the available blockchain technologies, including a combination
of trust mechanisms among participants, such as distributed ledger, consensus algorithm,
and smart contracts [11].

According to a recent online survey experiment conducted by [11], respondents
favor established authorities, e.g., a DSO, as a trading organizer, since energy trading
requires numerous safety measures. Simultaneously, blockchain has been considered an
attractive solution for peer matching and trading because of the transparency feature
of blockchain transactions [12]. Therefore, we consider a hybrid approach, i.e., even
when trading participants agree on an energy trade over a blockchain, they still need to
use the power system infrastructure managed by a DSO to physically exchange power,
thus requiring the DSO to participate in a blockchain network. In this setup, however,
privacy concerns arise from potential P2P participants and the DSO because sensitive
data and transaction records are accessible by the blockchain nodes [11]. There have been
many efforts to resolve the privacy issue in P2P energy trading. Recently, Son et al. [13]
proposed the use of an Ethereum blockchain for P2P energy trading, which enables fair peer
matching and provides the privacy of matching details through encryption of bids. Privacy-
preserving peer matching is maintained by encrypting the bid values from peers using
functional encryption (FE) and by performing FE-based smart contracts on encrypted bids.
Furthermore, when matching is successful, the matching peers are not allowed to discard
their bids, i.e., non-repudiation for the bids is provided. In [13], the authors constructed a
prototype of an energy trading system consisting of smart meters, Ethereum blockchain,
and DSO server, which demonstrated the feasibility of the proposed solution. The novel
functionality of FE in [13] was secure integer comparison without additional interaction of
the parties [13]. However, the integer comparison method in [13] was not very efficient
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in terms of the range of possible bid values because the amount of computation grows
linearly in the cardinality of the set of possible bid values. This may make the system very
inefficient, especially when a greater range of bid values is to be supported.

In this paper, we introduce a new bid encoding algorithm called the dual binary
encoding algorithm. This new encoding method is used in combination with FE to provide
an efficient and secure integer comparison using multiple inner products of vectors that
encode bid values. With the new encoding method, the vector dimension of an encoded
bid value, and, hence, the amount of computation, grows with the square of logarithm of
the bid range, which is in stark contrast to the linear growth in [13]. In the experimental
result, the proposed algorithm showed a noticeable reduction in the computation time
of encoding a bid value as well as in the gas cost reduction for the blockchain operations
thanks to fewer vector elements than those in the previous work [13]. We also provide a
rebidding function for the remaining amount of power after two bids are matched, which
was not possible in [13]. We conducted a field test to verify the feasibility and practicality
of the proposed solution.

2. Background and Related Work
2.1. Energy Blockchain

A blockchain is a distributed and immutable ledger that ensures integrity and trans-
parency through chronologically ordered and cryptographically signed data blocks [14].
The idea of the blockchain was initially developed from Bitcoin [15]; however, there was a
limitation due to script language functionality. Ethereum [16] is the most widely used proto-
col in blockchain, which by supporting Turing-complete programming languages, enables
the implementation of complex programs [17,18]. Among the many blockchain-related
research results, blockchain applications for P2P energy transactions have attracted the
attention of a growing number of researchers studying blockchain in the energy field [19].

The adoption of blockchain in energy trading started with the experiment in Brooklyn,
NY, USA, where solar power was sold from households directly to different households [20].
Blockchain is well suited for decentralized energy sectors, and, therefore, the implementa-
tion of blockchain technologies for P2P energy trading is being widely investigated. For
example, Sabounchi et al. [21] proposed a model for P2P electricity trading between pro-
sumers in residential microgrids. Blockchain-based local energy trading with home energy
management and the demurrage mechanism was proposed in [22], and other state-of-the-
art works are reviewed in [23]. The most recognized projects using blockchain for energy
trading are Power Ledger [24], which is a platform for energy trading, and LO3 Energy’s
Brooklyn Microgrid [25,26], which is an energy marketplace. There are also other projects,
such as SolarCoin [27]. However, none of the above-mentioned projects tackled privacy
issues. It is well known that many systems and techniques proposed for blockchains have
issues with privacy and anonymity [28–30]. Therefore, a great number of studies have
been conducted to resolve these issues for various blockchain applications. For example,
Stamatellis et al. [31] proposed a solution for privacy-preserving healthcare framework
on a blockchain, which provides anonymity and unlinkability. Prada-Delgado et al. [32]
and Asif et al. [33] provided hybrid solutions that use blockchains combined with physical
unclonable functions (PUFs) for IoT and IoE, respectively, where methods for clone-proof
device identification and authentication using blockchains were proposed. Zerocash [34]
and Zether [35] are well-known confidential cryptocurrency transfer mechanisms that
ensure user anonymity. There are more general solutions using zero-knowledge proofs
including zk-SNARK [36] and BulletProof [37]. However, most of the previous approaches
aimed at keeping a type of footprint or proof on the blockchain, but none of the above-
mentioned solutions were designed for directly performing confidential transactions on
encrypted data on the blockchain. In the literature on energy blockchains, we can also find
various proposals to provide privacy for P2P energy trading. Pseudonym-based solutions
on consortium-based blockchains [38,39] and similar token-based energy trading, where
peers are anonymous, were proposed [12]. To prevent malicious data mining and linking
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threats, the authors in [40] proposed a technique that adds random noise to the distribution
of trade. In addition, there was an effort to achieve a secure trading mode on a cross-chain
trading platform for multi-microgrid systems by providing key management and interoper-
ability protocols [41]. Moreover, secure search schemes over encrypted data on blockchain
for e-commerce and electronic health records were proposed in [42,43] However, the only
previous work in the literature that allows direct trading transactions on encrypted data
was [13]. In [13], privacy-preserving matching protocol on an Ethereum-based energy
blockchain was introduced, where both the bid values and the identities of users are kept
secret from other users.

2.2. FHIPE and Integer Comparison

The functional encryption scheme [44] used in this work is constructed using a cryp-
tographic pairing. Let G1 and G2 be two additive groups, and let GT be a multiplicative
group. However, for notational convenience, we also formulate the group operations in G1
and G2 multiplicatively. A cryptographic pairing is defined as a map e : G1 ×G2 → GT
that satisfies the following properties:

• The map e and the group operations in G1,G2, and GT can be efficiently computed.
• The map e is bilinear, such that, for all x, y ∈ Zq, the map e satisfies e(Px, Qy) =

e(P, Q)xy, where q is the order of G1 and G2, and P ∈ G1, Q ∈ G2.
• The map e has non-degeneracy, i.e., e(P, Q) 6= 1 if P and Q are not the identity

elements in G1 and G2, respectively.

For any group element t ∈ G and a row vector v = (v1, . . . , vn) ∈ Zn
q , where G is

a group of prime order q and n ∈ N, we use tv to denote a vector of group elements
(tv1 , . . . , tvn) ∈ Gn. The pairing operation over G1,G2 is extended to vectors as follows:

e(Pv, Qw) = ∏
i=1,...,n

e(Pvi , Qwi ) = e(P, Q)〈v,w〉, (1)

where v = (v1, . . . , vn) ∈ Zn
q , w = (w1, . . . , wn) ∈ Zn

q , and 〈v, w〉 is the inner product of v
and w.

We use a special case of functional encryption (FE), namely function-hiding inner
product encryption (FHIPE) proposed by Kim et al. in 2018 [44]. FE is an encryption
scheme that performs operations on encrypted data, producing the result as a decrypted
value [45–47]. FHIPE is a special type of FE, where its secret key and ciphertext are
associated with vectors [44,48–51]. Let a and b be two vectors, and we denote their
encryption by E(a) and E(b), respectively. The decryption operation can be carried out by
any party taking two ciphertexts E(a) and E(b) as inputs. The result of this operation is
〈a, b〉, but no information other than this inner product is revealed about either a or b.

The original definition of the inner product encryption (IPE) schemes use four proba-
bilistic polynomial time (PPT) algorithms: Setup, KeyGen, Encrypt, and Decrypt [44,48–51].
However, for many applications, it is more intuitive to denote KeyGen as Left Encrypt and
Encrypt as Right Encrypt, as mentioned in [44]. We follow the definitions in [44] and define
four PPT algorithms as follows, where EncL and EncR represent Left Encrypt and Right
Encrypt, respectively:

• Setup(1λ): When a security parameter λ is given, the setup algorithm samples G1,
G2, and GT , and defines e. The generators P ∈ G1 and Q ∈ G2 are also selected.
Then, it samples B from a general linear group of (n × n) square matrices whose
elements are selected from Zq, and computes the matrix B∗ = det(B) · (B−1)T , where
det denotes the determinant of a matrix. Finally, the setup algorithm outputs the
public parameters op = (G1,G2,GT , q, e) and the secret key sk = (op, P, Q, B, B∗),
where q is the order of G1 and G2.
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• EncL(sk, α, x): When the secret key sk, a random element α ∈ Zq, and a row vec-
tor x = (x1, . . . , xn) are given, the left encryption algorithm outputs (L1, L2) =
(Pα·det(B), Pα·x·B), where L1 ∈ G1 and L2 ∈ Gn

1 .
• EncR(sk,β, y): When the secret key sk, a random element β ∈ Zq, and a row vector y =

(y1, . . . , yn) are given, the right encryption algorithm outputs (R1, R2) = (Qβ, Qβ·y·B∗),
where R1 ∈ G2 and R2 ∈ Gn

2 .
• Dec(op, EL(x), ER(y)): When the public parameters op and two ciphertexts EL(x) =

(L1, L2), ER(y) = (R1, R2) are given, the decryption algorithm calculates D1 =
e(L1, R1) and D2 = e(L2, R2). Finally, it seeks a solution for the discrete logarithm
problem (D1)

z = D2. In case z exists, the decryption algorithm outputs it, which is
equal to the inner product of x and y, i.e., 〈x, y〉; otherwise, it outputs a symbol that
implies that there is no valid z.

Now, we explain the vector encoding method for energy prices used in [13]. Let the
price be one of the elements in an ordered set P ⊂ Z, where Z is the set of integers. The
elements in P are sorted in increasing order and labeled as p1, . . . , p|P|. For instance, if
P = {31, 32, . . . , 40}, then p1 = 31, p2 = 32, . . . , p10 = 40. Let indexP(pi) be a function that
returns the index of element pi in P, where 1 ≤ i ≤ |P|. For example, indexp(32) = 2. To
use the FHIPE scheme [44] described earlier, the previous method [13] encodes the price
value ppU ∈ P of the user U into two |P|-dimensional vectors, UL and UR, called the left
and right vectors, respectively. UL is encoded such that the elements in it with an index
less than index(ppU) are 0 and the other elements are equal to 1. On the other hand, UR is
encoded using one-hot encoding. For instance, if ppU = 36, UL = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
and UR = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0). When two users U1 and U2 submit their prices ppU1 and
ppU2 as (UL

1 , UR
1 ) and (UL

2 , UR
2 ), respectively, the inner product operation is performed to

compare ppU1 and ppU2 . To be exact, 〈UL
1 , UR

2 〉 = 1 means ppU1 ≤ ppU2 . As can be seen,
the range of bid values was limited because the size of the vectors was linear in the range
of elements, i.e., the number of distinct integers that can be represented.

3. Proposed Integer Comparison Method Using Dual Binary Encoding

To resolve the issue of the linear relation between the price range and the number of
vector elements of the encoding method used in [13], we propose a new encoding algorithm
that represents the same range of integer values with significantly fewer vector elements.
This algorithm is a revised version of the method presented in the preliminary version of
this paper [52], tailored for blockchains. As the execution time of IPE operations is almost
proportional to the number of vector elements, the novel encoding algorithm noticeably
improves the speed of the IPE.

Let VX and VY be the two non-negative integers that will be compared. Both values,
VX and VY, undergo different encoding processes denoted as fX and fY, respectively. Both
encoding processes start by expressing the target integer as a sum of powers of 2 and then
sorting them from the highest-order term. For example, if VY = 27, then it is expressed as
27 = 16 + 8 + 2 + 1 and the terms 16, 8, 2, and 1 are encoded independently, as shown in
Figure 1.

fY(VY = 27 = 16 + 8 + 2 + 1) = [Y(16), Y(8), Y(2), Y(1)]

Similarly, encoding fX(VX) is accompanied by partitioning VX as a sum of powers of
2 and encoding each term independently; however, this time each term is encoded twice as
shown below:

fX(VX = 27 = 16 + 8 + 2 + 1) = [XL(16), XG(16), XL(8), XG(8), XL(2), XG(2), XL(1), XG(1)]
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Figure 1. Encoding example: fY(VY = 27).

The encoding process fX(VX) is also illustrated in Figure 2. XL and XG are two
encoding methods, where the former is used to check the “less than or equal to” relation,
whereas the latter is used to check the “greater than or equal to” relation. As we use two
separate encoding methods XL and XG, each of which resembles a binary representation,
we name the proposed encoding method a dual binary encoding.

Figure 2. Encoding example: fX(VX = 27).

The remaining part of this section is structured in a bottom-up fashion. In Section 3.1,
we explain how the individual terms in VY are encoded using encoding the method Y. In
Section 3.2, we explain how the method Y is used as a subroutine to construct the whole
encoding process fY. In Sections 3.3 and 3.4, we explain how the individual terms in VX
are encoded using the methods XL and XG. Section 3.5 shows how XL and XG are used as
subroutines to construct the whole encoding process fX . Section 3.6 shows how VX and VY
are compared with the help of fX and fY.

3.1. Subroutine Y

In this subsection, we describe the encoding method Y that is used in fY as a subroutine
to encode the individual terms of VY. In some cases, encoding for 0 may be required.
Therefore, the input to Y is either 0 or a power of 2. Let D be an integer that satisfies D ≥ 3.
Y is a one-hot encoding method and outputs a D-dimensional vector for a predefined value
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D. The elements of an output vector are either 0 or 1. If D = 8, it can encode the following
values: { 0, 20, 21, 22, 23, 24, 25, 26 }. To calculate all the elements of the vector, we compute
the target index position p. If the input Vn to Y is 0, then p = 0. When Vn = 2i, the target
index is p = i + 1. Then, the pth vector element is set to 1, and all the other elements are
set to 0. The detailed task of Y is depicted in Algorithm 1. For example, when Vn = 16 and
D = 8, Y produces {0, 0, 0, 0, 0, 1, 0, 0}:

Y(16, 8) =
0 1 2 4 8 16 32 64
0 0 0 0 0 1 0 0

Algorithm 1 Y(Vn, D): Subroutine to encode 0 or a power of 2

Input: Value to be encoded Vn, size of a vector D
Ensure: D ≥ 3, Vn is 0 or a power of 2 in the range R ∈ [0, 2D−2]
Output: D-dimensional vector with an encoded value y = (y0, . . . , yD−1)

1: if Vn = 0 then
2: p← 0 {p: Position of 1}
3: else
4: p← log2 Vn + 1
5: end if
6: for i = 0 to D do {0 ≤ i < D}
7: if i = p then
8: yi ← 1
9: else

10: yi ← 0
11: end if
12: end for
13: return y

Table 1 presents all the possible values encoded with Y for D = 8.

Table 1. All possible values encoded with method Y.

D = 8 0 1 2 4 8 16 32 64

Y(0, 8) 1 0 0 0 0 0 0 0
Y(1, 8) 0 1 0 0 0 0 0 0
Y(2, 8) 0 0 1 0 0 0 0 0
Y(4, 8) 0 0 0 1 0 0 0 0
Y(8, 8) 0 0 0 0 1 0 0 0

Y(16, 8) 0 0 0 0 0 1 0 0
Y(32, 8) 0 0 0 0 0 0 1 0
Y(64, 8) 0 0 0 0 0 0 0 1

3.2. Encoding Method fY

By repeatedly using the subroutine Y to encode powers of 2, we can encode any
integer. For example, when D = 8, we obtain the following:

fY(VY = 27 = 16 + 8 + 2 + 1) = [y0, y1, y2, y3],

where
y0 = Y(16, 8) = {0, 0, 0, 0, 0, 1, 0, 0}

y1 = Y(8, 8) = {0, 0, 0, 0, 1, 0, 0, 0}

y2 = Y(2, 8) = {0, 0, 1, 0, 0, 0, 0, 0}

y3 = Y(1, 8) = {0, 1, 0, 0, 0, 0, 0, 0}
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The range of VY that can be expressed using eight-dimensional vectors ranges from 0
to 127 = 64 + 32 + 16 + 8 + 4 + 2 + 1. Generally, the range of integers that can be encoded
with D-dimensional vectors is

[
0, 2D−1 − 1

]
and up to D− 1 vectors are required for this

encoding. However, among
[
0, 2D−1 − 1

]
, the only case that requires D − 1 vectors is

2D−1 − 1. If we remove this from the range of integers to be encoded, then up to D− 2
vectors are sufficient to encode any integer in

[
0, 2D−1 − 2

]
. For example, the range [0, 126]

can be expressed using only up to six 8-dimensional vectors.
It should be noted that, with the above-mentioned encoding, the number of encoded

vectors may vary depending on the integer to be encoded. However, this may raise a
security issue as follows: In Section 4, the bid values will be encoded into multiple vectors
using fY, and each vector will be encrypted using FHIPE. FHIPE encryption will hide the
actual elements in each vector; however, the number of vectors remains the same before
and after the encryption. Therefore, if the number of vectors varies according to VY, an
attacker may narrow down the possible candidates. Therefore, the number of resulting
vectors must be constant and this is the reason encoding of 0 is necessary. Let N denote
this constant number of vectors. In this work, we use N = D− 2 and set the expressible
range as R = [0, 2D−1 − 2], where D ≥ 3, so that encoding any integer in R may produce N
vectors. The following is an example of encoding VY = 96 with six 8-dimensional vectors:

y0 = Y(64, 8) = {0, 0, 0, 0, 0, 0, 0, 1}

y1 = Y(32, 8) = {0, 0, 0, 0, 0, 0, 1, 0}

y2 = y3 = y4 = y5 = Y(0, 8) = {1, 0, 0, 0, 0, 0, 0, 0}

The process of encoding an integer using D-dimensional vectors is shown in Algorithm 2.

Algorithm 2 fY(VY, D): Encoding a value with subroutine Y

Input: Value to be encoded VY, vector size D
Ensure: VY ∈ R = [0, 2D−1 − 2] and D ≥ 3
Output: Array of vectors [y0, y1, . . . , yD−3]

1: N ← D− 2 {Number of vectors}
2: i← D− 2 {Highest power of 2}
3: n← 0 {Current vector}
4: while n < N do {0 ≤ n < N}
5: if VY ≥ 2i then
6: yn ← Y(2i, D) {Call Algorithm 1 as a subroutine}
7: n← n + 1
8: VY ← VY − 2i

9: else if VY = 0 then
10: yn ← Y(0, D)
11: n← n + 1
12: else
13: i← i− 1
14: end if
15: end while
16: return [y0, y1, . . . , yN−1]

3.3. Subroutine XL

The encoding process of VX is denoted as fX. This process uses two subroutines,
namely XL and XG. The output vectors of these two subroutines will be used to identify
the “less than” and “greater than” relations, respectively, in the comparison algorithm
presented in Section 3.6. Here, we describe the subroutine XL first. The constraint for XL is
the same as that for Y, i.e., its input is either 0 or a power of 2. The elements of its output
vector are either 0 or 1. The decision for the target index position p is the same as that
of subroutine Y, i.e., if the input is Vn = 0, p is set to 0. When Vn = 2i, it is computed as
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p = i + 1. However, the difference is in the rules that are used to calculate the elements of
the output vector. All the elements with an index less than or equal to p are set to 1, and
the elements with an index greater than p are set to 0. For example, encoding Vn = 16 into
a vector with dimension D = 8 results in XL(16, 8) = {1, 1, 1, 1, 1, 1, 0, 0}:

XL(16, 8) =
0 1 2 4 8 16 32 64
1 1 1 1 1 1 0 0

Table 2 shows all possible values encoded with XL for D = 8.

Table 2. All possible values encoded with method XL.

D = 8 0 1 2 4 8 16 32 64

XL(0, 8) 1 0 0 0 0 0 0 0
XL(1, 8) 1 1 0 0 0 0 0 0
XL(2, 8) 1 1 1 0 0 0 0 0
XL(4, 8) 1 1 1 1 0 0 0 0
XL(8, 8) 1 1 1 1 1 0 0 0

XL(16, 8) 1 1 1 1 1 1 0 0
XL(32, 8) 1 1 1 1 1 1 1 0
XL(64, 8) 1 1 1 1 1 1 1 1

3.4. Subroutine XG

The subroutine XG is the same as XL, except for the rules that are used to calculate the
resulting vector elements., i.e., all the elements with an index greater than or equal to p
are set to 1 and the elements with an index less than p are set to 0. For example, XG(16, 8)
results in {0, 0, 0, 0, 0, 1, 1, 1}:

XG(16, 8) =
0 1 2 4 8 16 32 64
0 0 0 0 0 1 1 1

Table 3 shows all possible values encoded with method XG for D = 8.

Table 3. All possible values encoded with method XG.

D = 8 0 1 2 4 8 16 32 64

XG(0, 8) 1 1 1 1 1 1 1 1
XG(1, 8) 0 1 1 1 1 1 1 1
XG(2, 8) 0 0 1 1 1 1 1 1
XG(4, 8) 0 0 0 1 1 1 1 1
XG(8, 8) 0 0 0 0 1 1 1 1

XG(16, 8) 0 0 0 0 0 1 1 1
XG(32, 8) 0 0 0 0 0 0 1 1
XG(64, 8) 0 0 0 0 0 0 0 1

3.5. Encoding Method fX

The method fX for encoding a VX value is very similar to fY, which encodes a VY
value. First, VX is partitioned into a sum of powers of 2, and then the terms are sorted from
higher-order terms. However, to encode each term, we use both subroutines XL and XG
explained in the two previous subsections., i.e., the number of resulting vectors is doubled
compared with that of fY. fX supports the same range R = [0, 2D−1 − 2], and the number
of vectors is 2N = 2(D− 2), where D is the dimension of the resulting vectors. As in fY, to
keep the number of encoded vectors constant, we apply an encoding of 0. For example, the
input VX = 11 can be written as VX = 23 + 21 + 20. Then, each term, (8, 2, and 1) as well as
three zeros is encoded independently using XL and XG, assuming that the dimension of
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the resulting vectors is D = 8 and the overall number of vectors is 2N = 12. As a result,
VX = 11 can be encoded into 12 vectors as follows:

fX(11, 8) −→ [XL(8, 8), XG(8, 8), XL(2, 8), XG(2, 8), XL(1, 8), XG(1, 8), XL(0, 8), . . . , XG(0, 8)]

This process is detailed in Algorithm 3.

Algorithm 3 fX(VX , D): Encoding a value with subroutines XG and XL

Input: Value to be encoded VX , vector size D
Ensure: VX ∈ R and D ≥ 3
Output: Array of vectors [x0,L, x0,G, x1,L, x1,G, . . . , xD−3,L, xD−3,G]

1: N ← D− 2 {Number of vectors}
2: i← D− 2 {Highest power of 2}
3: n← 0 {Current vector}
4: while n < N do {0 ≤ n < N}
5: if VX ≥ 2i then
6: xn,L ← XL(2i, D)
7: xn,R ← XG(2i, D)
8: n← n + 1
9: VX ← VX − 2i

10: else if VX = 0 then
11: xn,L ← XL(0, D)
12: xn,R ← XG(0, D)
13: n← n + 1
14: else
15: i← i− 1
16: end if
17: end while
18: return [x0,L, x0,G, x1,L, x1,G, . . . , xN−1,L, xN−1,G]

3.6. Comparing VX and VY

In this subsection, we explain how to perform a comparison of the encoded VX and VY
using Algorithm 4. Given two arrays [x0,L, x0,G, . . . , xN−1,L, xN−1,G] and [y0, y1, . . . , yN−1],
i.e., encoded VX and VY, the algorithm outputs 1 if VX ≤ VY, or 0 otherwise. In lines 4
and 8, the algorithm performs inner product operations and their results are interpreted
as follows:

1. 〈xn,L, yn〉 = 0 means that the nth term of VX is less than the nth term of VY.
2. 〈xn,G, yn〉 = 0 means that the nth term of VX is greater than the nth term of VY.
3. 〈xn,L, yn〉 = 〈xn,G, yn〉 = 1 means that the nth term of VX equals the nth term of VY.

The algorithm compares VX and VY from their higher-order terms. If the first condition
above is satisfied in line 5, then it implies that the highest term of VX is less than that of VY,
i.e., VX < VY. Thus, the algorithm returns 1. If the second condition above is satisfied in
line 9, then it implies that the highest term of VX is greater than that of VY, i.e., VX > VY.
Thus, the algorithm returns 0. When both inner products result in 1, i.e., the third condition
above is satisfied, the algorithm reaches line 12. To compare the lower-order terms, the
algorithm increments the index variable n and continues with the next iteration of the
‘while’ loop. The ‘while’ loop repeats until it encounters the first zero in either inner product
operation. The first zero determines the output of the algorithm. If the results of all the
inner product operations are 1 for n = 0, 1, . . . , N − 1, it means that VX = VY. In this case,
the algorithm reaches line 14 and returns 1.

Now we analyze the time complexity of Algorithm 4. The dominant operations in
this algorithm are performed in line 4 and line 8. Line 4 computes the inner product of
two D-dimensional vectors, and line 8 executes the same operation. If we define an integer
multiplication and addition as unit operations, lines 4 and 8 perform O(D) unit operations.
As the while loop is iterated up to N times, the time complexity of this algorithm is O(DN).
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Algorithm 4 Comparison of two values encoded in two input vectors

Input: Encoded VX as [x0,L, x0,G, x1,L, x1,G, . . . , xD−3,L, xD−3,G], encoded VY as
[y0, y1, . . . , yD−3], vector size D

Ensure: D ≥ 3
Output: 1 if VX ≤ VY; 0 otherwise.

1: N ← D− 2 {Number of vectors}
2: n← 0
3: while n < N do {0 ≤ n < N}
4: r ← 〈xn,L, yn〉
5: if r = 0 then
6: return 1
7: end if
8: r ← 〈xn,G, yn〉
9: if r = 0 then

10: return 0
11: end if
12: n← n + 1
13: end while
14: return 1

Figure 3 illustrates an example of Algorithm 4 with VX = 12 and VY = 13. As the
vector dimension is D = 5, we need six vectors for VX and three vectors for VY. The figure
shows which vectors are used to compute r for each iteration n = 0, 1, 2. As VX and VY are
decomposed as VX = 8 + 4 + 0 and VY = 8 + 4 + 1, they tie for n = 0 and n = 1. The first
r = 0 appears in line 5 when n = 2. The algorithm outputs 1, indicating that VX ≤ VY.

Figure 3. Example with D = 5, VX = 12, VY = 13.

4. Proposed Energy Trading System
4.1. System Components

To verify the feasibility of the new encoding method, we implemented a prototype
energy trading system. Our system is composed of a DSO, energy storage, blockchain, and
prosumers with their smart meters, and these participants are interconnected as in Figure 4.
The system model and security policies of the proposed system are similar to those in [13].
Following the model in [12,53], we consider a smart meter as a sealed tamper-proof device.
Therefore, even a prosumer who owns a smart meter cannot manipulate the secret key
installed in the device. Smart meters also play the role of a network node that connects
prosumers with the DSO and the blockchain. The smart meters have a software module
that generates bid requests to buy and sell electricity. The bidding price is determined
using a pre-trained machine learning model that performs regression based on the previous
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electricity prices. We omit the details for this regression model, as it is out of the scope of
this paper. As most of the current electricity markets adopt the day-ahead pricing method,
we apply a bidding policy where smart meters generate bid requests for each hour of
the next day, depending on today’s feedback. However, we remark that the proposed
encoding and secure comparison methods are not restricted to this policy as they are
orthogonal to bidding policies. The software module in each smart meter also encrypts the
bid requests using the left and right encryption algorithms of the FHIPE scheme explained
in Section 2.2.

Figure 4. Proposed energy trading system model.

The energy storage and smart meters are interconnected through a local distribution
network so that bidirectional energy flow is possible. The energy storage is assumed to be
a trusted party and honestly performs the functions requested by the DSO. A DSO handles
the power transmission from power plants to local prosumers through a transmission line
and a substation. It also handles the bidirectional power distribution between the smart
meters and the energy storage. However, in this paper, we do not deal with the details of
the physical power lines.

The blockchain receives the encrypted bid values from the smart meters. It maintains
an encrypted priority queues and performs secure matching of the bid values by repeating
the secure comparison on encrypted bid vectors, i.e., Algorithm 4 is performed repeatedly
on encrypted vectors for VX and VY. The details of this process are explained in the
next subsection.

When a match occurs, the actual transmission of powers and the settlement of the
balance of each prosumer are handled by the DSO. Prosumers have a registered account
in the DSO. Consequently, the DSO knows the identity of the users for accounting and
billing purposes. However, it cannot forge the energy transactions because all the matching
transactions are performed on the blockchain. In addition, no party other than the DSO
can obtain any information about the identity or bid prices of the prosumers as these
are protected using a one-time identifier OID and FE, respectively. This is achieved by
implementing a smart contract on the blockchain that uses FE.

4.2. Matching Algorithm

In this subsection, we describe how blockchain uses the proposed algorithm for
matching a seller and a buyer using their encoded prices. Then, we explain how to achieve
a privacy-preserving matching algorithm by applying FE to the encoded prices. Let ppU be
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the price for trading of a user U ∈ S ∪ B, where S and B are the set of sellers and the set of
buyers, respectively. The matching algorithm is implemented as in traditional auctions or
stock markets, such that the buyer with the highest bid price, denoted as Bmax, is matched
with the seller who has the lowest price, denoted as Smin. Therefore, matching is impossible
if ppSmin > ppBmax . When Smin and Bmax are matched, the power amount for the trade
is determined as min(paSmin , paBmax ), where paU is the power amount stated by user U.
We use two array-based heap data structures, a min-heap HS and a max-heap HB for the
sellers and buyers, respectively, to locate Smin and Bmax easily by using the bid values as
the primary keys. Consequently, the roots of HS and HB hold Smin and Bmax, respectively.
According to the property of the heaps, the time complexity for inserting and deleting a bid
is O(log2|S|) for the sellers and O(log2|B|) for the buyers. To guarantee the privacy of the
sellers and buyers, we will encrypt the nodes of these heaps using FHIPE. The details of the
node encryption and comparison of encrypted bids are explained in the next paragraph.

To maintain and update the heaps, and to perform peer matching, we use the proposed
encoding and comparison algorithms. Figure 5 shows the overall procedure for bid encod-
ing, encryption, and comparison. The vector size D is decided as a global parameter ac-
cording to the value range appropriate for the needs of an application. The bid ppU of user
U is encoded into two sets of D-dimensional vectors, UL and UR, using Algorithms 2 and 3,
respectively, i.e., UL contains 2N D-dimensional vectors and UR contains N D-dimensional
vectors. When the two values, ppU1 and ppU2 , are encoded as (UL

1 , UR
1 ) and (UL

2 , UR
2 ),

respectively, the comparison of ppU1 and ppU2 can be performed using Algorithm 4, taking
as input UL

1 and UR
2 , i.e., we can set [x0,L, x0,G, x1,L, x1,G, . . . , xN−1,L, xN−1,G] ← UL

1 and
[y0, y1, . . . , yN−1] ← UR

2 , and perform the algorithm. If the output is 1, it implies that
ppU1 ≤ ppU2 . ( Alternatively, we may use UL

2 and UR
1 for comparison.) However, the

actual comparison of two bids is not done using UL
1 and UR

2 . To preserve the privacy of the
users, we perform the comparison on a ciphertext domain. To make this possible, the users’
smart meters provide encrypted vectors of the encoded bid values. Before submitting a
bid, the smart meter encrypts the encoded bid value using FHIPE [44]. This encryption
is performed element-wise, i.e., for UL = [x0,L, x0,G, x1,L, x1,G, . . . , xN−1,L, xN−1,G] that has
been encoded by Algorithm 3, the user U’s smart meter computes the list of left encryp-
tions EL(UL) = [EncL(sk, α0,L,x0,L), EncL(sk, α0,G,x0,G), EncL(sk, α1,L,x1,L), EncL(sk, α1,G,x1,G),
. . . , EncL(sk, αN−1,L,xN−1,L), EncL(sk, αN−1,G,xN−1,G)] using random elements α0,L, α0,G, . . . ,
αN−1,L, αN−1,G ∈ Zq. This process requires 2N applications of EncL. As each EncL performs
approximately D point multiplications on the elliptic curve group G1, 2DN point multipli-
cations are required in total. The list of right encryptions ER(UR) can be computed similarly
by applying the EncR function independently to each element in UR = [y0, y1, . . . , yN−1]
that has been encoded by Algorithm 2. This process requires DN point multiplications on
the elliptic curve group G2.

Then, the user U submits its encrypted bid as a selling or buying bid. Selling bids are
inserted into the min-heap and buying bids into the max-heap as a pair (EL(UL), ER(UR)).
We implement a heap as an array, where each element holds the encrypted value of a bid
(EL(UL), ER(UR)) and the auxiliary data. Let EHS and EHB be the two heaps that hold
encrypted bids for sellers and buyers, respectively. The comparison of encrypted bids
depicted in Figure 5 is used for two purposes. First, it is used to compare the nodes inside
an encrypted heap (either EHS or EHB) to maintain the heap property when inserting or
deleting an encrypted bid. Second, it is used to find a match between the two top elements
in EHS and EHB. The decryption operation of FHIPE is used for this comparison. As the
result of the decryption operation Dec(op, EncL(x), EncR(y)) is equivalent to 〈x, y〉, we can
perform the comparison in the ciphertext domain by slightly changing Algorithm 4. For
this purpose, the input to the algorithm is replaced by two sets of encrypted vectors of
the bid value, i.e., EL(UL) and ER(UR), and additional public parameters op are passed.
Then, the inner product operation is replaced by the decryption operation of FHIPE. Let
(EL(UL

1 ), ER(UR
1 )) and (EL(UL

2 ), ER(UR
2 )) be the encrypted bid values from users U1 and

U2, respectively. If (EL(UL
1 ), ER(UR

2 )) are given as arguments for the updated comparison
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algorithm, and the output is 1, it means that ppU1 ≤ ppU2 , otherwise, ppU1 > ppU2 . We
denote the updated comparison algorithm as COMP(EL(UL

1 ), ER(UR
2 )). We can see that the

number of pairing operations for COMP is 2DN in the worst case if we apply a reasoning
similar to the analysis of Algorithm 4.

Figure 5. Comparison of encrypted bids.

We adopt Algorithm 5 (INSERT procedure) from [13], which has been used to insert
a new bid element into EHS. The INSERT procedure calls COMP as a subroutine to sort
the elements and restore the heap. Insertion of a new bid element into EHB is performed
by changing line 6 of Algorithm 5 as COMP(EHB[bidx/2c].EL, EHB[idx].ER) = 1. Heaps
are implemented as a typical complete binary tree such that the root node is at EH[1].
The parent node of EH[i] is at EH[bi/2c], and its left and right children are at EH[2i]
and EH[2i + 1], respectively. We also adopt the REMOVEMIN(EHS) procedure from [13]
to remove the minimum, i.e., the root element of the heap EHS. Finally, we also adopt
Algorithm 6 (MATCHING procedure) from [13] to find a possible match.

Algorithm 5 INSERT procedure for min-heap EHS [13]

Input: EL(UL), ER(UR), auxiliary data
Output: None

1: idx ← (size of (EHS)) + 1 {Insert the new item as the last leaf node}
2: EHS[idx].EL ← EL(UL)
3: EHS[idx].ER ← ER(UR)
4: EHS[idx].aux ← auxiliary data
5: while idx > 1 do {Perform upheap to restore the heap order}
6: if COMP(EHS[idx].EL, EHS[bidx/2c].ER) = 1 then
7: swap EHS[idx] and EHS[bidx/2c]
8: idx ← bidx/2c
9: else

10: break
11: end if
12: end while
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Algorithm 6 MATCHING procedure to check for possible match [13]

Input: None
Output: data or false

1: if COMP(EHS[1].EL, EHB[1].ER) = 1 then
2: Smin ← REMOVEMIN(EHS)
3: Bmax ← REMOVEMIN(EHB)
4: return Smin.EL, Smin.ER, Smin.aux and Bmax.EL, Bmax.ER, Bmax.aux
5: else
6: return f alse
7: end if

4.3. Proposed Energy Trading Protocol

In this section, we explain our new protocol for performing privacy-preserving energy
trading. Basically, the proposed protocol is based on the protocol presented in [13]. How-
ever, we introduce a finite state machine managed in the blockchain to provide a rebidding
functionality, which has not been provided in [13].

4.3.1. Setup Stage

In our protocol, the DSO generates a secret key sk and public parameters op using the
Setup algorithm discussed in Section 2.2. In addition, the DSO deploys a smart contract
on the blockchain with the public parameters op. Any party can check the validity of the
smart contract. We assume that all prosumers have an account registered with the DSO and
a corresponding permanent user identifier UID. Their smart meters store the pre-shared
secret key sk generated by the DSO and the address of the smart contract. We also assume
that all parties agree on a constant D (the dimension of the vectors) that is determined by
the DSO and that defines the valid range R of price and the number of vectors N used
for encoding.

4.3.2. Finite State Machine in the Blockchain

We implement our smart contract as a finite state machine with three states: Stall,
Heap Construction, and Match Required, as shown in Figure 6. State changes in the smart
contract are triggered either by specific conditions or by the DSO. Basically, there are
two periods for the application: active period and stall period. At the beginning of the
active period, smart meters register their (UID, OID) relation to the DSO, where OID is a
one-time ephemeral identifier generated and used for each session. After the smart meters
complete sending these pairs, the DSO counts the number of pairs and sets this number
as the number of bids that it expects to receive. Let M be this number. The state of the
smart contract is set to Heap Construction, indicating that it is constructing heaps. Smart
meters can send their encrypted bids to the blockchain only when the smart contract is in
the Heap Construction state. Every time a new encrypted bid arrives, the smart contract
updates either EHS and EHB, depending on whether the bid is a selling or a buying bid.
When the sum of the numbers of bids in EHS and EHB becomes equal to M, the state of
the smart contract is changed to Match Required, indicating that it has already gathered all
expected bids. Then, the MATCHING procedure is performed and the root nodes of EHS
and EHB are securely compared. The MATCHING procedure can be performed only when
the smart contract state is Match Required. When the MATCHING procedure is successful,
i.e., two bids are matched, a Match event is emitted. If the declared power amounts paS
and paB of a matched seller and buyer are exactly the same, the two matching parties will
be able to trade the exact amount of electricity. This exact match reduces the total number
of nodes in EHS and EHB by two, and M is decreased by two. As the new root nodes of
the updated heaps should be compared by calling the MATCHING procedure once again,
the state of the blockchain remains as Match Required. However, if paS 6= paB, only the
amount min(paS, paB) can be traded. Therefore, an additional matching is required for
the remaining amount. We handle this by letting the owner of the remaining bid send a
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new encrypted bid with the remaining amount. We call this process rebidding. To prevent
a possible misconduct of the user, e.g., changing the amount of the remaining bid when
performing rebidding, the DSO will verify the validity of the bids, as explained in the next
subsection. When rebidding is required, M is decreased by only one, instead of two. As the
two root nodes were removed from the heaps for the initial matching, and M decreased by
only one, the blockchain will be waiting for an additional bid and the state of the blockchain
reverts to Heap Construction. When the expected additional bid arrives, the blockchain will
transition to the Match Required state and additional matching will be tried. When no more
MATCHING is successful, the heaps are not updated any more. At the end of the active
period, all the unmatched bids in the heaps are invalidated. In addition, to inform the smart
meters of the unmatched bids, the blockchain emits an Invalidation event, which includes
the OIDs of the invalidated bids. Now the stall period starts. Figure 7 shows an example of
state changes and updates of two encrypted heaps when bidding, matching, and rebidding
operations are performed. Each node in the heaps represents a bid from a user and it
includes the pair (pp, pa), i.e., the power price and amount that the corresponding user
has declared for trading. Even though the example shows the internal values of each node,
the actual values are protected by FHIPE.

Figure 6. Finite State Machine.

4.3.3. Bidding and Matching Operations

Figure 8 illustrates the bidding and matching operations of our protocol. First, the
smart meter decides an appropriate bid value to request using its internal machine learning
model. The bid request consists of the intent to “buy” or “sell,” power amount pa ∈ Z
that needs to be sold or bought, and power price pp ∈ R for each unit of energy power,
where R is the range of valid bid values. A smart meter generates a random OID for
a new session, which is used to hide the real identity UID of the prosumer. The smart
meter sends the generated OID to the DSO to register the relation between UID and OID.
Then, the smart meter encodes pp into multiple vectors and encrypts them as explained in
Section 4.2. Encryption of pp creates two sets of ciphertexts, one for EncL and the other for
EncR. We denote them as EPP collectively. In addition, the sets of α and β values used in
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the encryption are denoted as A and B, respectively. In addition, the smart meter calculates
c, which is the hash value of pa, pp, OID, A, B, and a random r, as a commitment.

Figure 7. Heap management.

The smart meter sends intent, EPP, OID, and c to the smart contract on the blockchain
that has been deployed by the DSO and verified by all blockchain nodes during the setup
phase. The smart contract performs the INSERT procedure explained in Algorithm 5 to
insert the bid element into one of the heaps according to its intent. At the same time, many
other bids are sent from multiple smart meters. The blockchain accepts M bids, which is
the expected bid count. After inserting the last bid, the smart contract performs a matching
operation. If there is a match, a blockchain event will be emitted with the EPP and the
auxiliary data of Smin and Bmax. The smart meter implements an event listener and is aware
of every Match event. The two smart meters corresponding to the two matched bids learn
that they were selected for trading, by checking the OIDs in the Match event. They open to
the DSO the data OID, pa, pp, A, B, and r that have been used for the bidding, and then the
DSO checks the validity of the data by verifying that EPP and commitment c are correctly
reproduced from these data. After validating the data from both the seller and the buyer,
by calculating the hash value H(pa, pp, OID, A, B, r) and the EPP using the provided α
and β values, the DSO computes the price for the trade as PP = (ppS + ppB)/2. Then, the
DSO forwards the seller’s data to the buyer, along with PP, and the buyer’s data to the
seller. Both parties validate each other’s data and decided price PP. Then, the two smart
meters and the DSO calculate the trading amount of power as PA← min(paS, paB). If all
verification and other processes are completed successfully, the smart meters send an “ok”
message to the DSO. Next, both smart meters check whether the decided power amount is
less than its desired amount, i.e., pa > PA, and if so, a new bidding and matching process
starts from the beginning with the remaining amount pa− PA, which we already defined
as rebidding.
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Figure 8. Bidding and matching operations.

4.3.4. Actual Trading

Finally, we briefly explain the trading operation in the proposed protocol. Figure 9
illustrates an example trading operation for a selling user US that sold its energy in two
parts, i.e., after the initial bidding and the first match, user US had the remaining amount of
energy and performed a rebidding. Then, when the second bid of user US was matched, the
full remaining amount of energy was successfully sold. When the active period ends, the
smart meter SMS of user US feeds the energy amount of PA1 + PA2 to the energy storage.
Consequently, buyers consume the amount of energy they bought from the energy storage
after the active period ends. The amount of energy fed by the seller or consumed by the
buyer is reported to the DSO by the energy storage. Then, the DSO updates the prosumers’
credit and debit for billing purposes and notifies the users about their balances.
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Figure 9. Trading operation.

5. Performance Analysis

In this section, we verify the efficiency of the proposed encoding algorithm and the
feasibility of the proposed system by implementing the system prototype. The prototype is
composed of a DSO, five smart meters, and a private blockchain network with ten nodes.
We implemented the DSO on a desktop PC with an Intel Core i7-7700 CPU @ 3.60 GHz and
16 GB of main memory. For the Ethereum private network with 10 nodes, we used Amazon
Web Services EC2 t2.medium type servers. We used five Raspberry Pi 2 devices with a
900-MHz quad-core ARM Cortex-A7 CPU and 1 GB of RAM to simulate smart meters. We
used the Python programming language to implement the software for the DSO and the
smart meters. We also used the Solidity language to implement the smart contracts [54].
The FHIPE modules were adopted from [55] for the DSO and from [13] for the smart
meter, where both of them implement an optimal Ate pairing [56] on a pairing-friendly
Barreto-Naehrig curve [57]. Both implementations have applied optimizations for the
pairing-based cryptography proposed in [58,59]. The only difference between the two is
that the FHIPE module for DSO additionally adopted parallel processing techniques. Go
implementation of the Ethereum protocol, Geth(go-ethereum), was used as an Ethereum
client for the blockchain.
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5.1. Performance Analysis of the Proposed Algorithm

In this subsection, we show the performance evaluation results of the proposed
encoding algorithm compared with the encoding method used in [13] in the context of
FHIPE using the DSO and a smart meter. Figures 10 and 11 compare the computation
times of the EL, ER and COMP on the DSO and the smart meter, respectively. The EL, ER
and COMP repeatedly use left encryption (EncL), right encryption (EncR), and decryption
(Dec) operations of the FHIPE module. We do not provide the data for the Setup operation
of FHIPE, as it is executed only once, and can be performed offline. We included the
figures for COMP for reference, although neither the DSO nor the smart meter performs
it. (Only the blockchain performs COMP function.) The EL and ER are computed by the
smart meters to encode the power price pp and to verify the matched bid information
that is passed by the DSO. In addition, the DSO also computes them for verification of the
encrypted bids.

Figure 10. Comparison of the computation times of the EL, ER and COMP on the DSO.

Figure 11. Comparison of the computation times of the EL, ER and COMP on the smart meter.

We tried various sets for R, where R is the range of integers that can be encoded.
To be precise, we performed experiments with |R| = 7, 15, 31, 63, 127, 255, and 511. For
each R, we measured the computation time for 1000 runs and calculated the 10% trimmed
mean to evaluate the performance of the two encoding methods. We observed that the
previous encoding method proposed in [13] is faster for small ranges; however, for a more
practical setup with a greater R, all operations were completed faster with the proposed
encoding, and the performance gain increased for greater ranges. (The break-even point
is |R| = 127 for EL and |R| = 63 for ER and COMP.) For example, for |R| = 511, the
computation times of the EL, ER, and COMP operations using the proposed method were
shorter than those in [13] by 3.70, 6.25 and 5.22 times, respectively on the DSO. This is
because a unary encoding was used in [13], i.e., the number of elements in a vector was
O(|R|) in [13]. Please note that the computation times of EL and ER are almost proportional
to the number of vector elements given as input because each vector element requires a
point multiplication on an elliptic curve group. Therefore, EL and ER in [13] requires O(|R|)
point multiplications. Similarly, the number of paring operations for COMP in [13] is O(|R|).
On the contrary, according to the analysis in Section 4.2, the computation of EL and ER using
the proposed method requires 2DN and DN point multiplications, respectively, which
correspond to O((log |R|)2) as N = D− 2 and D = O(log |R|). In the worst case, COMP in
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the proposed method also requires 2DN pairing operations as analyzed in Section 4.2. This
is also O((log |R|)2), which is significantly smaller than O(|R|).

A concrete example is provided below. To represent |R| = 511 different integers
(R = [0, 510]), the encoding method of [13] uses two vectors with 511 elements, one for EL
and the other for ER. Therefore, the EL and ER required 511 point multiplications each and
COMP required 511 pairing operations. Conversely, in our proposed encoding method,
VX is encoded twice, producing two vector lists with DN elements, and VY is encoded into
one list with DN elements. For |R| = 511, we can use D = 10, thus N = 8. Therefore, the
EL and ER requires 2× 10× 8 = 160 and 10× 8 = 80 point multiplications, respectively.
The maximum number of pairings for the COMP is 2× 10× 8 = 160, but the measured
values are less than this in most cases, as the ‘while’ loop of Algorithm 4 may exit before
iterating N times.

5.2. Performance Analysis of the Proposed System

In this subsection, we verify the feasibility and show the practicality of the proposed
system. For the experimental setting, we set both the active and the stall period to 2 min,
i.e., tradings are repeated in a 4-min cycle. This setup is a very harsh condition compared
to real-world systems. In a real-world scenario, the tradings are performed on an hourly
basis, i.e., the prosumers are able to take part in energy trading every hour with, for
example, a 10-min active period and 50-min stall period. According to the rate plans
by the Korea Electric Power Corporation (KEPCO) [60], the electricity charge was up to
275.6 KRW/kWh. However, FHIPE operations [44] and the proposed encoding algorithm
are defined over integers. To avoid losing significant digits, in our case one decimal point,
we quantized the input, i.e., power price, as pp× 10. The dimension of the resulting vectors
was set to D = 13, where the range of price is R ∈ [0, 4094] to cover the integers up to 2756,
which is the maximum electricity price range after applying quantization. With this setup,
the protocols between the DSO, five smart meters, and a private blockchain network with
ten nodes finished the trading process within 2 min, even in the worst case. By the worst
case, we mean that every prosumer wants to participate in trading at the same time and the
maximum number of matches and rebidding occurs. As shown in Figure 7, one execution
of the MATCHING procedure (Algorithm 6) reduces the number of heap nodes by at least
one. Therefore, there can be up to 4 matches, and 3 rebidding processes are performed
in the worst-case scenario. For example, there is one seller with pa = 10 and pp = 100,
and four buyers with pa = 2 and pp ≥ 100. In this case, the seller is going to bid 4 times,
i.e., the initial bid and 3 additional bids for rebidding. In general, there will be up to l − 1
matches, where l is the number of prosumers.

To quantify the work that the blockchain does and to estimate code complexity, gas
consumption is used as the most reliable evaluation metric. Table 4 shows the gas consump-
tion of two dominant operations of our protocol, namely the creation of a heap node and
the COMP operation, and compares it with that of the previous work [13]. We measured
the average gas cost for these operations for 100 iterations with a random power price
pp and power amount pa. The heap node creation is performed using Algorithm 5, and
storing a bid that contains ciphertexts for the encrypted bid value and the auxiliary data
requires a non-negligible amount of memory. In the case of the COMP operation, we used
precompiled contracts of Geth. We need to point out that we used the Istanbul fork [61] in
our Ethereum private network because this upgrade introduces significant gas cost reduc-
tion for the pairing check operation by optimizing the underlying elliptic curve operations.
For example, the gas cost for the pairing check operation using the precompiled contract
at address 0× 08 involving D-dimensional vectors is 34,000 × D + 45,000 [62]. Now we
compare the efficiency of our proposed encoding operations with previous work [13]. In
the previous work, the gas cost for heap node creation was linear in the range of elements,
roughly 133,424 × |R| + 292,000, which is not significant for small ranges. However, for
greater |R|, an immense quantity of gas may be required. For example, |R| = 4095 would
require approximately 546 million worth of gas, whereas our solution is approximately
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20.63 times less costly. The implementation of the COMP operation may require a different
amount of gas depending on the input and the measurements in Table 4 are for random val-
ues. We remark that the previous work did not apply the updated precompiled contracts of
the Istanbul fork, i.e., its gas cost for the pairing check operation involving D-dimensional
vectors is 80,000 × D + 100,000 [63], which is roughly 2.35 times greater than that in [62].
For a fair comparison, we included a normalized ratio as the last column. We can see that
even with this normalization considered, the proposed method uses significantly fewer
resources compared to [13]. Besides the performance gain, the proposed method also
provides scalability because the gas cost does not increase linearly as |R| increases.

Table 4. Gas cost comparison for the heap node creation and the COMP operation.

Range of Price

Consumed Gas
(A) Heap Node
Creation in [13]

(B) Heap Node
Creation

(proposed)

(C) Ratio
(A)/(B)

(D) COMP
in [13]

(E) COMP
(proposed)

(F) Ratio
(D)/(E)

(G) Norm. Ratio
(F)/2.35

|R| = 15 2,293,360 3,369,742 0.68 1,340,000 1,121,414 1.19 0.51
|R| = 31 4,428,144 5,097,334 0.87 2,620,000 1,405,418 1.86 0.79
|R| = 63 8,697,712 7,157,309 1.21 5,180,000 1,423,967 3.63 1.55
|R| = 127 17,236,848 9,549,645 1.80 10,300,000 1,636,989 6.29 2.68
|R| = 255 34,315,120 12,274,426 2.80 20,540,000 2,121,623 9.68 4.12
|R| = 511 68,471,664 15,331,680 4.47 41,020,000 2,161,902 18.97 8.07
|R| = 1023 136,784,752 18,721,328 7.31 81,980,000 2,315,035 35.41 15.07
|R| = 2047 273,410,928 22,443,544 12.18 163,900,000 2,329,521 70.36 29.94
|R| = 4095 546,663,280 26,498,268 20.63 327,740,000 3,416,721 95.92 40.82

6. Discussion

According to the analysis in the previous section, the new encoding method and
algorithm significantly reduce the complexity of FE operations. Consequently, they reduce
the gas cost required to perform trading operations on the blockchain, which proves that
the proposed solution is more practical and scalable compared to the previous work [13].
However, there are still some limitations and challenges in the proposed method. The block
gas limit of the Ethereum main network is approximately 12.5 million at the time of writing.
Although the proposed method dramatically reduces the gas cost, it is still too high for
deployment on the Ethereum main network. Please note that we used dual vectors xn,L and
xn,R in lines 6 and 7 of Algorithm 3 for a single two’s power term because the comparison
should be applied following two binary decisions. Therefore, Algorithm 4 conducts two
inner product computations (in line 4 and line 8) to determine one result from three
possibilities: <,=, and >. We applied this design as the underlying precompiled contract
in Ethereum for the pairing product operation used in the FHIPE decryption only returns a
binary output, i.e., either 0 or 1. Therefore, if we can improve the precompiled contract for
it to produce, e.g., a ternary output, we may then reduce the required computation by half
using the ternary encoding algorithm [52]. Furthermore, the introduction of the rebidding
feature limits the number of matched bids per block to only one. After every price matching
of two bids, the matched amount is checked outside of the blockchain and it is decided
whether rebidding is required according to the remaining amount of energy. This limits
the number of matches that can be performed in a block. Therefore, it would be better
if we could handle multiple matches in one block by allowing the decision made inside
the blockchain. In addition, scalability could be evaluated with more participants. In this
paper, we have considered five smart meters for our testbed. It would be interesting how
the performance varies when more smart meters are involved. Finally, it would be possible
to consider a relaxed security requirement. In the current design, both the bid price and the
identity of each trading participant are protected. However, in a certain scenario, electricity
prices can be public in an open market, and the only security requirement would be the
protection of identity. In this case, bid values need not be encrypted, and the combination
of OID and cryptographic hash functions are sufficient, which dramatically reduces gas
cost. The decision on the exact security requirement should be performed according to the
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structure of the energy market, relevant regulations and privacy policy. We leave these
issues for future research.

7. Conclusions

The combination of renewable energy systems and blockchain-based P2P energy
trading may provide a more stable energy market with cheaper energy sources. However,
for this to be acceptable to the public, the security and privacy of all parties must be
guaranteed. Although a blockchain inherently provides data integrity and is able to
eliminate the central trusted party, the privacy aspect requires further investigation. In this
study, we constructed a new vector encoding algorithm to perform an efficient and secure
integer comparison using multiple inner products for inner product encryption. We applied
the new encoding method to design a privacy-preserving P2P energy trading system. We
also improved the previous protocol by considering rebidding for the remaining amount
of energy. To verify the feasibility of the proposed system, we implemented a prototype
composed of a DSO, smart meters, and a private Ethereum blockchain, and conducted a
field test with various parameters. According to our analysis, the new encoding algorithm
significantly improves the performance of trading operations. However, as discussed in the
previous section, the proposed system can be improved in various aspects, e.g., the further
reduction of gas cost, handling multiple matches in a single block, scalability evaluation
with more participants, and consideration of various security policies. We leave these
issues for future research.
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