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Abstract: The emergence of the Internet of Things (I0T) has made wireless connectivity ubiquitous
and necessary. Extending the IOT to the Industrial Internet of Things (IIOT) places significant
demands in terms of reliability on wireless connectivity. The Institute of Electrical and Electronics
Engineers (IEEE) Std 802.15.4-2015 standard was designed in response to these demands, and the IPv6
over Low power Wireless Personal Area Networks (6LOWPAN) adaptation layer was introduced
to address (among other issues) its payload size limitations by performing packet compression
and fragmentation. However, the standardised method does not cope well with low link-quality
situations and, thus, we present the state-of-the-art Forward Error Correction (FEC) methods and
introduce our own contribution, Network Coding FEC (NCFEC), to improve performance in these
situations. We present and analyse the existing methods as well as our own theoretically, and we
then implement them and perform an experimental evaluation using the 6TiSCH simulator. The
simulation results demonstrate that when high reliability is required and only low quality links are
available, NCFEC performs best, with a trade-off between additional network and computational
overhead. In situations where the link quality can be guaranteed to be higher, simpler solutions also
start to be feasible, but with reduced adaptation flexibility.

Keywords: Internet of Things (IoT); industrial IoT; 6LoOWPAN; RFC 4944; fragmentation; fragment
forwarding; Forward Error Correction (FEC); network coding

1. Introduction

As more and more constrained wireless devices are globally connected through the
Internet Protocol version 6 (IPV6) [1], a new paradigm called the Internet of Things (I10T) [2]
has emerged. Its applications include smart cities, healthcare, power management and
Industry 4.0.

The Industrial Internet of Things (II0T) aims at increasing productivity and efficiency
by using IOT devices in order to provide real time monitoring and control, and therefore
enabling the automation of production chains. Since losses of data packets could endanger
the operation of the production chains, industrial automation networks often require
several nines of packet delivery reliability and low latency [3]. Therefore, networking
protocols dedicated for industrial networks have to ensure a sufficient Quality of Service
(QOS), especially because low-power wireless communications are lossy by nature.

The Institute of Electrical and Electronics Engineers (IEEE) Std 802.15.4-2015 standard
was published in 2016, and its Time Slotted Channel Hopping (TSCH) aims at fulfilling such
requirements by organising the communications of multi-hop networks with scheduling
based on time and frequency. Thus, for each transmission and reception in the network,
there is a dedicated cell composed of a timeslot and a radio offset, that is translated
into radio channel, to avoid potential collisions between simultaneous communications.
However, this link-layer protocol is not adapted to tackle with the IPV6 protocol. Indeed,
IPv6 requires the link-layer to be able to transmit packets of at least 1280 bytes while
IEEE Std 802.15.4-2015 has a Maximum Transmission Unit (MTU) of 127 bytes. Therefore,
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an adaptation layer providing fragmentation between the network layer and the link layer,
is required to be employed.

The Internet Engineering Task Force (IETF) standardisation organisation defined
the IPv6 over Low power Wireless Personal Area Networks ((LOWPAN) in the RFC
4944 standard. It specifies the IPv6 packet compression and fragmentation mechanisms.
Moreover, it proposes two methods to route fragments, the Route-Over Routing (ROR)
and the Mesh-Under Routing (MUR). All the fragmentation schemes presented in this
article are based on ROR scheme because it enables to employ routing protocols such as
the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), the de facto routing
protocol for industrial use-cases.

The standard fragmentation—that will be referenced as RFC 4944 Fragment For-
warding (RFC 4944 FF)—allows successfully transmitting IPv6 packets along the mesh
networks. However, the potential loss of any fragment makes it impossible to reassemble
the original IPv6 packet. This is especially an issue for industrial networks that require
several nines of end-to-end reliability and bounded latency. Moreover, networks now
require transmitting larger data packets, e.g., configuration data for over-the-air updates
or even multimedia data from sensors. In order to tackle this issue, research efforts have
focused on the Forward Error Correction (FEC) technique that enables the recovery of
dropped fragments by preemptively transmitting additional redundant information over
the network. FEC aims at avoiding retransmissions of whole packets, which improves
end-to-end reliability and reduces latency.

In this article, we present the standard fragmentation schemes as well as FEC schemes
from the literature that improve the reliability of transmissions of fragmented packets by
allowing fragment recovery. We also propose modifications to these schemes and specify a
new fragmentation method.

The contributions of this article are:

1.  We present the state-of-the-art of different FEC fragmentation schemes and propose
enhancements that are compatible with the standardised solutions.

2. We propose the Network Coding FEC (NCFEC) new fragmentation scheme that uses
end-to-end network coding, a new fragment structure and adaptation to the quality
of the network radio links in order to achieve end-to-end network reliability.

3. We evaluate the performance of these fragmentation techniques based on simulations
performed on the 6TiSCH simulator [4].

Then in the rest of the article, Section 2 describes the standard 6LOWPAN fragmenta-
tion and Section 3 exposes the ongoing standardization activities at the IETF. Subsequently,
in Section 4, we describe three new approaches based on the FEC technique to improve the
end-to-end reliability in multi-hop networks. We continue with Section 5, which provides
the theoretical analysis of the performance of the fragmentation schemes, while Section 6
evaluates them with the simulation results. Finally, Section 7 concludes the article and
provides future directions.

2. Technical Background: RFC 4944
2.1. Overview

RFC 4944 [5] is the main standard for the 6LOWPAN protocol that specifies the
adaptation layer for IPv6 packet transmission over IEEE Std 802.15.4-2015 links. This
article focuses on the fragmentation aspect of this standard. The IPv6 protocol requires that
layer 2 links handle a packet size, i.e., MTU, of at least of 1280 bytes. However, the IEEE
Std 802.15.4-2015 comes with an MTU of 127 bytes, which means that an adaptation layer
is required in order to make it compatible with IPv6. 6LOWPAN addresses the issue of the
MTU and allows handling packets of size up to 2048 bytes by performing compression
and splitting the IPv6 packets into several fragments.

The IPv6 and User Datagram Protocol (UDP) headers, which have an original size of
40 bytes and 8 bytes, respectively, are compressed according to RFC 6282 [6]. If the resulting
packet is still larger than 127 bytes, it requires fragmentation: it is split into several link
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fragments of up to 127 bytes, each containing the Medium Access Control (MAC) header,
the fragment header and the payload of the IPv6 packet. The first fragment also contains
the compresssed IPv6 and UDP headers.

The fragment header, shown in Figure 1, is 4 bytes long for the first fragment, 5 bytes
long for the remaining ones, and contains the four following fields:

1. Dispatch type (5 bits): 11000 for a first fragment and 11100 for all subsequent fragments.

2. Datagram size (11 bits): field that contains the information about size of the IPv6
packet before fragmentation in bytes.

3.  Datagram tag (16 bits): field that is used to identify all the fragments from a single
IPv6 packet. It increments for each new fragmented packet and its maximum value
is 65,535.

4.  Datagram offset (8 bits): field that represents the offset of the fragment from the
beginning of the packet. The first fragment has an offset of 0 and omits this field.
The subsequent fragments contain this field and the offset increment is 8 bytes.

01234567890123456789012345678901

e T 1
111000 | datagram_size | datagram_tag I

e e |

First Fragment Header
01234567890123456789012345678901

m T 1
111100 | datagram_size | datagram_tag i

it S S SO |

| datagram_offset |
i !

Subsequent Fragment Header
Figure 1. 6LoOWPAN header defined by RFC 4944.

There are two ways these fragments can be routed toward their destination: mesh-
under and route-over. MUR is performed over the multi-hop network and takes place at
the adaptation layer, which means the IPv6 packets do not need to be reassembled at each
hop because the link-layer address is contained in each fragment, and thus each fragment is
routed individually. ROR is performed at the network layer and uses the IPv6 destination
address to route packets. In RFC 4944 FF, the first fragment is the only one containing this
address, thus the need to reassemble packets at each hop with ROR in order to access this
information and route whole packets, which increases end-to-end latency. Even though
MUR offers shorter delays with the standard fragmentation, ROR is preferred because it
allows the use of IPv6 addresses and, thus, enables the use of routing protocols such as
RPL, the de facto routing protocol for industrial use-cases. Therefore, all fragmentation
schemes and examples presented in this article are based on the ROR scheme.

With ROR, when a node receives the first fragment of a packet for which it has no
allocated reassembly buffer, it creates a buffer of size equal to the datagram size field in the
fragment header. It also starts a timer, at the end of which the fragments of the packet will
be discarded if any of them are missing. When the subsequent fragments belonging to a
packet having an entry in the buffer arrive, they are placed in the buffer. When the buffer
is full, the packet can be reconstructed. After a node successfully reconstructs a packet,
if itself is not the destination of the packet, the packet must be forwarded.

The FEC schemes presented in this article tackle the reassembly issue of ROR either
by using the Virtual Reassembly Buffers (VRBs) proposed by [7], temporarily saving the
information needed to route fragments, or by adding a partial IPv6 header to each fragment.

The example illustrated in Figure 2 depicts the transmission of an IPv6 packet sent
by a leaf node to the root node and because it is larger than the MAC payload limit, it
requires to be fragmented into four fragments. All fragments are successfully transmitted
to the next hop, which is a relay node that creates a reassembly buffer into which it stores
the fragments before transmitting them to the root node. All transmissions are successful
and therefore the root node can reassemble the packet from the fragments it stored in its
reassembly bulffer.
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a. Generate packet
b. Fragment packet
c. Send 4 frags a. Create reassembly buffer

b. Store next frags in buffer
c. Start reassembly timer

d. Reassemble on reception of all frags
e. Fragment packet
f. Send 4 frags

« a. Create reassembly buffer
nd b. Store next frags in buffer
i{ﬁ c. Start reassembly timer

d. Reassemble on reception of all frags

////

Figure 2. Successful transmission of a fragmented packet with standard 6LoWPAN over two hops.

2.2. Issues with RFC 4944 FF

In [8], a number of issues that negatively affect the performance of RFC 4944 FF
are presented. Firstly, the nodes have limited memory and can only contain a limited
number of reassembly buffers. Therefore, when a fragment from a new packet is received
and the node does not have enough space to create a new buffer it has to drop a packet.
Another issue caused by the reassembly at each hop is that it entails end-to-end delays as
each node has to wait for the reception of all the fragments of a packet before forwarding
them. Additionally, several source nodes can use the same datagram tag for their own
IPv6 packets. This entails confusion if a node receives fragments from different flows
sharing the same datagram tag and causes forwarding issues. These three issues are
addressed by the Minimal Fragment Forwarding (MFF) scheme using a VRB at each hop
to forward fragments.

Finally, in order to reassemble a packet, every fragment has to be received by the
destination. If any fragment is lost at any hop in the path the packet will not be received
by the destination. This is illustrated by the example depicted in Figure 3, in which an
IPv6 packet is sent by a leaf node to the root and has to be fragmented into four fragments.
However, the third fragment will not be successfully transmitted from the relay node to the
root node. Therefore, after the reassembly timer of the root node expires, it must discard
all the fragments and the whole transmission fails. Addressing this issue is the initial
motivation for the use of FEC techniques.

Ley Qelay Root

a. Generate packet
b. Fragment packet
c. Send 4 frags a. Create reassembly buffer

b. Store next frags in buffer
c. Start reassembly timer

d. Reassemble on reception of all frags
e. Fragment packet
f. Send 4 frags

st
;nd

ath

o a. Create reassembly buffer
nd \’ b. Store next frags in buffer
itrﬁ \, c. Start reassembly timer
\, d. Discard all frags when timer expires

Figure 3. Failed transmission of a fragmented packet with RFC 4944 FF over two hops: the loss of
one fragment makes the reassembly of the packet impossible.

3. Ongoing Standardisation Efforts: Minimal Fragment Forwarding (MFF)

The work on MFF [7] is a soon-to-be standard that addresses several of the issues of
the RFC 4944 FF that were previously presented. MFF forwards the fragments without
performing the reassembly and the re-fragmentation processes at each hop. To do so, it
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uses a VRB to route all fragments by storing a minimal routing information that is carried
only in the first fragment.

3.1. Overview

The fragmentation process is performed by the source node, while the reassembly is
performed by the destination node according to the RFC 4944, as presented in the previous
section. The updates to the RFC 4944 standard is in regard to the fragment forwarding
scheme that is performed in the intermediate nodes. Indeed, when an intermediate node
receives a fragment with a datagram tag for which it has no VRB entry:

1. It checks if the datagram offset is 0. If it is not, it means that the first fragment is lost
and the final destination will not be able to reassemble the packet. This fragment and
all the subsequent from the same IPv6 packet will be dropped immediately by the
intermediate node.

2. If the datagram offset is O, it creates a VRB entry containing:

®  The received datagram tag.

*  Anew datagram tag that will be created and used to forward the fragment.

e The MAC address of the previous hop.

®  The MAC address of the next hop (decided at reception of the first fragment and
used to forward the subsequent fragments).

* A timer used to discard the buffer after a timeout.

3. It forwards the fragment to the next hop

Storing the link-layer address of the previous hop allows differentiating fragments
with the same datagram tag sent by different nodes. For instance, in Figure 4, node G
receives fragments with datagram tag = 3 from two different nodes but will be able to
differentiate the incoming fragments from the two nodes because it stored their link-layer
address in the corresponding VRB entry. It will also change the datagram tags of the
outgoing fragments so that node H is able to differentiate them, therefore solving the
confusion issue mentioned in the previous section.

I Pe-e-- » B T T T T L T 1
Lo . = T < \ incoming I outgomg \
. :
S . #(7) : L2 src tag : L2 dest ] tag i
- —_— “
. #17) B 7 0w 7
N !
- 1 %@ 1 %@ 1 %@ T i i
! pe==--- pe=---- > r- E@-({{) I i D 3 | H 8 i
Lo e - [ — - | S - | R - e —— — e e et
i
Y L 3 | H "o
. [ - I
. i
@@ I, D A ;

T 1 @@15) 1 Node G's VRB table

I E p----- » F |

Figure 4. VRB table of node G: #(2), %(4) and @(15) are fragments of the packets denoted #, %, and @
coming from nodes A, C and E, respectively, with datagram tag configured to 2, 4 and 15, respectively.

On the other hand, when an intermediate node receives a fragment of an IPv6 packet
for which it already has a VRB entry, it forwards the fragment immediately to the next hop
without waiting for the whole packet to arrive. This is illustrated by Figure 5, in which an
IPv6 packet is sent by the leaf node to the root node and is fragmented into four fragments.
Once the relay node receives the first fragment, it creates a new entry in the VRB table,
where it stores the necessary information that will allow it to immediately forward the
following fragments. The destination node, typically the root node, once it has successfully
received the four fragments, can reassemble the original IPv6 packet.
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a. Generate packet

b. Fragment packet a. Create VRB
c. Send 4 frags b. Start VRB timer

c. Forward frags at reception
L— a. Create reassembly buffer
\ b. Store next frags in buffer
\ c. Start reassembly timer

\ d. Reassemble on reception of all frags

Figure 5. Successful transmission of a fragmented packet over two hops with MFF.

3.2. Performance Evaluation of the 6LoOWPAN FF and the MFF

To further illustrate the reassembly issues with RFC 4944 FF that are solved with MFF,
we performed a performance evaluation using the 6TiSCH simulator [4]. We simulated
a multi-hop network with the bottleneck at node 1 as illustrated in Figure 6, where the
leaf nodes 5 and 9 are transmitting IPv6 data packets to the root node every 40 s with
a link quality at every hop of 0.85, a TSCH slotframe size of 101 and each node given
15 random transmission cells per slotframe. As it can be seen in Figure 7, the MFF scheme
considerably improves both the latency and the end-to-end network reliability compared
to the 6LoWPAN FE. This observed difference in terms of network reliability is due to
the fragment handling at node 1, i.e., at the bottleneck. In this series of simulations,
the nodes have enough memory only for one reassembly buffer. Therefore, under the
6LowPAN FF scheme, when node 1 receives a fragment from node 5 while it has a buffer
containing fragments from node 9, it has to drop one of them. On the other hand, with the
MFF mechanism, fragments are forwarded without being buffered and, thus, this queue
overflow issue does not occur.

Figure 6. Bottleneck topology.

3.0
—— MFF 1.00
RFC 4944 FF
25 0.98 \
© 2.0 0.96
=}
2 o
£15 20.94
5
1.0 0.92
0.5 0.907 —— MFF
' RFC 4944 FF
0.88
2 4 6 8 10 2 4 6 8 10
Original fragments per packet Original fragments per packet
(a) End-to-end latency. (b) End-to-end Packet Delivery Rate (PDR).

Figure 7. Performance evaluation of the schemes proposed by the IETF.
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3.3. Issues with MFF Scheme

Although MFF allows for faster fragment forwarding along the multi-hop network,
and addresses several of RFC 4944 FF issues such as latency, datagram tag confusion and
memory usage, other issues remain. Firstly, intermediate nodes still use buffers. Despite
the fact that the memory required for a VRB is much lower than that for a reassembly buffer,
the number of VRB entries is still finite. Therefore, if there are more packets to forward
simultaneously than the number of VRB entries, packets will still be dropped. Secondly,
no fragment loss can be recovered from and losses can entail additional traffic. Indeed,
if any fragment is lost, the process of fragment forwarding will continue, unless the first
fragment is the one lost, in which case the next hop will drop all the fragments. However,
the destination will still not be able to reassemble the packet and, thus, there will be
unnecessary traffic in the network. This is illustrated in Figure 8, where an IPv6 packet
larger than the MTU is transmitted from the leaf node to the root node and is fragmented
into four fragments. The second fragment will not be successfully transmitted by the leaf
node to the relay node, while all the other fragments are successfully transmitted along
the network, especially the first one that enables the new registration in the VRB table. In
such a scenario, the fragments transmitted by nodes after the loss of the second fragment
introduce unnecessary traffic because under no circumstance will the root node will be
able to recover the missing fragment. Additionally, only after the timer expires will the
root discard the received fragments, leading to buffer memory waste.

@ @ @
a. Generate packet —
b. Fragment packet a. Create VRB
c. Send 4 frags b. Start VRB timer

c. Forward frags at reception
a. Create reassembly buffer
\ b. Store next frags in buffer
c. Start reassembly timer

\, d. Discard all frags when timer expires

Figure 8. Unsuccessful transmission of a fragmented packet over two hops with MFF: the loss of the
second fragment is not recoverable.

Finally, as pointed out by [9], since the first fragment is the only one which contains
the IPv6 header, it is required to be received before the subsequent fragments to enable a
routing decision. This makes it impossible to use multi-path routing without repeating the
first fragment on every path.

4. Forward Error Correction (FEC)

FEC is a technique that can be used to ensure reliable transmission, without needing
the destination node to ask for retransmission of missing fragments, by adding redundant
information to sent packets. Used in satellite communications, mobile networks and
Low Power Wide Area Networks (LPWANSs) [10], FEC mechanisms often use encoding
algorithms enabling the destination to recover missing elements. 6LOWPANSs are deployed
on lossy radio links, that can cause loss of part of the fragments of a packet, which in the
case of RFC 4944 FF or MFF entails the failure of the reception of the whole packet. Adding
FEC to 6LOWPAN addresses this issue by making missing fragments recoverable. This
article compares three FEC methods for 6LOWPANSs that introduce redundant information
by repeating fragments or adding encoded fragments sharing the information of several
original fragments. XORFEC adds a unique encoded fragment, Repetition FEC (RFEC)
adds identical repetition of all fragments and NCFEC encodes all fragments of sent packets.

Although FEC mechanisms significantly improve network reliability in lossy environ-
ments, they also entail additional costs. Indeed, the additional fragments require energy
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and bandwidth to be sent, and the increase in traffic can ultimately lead to overflow in
the transmission queues of relay nodes. Therefore, FEC schemes should be implemented
carefully in networks with a high traffic load and where the bandwidth is limited. In order
to address the traffic increase, in [11], the authors propose deactivating FEC when the net-
work presents low loss probability, while we propose a mechanism that lowers the number
of fragments when it is not detrimental to the QOS. FEC can also enable the reception of
packets that would otherwise be lost but this option comes with additional delay since the
fragments used in the recovery process are sent after the original fragments. Finally, the
FEC schemes that use encoding require the nodes to be able to perform the encoding and
decoding operations with costs of additional computations. This performance evaluation
illustrates the cost of FEC by comparing the latency and the traffic of FEC schemes and
standard fragmentation.

4.1. XORFEC
4.1.1. Overview

XORFEC is a FEC mechanism that uses the Exclusive OR (XOR) operator (®) to
generate an additional fragment for a fragmented IPv6 packet. This additional fragment
contains redundancy and enables achieving higher reliability. Indeed, this additional
fragment is sent after the original fragments of the packet and allows the destination node
to recover from the loss of one original fragment. As a result, the consequence of losing a
single fragment is no longer the loss of the whole packet.

XORFEC extends Network Coding - Mesh Under Routing (NC-MUR) [12]—which
uses MUR, meaning that each fragment is routed based on the link-local address of its
MAC header—in order to be compatible with the MFF that uses ROR without reassembly
at each hop. Indeed XORFEC fragments use the forwarding scheme of MFF, including the
additional fragment thanks to an adapted 6LOWPAN header.

4.1.2. The XOR Operator

XOR is a logical operator that is used in encoding mechanisms in order to mix
together the information from several packets and decode the encoded packets when they
are received. XOR is a binary operator and, when applied to packets of several bits, is
applied bitwise. The property of XOR that is used in XORFEC and that allows recovering
fragments is that applying XOR on the result of a first XOR and one of the inputs of this
first XOR gives the second input:

B=A®(A®B) (1)
A=B®(A®B). 2)

Indeed, if a packet is fragmented into two fragments A and B, the additional fragment
C generated by the source node will be:

C=A®B. 3)

Then, if the destination receives A and C but does not receive B, it can recover B by
applying the XOR operator to the fragments it received. This operation can be generalised
to packets with a larger number of fragments: with m original fragments (Mj, ..., My;),
the additional fragment N will be:

N=M&..® My (4)

If the destination node receives all the transmitted fragments except for M;, it can
recover the latter by applying the operator to the fragments received:

M; = (Ml D.OM_ 1M 1D..P Mm) é N. 5)
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However this recovery is only possible if no more than one fragment is missing, i.e.,
the loss tolerance of XORFEC is one missing fragment.

4.1.3. Operation

When a 6LoWPAN node requires transmitting an IPv6 packet of a size larger than the
layer 2 MTU (127 bytes), it will fragment it into n fragments where only the first one will
contain the compressed IPv6 header. Therefore, the loss of this first fragment cannot be
recovered. Then, an additional fragment is generated by applying the XOR operator to the
n original fragments. The 6LOWPAN header is added to each fragment as defined in the
RFC 4944 standard.

For the additional fragment, the datagram offset will be the continuation of other
offsets. For instance, if the original IPv6 packet to transmit is of size 450 bytes, and the
6LoWPAN payload size is 90 bytes, the original fragments will have offsets 0, 90, 180, 270,
360 and the additional fragment will have an offset of 450. This makes XORFEC compatible
with MFF, as nodes not using XORFEC can ignore the additional fragments that have a
datagram offset higher than the datagram size. In such a case, the packets will be treated
as regularMFF packets without the option of fragment recovery. After the fragmentation,
the source node transmits the n original fragments followed by the additional fragment.

Regarding the forwarding mechanism of relay nodes, it follows similar principles as in
MFF: using VRBs to forward fragments without waiting for reassembly at each hop. When
the destination node receives the first fragment of a new packet, it creates a reassembly
buffer of the size given by the datagram size present in the header. When any n fragments
of the IPv6 packet have successfully arrived at the destination, the original packet can be
reassembled. If the additional fragment is among the first n received fragments, an original
fragment has been lost. In that case the missing fragment is recovered with an XOR
operation on all received fragments, and after this operation the packet is reassembled.
Figure 9 illustrates this process where an IPv6 packet is transmitted from the leaf node
toward the root node. The packet is first fragmented into four original fragments and the
additional fragment is generated by applying the XOR operator to these four fragments.
When it receives the first fragment, the relay node creates the VRB, based on the 1st
fragment that contains the IPv6 header, in order to forward the fragments. The third
fragment gets lost between the leaf node and the relay node but is recovered by the root
node thanks to the additional fragment. If one more fragment had been lost, the recovery
would not have been possible, as the additional fragment only contains enough redundant
information to recover one missing fragment.

a. Generate packet
b. Fragment packet _

c. Generate additional fragment a. Create VRB

d. Send 5 frags b. Start VRB timer

c. Forward frags at reception
o L a. Create reassembly buffer
ith \ b. Store next frags in buffer
Add, c. Start reassembly timer

e. Reassemble packet

 : d. Recover 2nd fragment

Figure 9. Successful transmission of a fragmented packet with XORFEC: even though one fragment
is lost it is recovered thanks to the additional fragment.

4.2. RFEC
4.2.1. Overview

We introduce RFEC, which is a FEC-based mechanism and extended version of
the algorithm presented in [11] that introduces redundancy by identically repeating each
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fragment of a packet, without any encoding. In [11], the authors chose to activate FEC only
when the PDR falls below a pre-defined threshold so that it does not generate unnecessary
traffic. When FEC is activated, fragments are repeated by the source node three seconds
after the original fragments are sent. This delay is added in order to avoid the loss of both
original and retransmitted fragments in a short term perturbation of the radio quality.

We extend the algorithm presented in [11] with RFEC that also repeats each fragment
but does not add delay and the copies are transmitted consecutively to their originals.
Moreover, VRBs are used to forward packets at intermediary nodes in order to avoid the
reassembly process at each hop.

4.2.2. Operation

Because RFEC uses VRBs to forward the fragments without reassembly, the loss of the
first fragment would compromise the creation of the VRB and the other original fragments
could not be routed. Therefore, removing the delay and sending each copied fragment
immediately after its original could improve the reliability: in case of loss of the original
first fragment, its copy can be used to create the buffers that will route the other original
fragments. This is the case in the scenario Figure 10 depicts where an IPv6 packet is sent by
the leaf node to the root node of a two-hop network. It is first fragmented into four original
fragments, and each fragment is transmitted twice consecutively. Even though it does not
receive the first copy of the first fragment, the relay node receives the second copy that
enables it to create a VRB. This VRB allows the relay node to forward every fragment of
the packet. The root node receives one copy of the first, second and fourth fragments and
two copies of the third fragment. It drops the second copy of the third fragment and is able
to reassemble the packet.

a. Generate packet —
b. Fragment packet a. Create VRB
c. Send 4 frags b. Start VRB timer
1:} c. Forward frags at reception
1 L=
2"2 a. Create reassembly buffer
g?d \ b. Store next frags in buffer
3:ﬁ \_ c. Start reassembly timer
4
s Q
\,_l d. Reassemble on reception of all frags

Figure 10. Successful transmission of a packet with RFEC.

4.3. NCFEC

NCFEC is yet another FEC-based mechanism that uses network coding to generate a
set of encoded fragments so that any fragment can be lost as long as a sufficient number
of fragments are received by the destination node. Network coding is a technology first
introduced in 2000 by [13] and originally aiming at optimizing the bandwidth usage of
multi-source networks by making nodes performencoding and decoding operations [14].
Network coding also has applications in the fragmentation domain where it is used to
improve the reliability of transmissions, as illustrated in [15]. In NCFEC, the number of
encoded fragments is also higher than the number of original non-encoded fragments to
add more reliability. The employed encoding is based on Reliable IPv6 Packet Delivery
Scheme (RIPDS) [16], where the reassembly, fragmentation and encoding are performed at
each hop. Moreover in RIPDS, the number of encoded fragments is set at each link 7 as
[m/PDR;]| where m is the number of original fragments and PDR; is the PDR at link i.

The main features of NCFEC are:
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e  Fragmentation and encoding are only performed by the source node, while the decod-
ing and reassembly are only performed by the destination node. This decreases both
latency, and the usage of computational resources.

e  Each fragment contains a compressed IPv6 header that enables forwarding without
using a VRB, which allows forwarding subsequent fragments in the case of a loss of
the first fragment. Thus, each fragment can be routed individually, and multi-path
routing can be applied.

¢ Anend-to-end PDR estimation mechanism using RPL’s DODAG Information Object
(DIO) packets is performed by the source node in order to evaluate the number of
encoded fragments it needs to generate.

4.3.1. Fragment Structure

In this article, we introduce a new dispatch type, i.e., encoded fragment, with its
header shown in Figure 11. There are several dispatch patterns reserved for future use in
RFC 4944, and 11 011 xxx is one of them. The MAC payload of a packet can either be
102 bytes without security or 81 bytes with security [17]. After adding the new NCFEC
header, the available payload for encoded fragments is 93 bytes without security or 72 bytes
with security, as shown in Figure 12 that illustrate the NCFEC fragmentation process. In
the example depicted, the three original fragments are encoded into five fragments.

0 1 2 3
©1234567890123456789012345678901
R e Tk I T T e e e B e T Ik s Tk A S A T S A S S A S
|1 101 1|E|] N original| N total | Frag tag | Datagram tag |
R e ik T T T e e e B B Tt Tk s Tk At st SR TR S A S S A S

e e
Figure 11. Structure of the 6LoOWPAN fragment header with NCFEC.

40 bytes Original IPv6 packet

IPv6 header IPv6 payload

Original fragments

7 bytes 72 bytes 72 bytes 72 bytes

Compressed
IPv6 header

IPv6 payload IPv6 payload IPv6 payload Zero-padding

Encoded fragments

‘ Encoded fragment 1 ‘ ‘ Encoded fragment 2 ‘ ‘ Encoded fragment 3

‘ Encoded fragment 4 ‘ ‘ Encoded fragment 5 ‘

802.15.4 packet

23 bytes 21 bytes Sbytes 2 2 72 bytes 2

Fragment

MAC 802.15.4 header AES-CCM-128
header

SA DA‘ Encoded fragment fsﬁ

127
bytes

Figure 12. Structure of the MAC frame with NCFEC. SA and DA stand for Source Address and
Destination Address of the IPv6 packet.

4.3.2. Original Fragments Generation

The addition of new fields reduces the available space for the fragment payload. Let
np be the new payload, and ps be the IPv6 packet size. The first fragmentation step is to
split the IPv6 packet (header included) into the original fragments. The number of original
fragments Noyiginal fragments 18 calculated as:

Noriginalfrugments = [ps + nP'—| (6)



Sensors 2021, 21,1711

12 of 20

4.3.3. Galois Field GF(2,8)

Before presenting how the fragments are encoded, GF(2,8) needs to be introduced.
This is the Galois finite field with 28 elements. The elements of GF(2,8) can be represented by
several forms: polynomial, binary or integer. For example, 42 has a binary form: 00101010
and can also be represented by the polynomial x® + x* + x2. In this field, the operations are
not the usual ones. The addition is the XOR operator. The multiplication is the polynomial
multiplication modulo an irreducible polynomial of degree 8.

4.3.4. Encoding

Once the original fragments are generated, the encoded fragments need to be created.
There are more encoded fragments than there are original fragments, and several ways to
determine the number of encoded fragments are detailed later in this section. Let m be the
number of original fragments and M the number of encoded fragments. For each encoded
fragment i, i € {1,2,..., M}, we allocate m coefficients x; :

Xig = ikil,k IS {1,2,...,171}. @)

Each coefficient is an element from the Galois field GF(2,8). The fragments are encoded
one word at a time, with a word being a group of 8 bits. The words are then all juxtaposed
to create the encoded fragment. Let py ; be the Ith word of the kth original fragment, and g;
the Ith word of the ith encoded fragment. These words are also elements of GF(2,8). Each
word of the encoded fragments is obtained as follows:

m
Qg = Y XikPrls (8)
k=1

where the addition and the multiplication are those defined for GF(2,8).

4.3.5. NCFEC Operation

The source node sends all the fragments to the destination node. When an intermediate
node receives a fragment, it reads the destination address, chooses the next hop accordingly
and forwards the fragment. After m different fragments from the same packet have
arrived, the destination node can reassemble the packet. When a fragment arrives at its
destination node:

e The node checks if it has a reassembly buffer entry corresponding to the pair (source
address, datagram tag) of the fragment. If it does not, it creates a reassembly buffer of
size m (known by reading the datagram size field in the fragment header), containing
the source address and the datagram tag and starts a timer.

¢  The node adds the fragment to the corresponding buffer entry.

e If m fragments are in the buffer, the node starts the reassembly procedure.

If the timer of a buffer entry is elapsed, all the fragments are discarded.

4.3.6. Determining the Number of Additional Fragments

In [16], the encoding was repeated at each hop, and the number of packets chosen was
[m/PDR;] with PDR; being the estimated PDR of the link. The authors chose this value
because this way an average of m fragments would be received for each packet, m being
the lowest number of received fragments allowing reassembly.

However, this value does not ensure the desired high reliability as every time the
number of fragments received is below this average value the packet cannot be reassembled.

In order to achieve high reliability levels, it is necessary to increase the information
redundancy and, therefore, increase the number of fragments. In this article, we opted
to use a reliable way to determine the lowest number of encoded fragments sufficient to
achieve an end-to-end PDR target, based on PDR estimation.
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4.3.7. Estimation of PDR

Each node is capable of estimating the end-to-end PDR for one fragment, which is
used to derive the packet end-to-end PDR. Indeed, in RPL, DIO packets have the option of
containing the Directed Acyclic Graph (DAG) metric container. We employed the Expected
Transmission Count (ETX) Reliability Object metric presented in [18] with the recorded
option. The ETX is the number of transmissions a node expects to perform to successfully
transmit a fragment to its current parent. It is computed by counting both the MAC packets
sent and the MAC Acknowledgments (ACKs) received. It is also an estimation of the
inverse of the link PDR between the sending node and its parent.

ETX = TX + ACK = 1= PDRyj . )

Given the ETX for each hop, and knowing the number of maximum MAC retrans-
missions, a node is able to compute the end-to-end PDR for one fragment and for a whole
IPv6 packet. The details for these estimations are presented in Section 5.

In the example scenario depicted in Figure 13, a packet destined to the root node is
fragmented into four fragments by the leaf node. These four original fragments are used to
generate six encoded fragments encapsulated in the NCFEC packet format and sent to the
relay node. Upon reception of a fragment, the relay node routes it using the destination
address present in its header. Therefore, even though it does not receive the first encoded
fragment the relay node is able to forward all the fragments, which would not be possible
with the other schemes using VRBs or reassembly. When any four fragments are received,
the root node decodes the encoded fragments in order to obtain the four original fragments
and is then able to reassemble the packet.

v
20

N =
a. Generate packet 112
L b. Fragment packet 3/ 4
c. Generate encoded frags: |I|1|I|
d. Send encoded frags .
| a. Forward frags at reception

1l
v

a. Create reassembly buffer
| |b. Store next frags in buffer

 : c. Start reassembly timer
|| d. Decode 4 first frags:
(] @l

1] 2][3][4
e. Reassemble packet

Vi

v v v

Figure 13. Successful transmission of a fragmented packet with NCFec despite the loss of several
fragments.

4.3.8. Adaptive Number of Fragments Selection

NCFEC takes a target performance (minimal end-to-end IPv6 packet PDR) as a
network parameter and aims at achieving this target while using as few resources as
possible. In other words, its goal is to determine the lowest number of encoded fragments
sufficient to achieve its end-to-end PDR target. It performs this computation before sending
each IPv6 packet, so that if it detects a variation in the link qualities it will adapt accordingly
by changing the number of encoded fragments generated.

The source node has access to the end-to-end PDR for one fragment, therefore it can
compute the end-to-end PDR for a whole IPv6 packet for a different set of parameters.
Here, the parameter that changes is the number of encoded fragments. The nodes perform
a computation to test if the number of fragments considered is sufficient and increase
the number until the estimated reliability is above the target parameter. If the number
of fragments exceeds a threshold, the computation is stopped and the threshold value



Sensors 2021, 21,1711

14 of 20

is chosen, in order to limit the traffic overhead. Without this limitation the number of
fragments could reach extremely high numbers in low radio quality scenarios.

We included this PDR estimation in order to adapt the network configuration to the
conditions of its environment. More specifically, ensuring a high level of network reliability
when the link quality degrades, or limiting the unnecessary traffic increase when it is not
required. However, this estimation is based on the assumption that the time scale at which
the link quality changes is slower than the time scale of the estimation. The estimation is
recomputed each time the source node receives an ETX update of the nodes in the path
towards its destination. The frequency of these updates depends on the computation of
the ETX by each node and the delivery of DIO packets. In case this frequency is too low,
the estimation will not be in sync with the current link quality and will lead to a sub-optimal
choice of the number of fragments. A low PDR estimation leads to unnecessary traffic,
while a high estimation leads to a lower number of fragments than is required in order to
achieve the expected network reliability. Basing the number of encoded fragments on this
estimation is better suited to networks with relatively stable link quality.

5. Mathematical Analysis
5.1. Theoretical PDR

In order to compare the performance of the fragmentation methods detailed in the
previous section, we determined the theoretical end-to-end PDR for each algorithm. Note
that in this section we call PDR the probability of reception of fragments and packets as
it is the equivalent of the expected PDR that would be measured. End-to-end PDR here
means PDR for one application packet over several hops with the following parameters:

*  PDR; is the probability of reception of one fragment at link i

*  1;is the maximum number of total MAC layer transmissions at link i
*  nisthe number of original fragments

*  His the total number of hops

End-to-end fragment PDR

In order to compute the end-to-end PDR for a whole packet, it is necessary to compute
the end-to-end PDR for a single fragment. This intermediate step will be used in all
following computations. To obtain this end-to-end PDR for a single fragment, we first need
to compute the probability of reception of one fragment over one hop. The probability of
reception of one fragment over the link 7 after all possible MAC retransmissions can be
expressed as:

PDRy (i) =1— (1 - PDR;)". (10)

Then the probability of reception of one fragment end-to-end is:
H
PDRy/. = [ [ PDR;f/h- (11)
i=1

RFC 4944 FF and MFF schemes

For RFC 4944 FF, the issues described in Section 3.2 (i.e., buffer overflow and data-
gram tag confusion) are not taken into account for these computations. Therefore, the actual
expected PDR is lower, especially if the packet transmission frequency is high.

To allow reassembly of an IPv6 packet, all fragments have to be received by the
destination node. Hence, the probability of end-to-end reception of the packet is:

PDRMinim/leragment = PDR?/g' (12)
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XORFEC

To allow the reassembly of the packet, the first fragment and at least # — 1 fragments
among the n have to be received. Thus, the probability of end-to-end reception of the
packet is:

PDRXORFEC = PDRf/EP{R 2 1’1—1}, (13)

with R being the random variable counting the number of non-first fragments received.
It follows the binomial law:

P{R =k} = (’;) PDR (1~ PDR/.)" . (14)

NCFec

Let N, be the number of original fragments and N, the number of encoded fragments.

To allow the reassembly of the packet, any N, encoded fragments among the N, sent

fraggments have to be received. Therefore, the probability of end-to-end reception of the
packet is:

PDRNcCFec = P{Nr > No}/ (15)

with N; being the random variable counting the number of encoded fragments re-
ceived. It follows the binomial law:

P{N, =k} = (I\If) PDRY (1= PDRg )N . (16)

RFEC

Considering that the RFEC scheme can be applied with and without additional latency
before the transmission, we computed the packet end-to-end PDR for both. Under the
hypothesis that the link quality does not change over the duration of the transmissions of
the fragments, removing the delay and sending the repeated packets just after their original
copies improves the reliability because the copy of the first fragment can be used to create
a VRB that will allow to forward all next fragments.

¢ With delay, if the original first fragment is not received, the rest of the original frag-
ments cannot be used as there is no VRB.

PDRRPec—delay = PDRf/E(l -(1- PDRf/E)Z)n_l +(1- PDRf/e)PDR?/E. (17)
¢ Without delay:
PDRRFecfnodeluy = (ZPDRf/e - PDRjzf/e)(l - (1 - PDRf/e>2)n71- (18)

5.2. lllustration of Theoretical Performance

Figure 14a shows three-dimensional plots of the computed theoretical PDR for dif-
ferent packet sizes, link qualities and fragmentation methods, while Figure 14b shows
the number of fragments that should be generated by the source node for each packet.
Figure 14a shows that FEC mechanisms achieve higher reliability than the IETF standard
fragmentation. In particular, NCFEC allows achieving reliability above 0.99 as a target
PDR with link quality as low as 0.5 while with MFF and even the other FEC mechanisms
performance drops. However, this reliability improvement comes with an increase of net-
work traffic as more fragments need to be sent in order to ensure that a sufficient number
of fragents is received.
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Figure 14. Theoretical performance.

6. Performance Evaluation
6.1. Simulation Setup

We performed extensive simulations to evaluate the performance presented by the
use of MFF, XORFEC, RFEC and NCFEC with simulations performed in the IPv6 over
the TSCH mode of IEEE 802.15.4e (6 TISCH) simulator [4]. In this discrete-event simulator
written in Python, both the RFC 4944 FF and the MFF fragment forwarding standards are
implemented on top of the 6TISCH stack. The simulations were executed on the Grid’5000
platform [19]. We have performed simulations based on a linear topology of 10 nodes,
as depicted in Figure 15. Node 9 is the sole source of data traffic, while the root node is
the destination. Regarding the schedule at the MAC layer, we employed a random fixed
schedule, where at the beginning of each run, each node is given 20 random TSCH cells
to transmit to its parent if it has one, and 20 reception cells to receive packets from the
child node, if it has one. The probability of correct transmission of each link is the same,
and the number of maximum retransmissions at the MAC layer is 3, which makes four
total possible transmission opportunities. The simulation parameters used are detailed in
Table 1.

Figure 15. Linear topology.
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Table 1. Simulation parameters.

Parameter Settings

TSCH slotframe length 101 slots

Slot duration 10 ms

Link reliability Between 0.65 and 0.95
Maximum number of retries 3

Packet interval Uniform in [54 s, 66 s]
Number of fragments per packet Between 1 and 10
Number of simulation runs 100

Duration of each simulation run 1000 s

NCFEC target PDR 0.99

NCFEC maximum redundancy factor 3

To evaluate the performance of each algorithm, we have employed the following three
performance indicators:

e  End-to-end network reliability: we measure the end-to-end packet PDR.

¢  End-to-end latency: we measure the end-to-end delay for the received packets.

e  Traffic: we measure the number of fragments that are generated per original IPv6
packet. For NCFEC, this value can be changed throughout the simulation as the
estimated radio quality changes and it depends on the targeted PDR, i.e., 0.99.

The performance evaluation results with a link quality of 0.65 are presented in
Figure 16, and with a link quality of 0.85 in Figure 17.

6.2. Simulation Results

With all fragmentation methods when the packet size is smaller than the MAC MTU,
the source node does not proceed with fragmentation and, thus, it transmits the packet
directly. As expected, the FEC based mechanisms achieve better end-to-end network
reliability than the standard, and trade off traffic and latency. Indeed this reliability comes
at the cost of sending additional fragments forwarded throughout the network and these
fragments are sent—and thus received—after the original fragments. The increase in
reliability happens as soon as fragmentation is required. For instance, with a link quality
of 0.65, MFF packets of two fragments are received with a PDRof 77%, whereas with the
lightest FEC scheme, XORFEC, the reliability increases up to 87%. Moreover, the reliability
increase is even more significant when the packet sizes are larger, in terms of bytes. This
increase in reliability justifies the relevance of FEC in networks where the additional traffic
and delay is tolerable.

In these simulations, NCFEC was able to achieve its target PDR of 0.99 without
exceeding its maximal number of fragments allowed and therefore achieves its goal of
very high reliability. However, when the link quality is low, this reliability is achieved at
the cost of a large traffic increase. The FEC based mechanisms have a significant impact
when the transmission conditions are poor, i.e., low link quality and larger packets. In
these conditions, the effect of the sole additional fragment that XORFEC adds is notable,
it allows adding 14% of reliability with two original fragments and 32% with 10 original
fragments as shown in Figure 16c. Furthermore, the difference in reliability is smaller
between XORFEC, NCFEC and RFEC when the link quality is high, i.e., XORFEC being a
more simple and less costly mechanism is more adapted to this situation.

This simulation campaign demonstrates the cost of FEC fragmentation schemes,
as they show both a latency and a traffic increase. XORFEC will always add one fragment
to each packet compared to MFF, while NCFEC adds four to six fragments with a link
quality of 0.65 and always two fragments with a link quality of 0.85. That represents an
increase of traffic of 60% to 200% with a link quality of 0.65 and of 20% to 100% with a
link quality of 0.85 in order to achieve 99% end-to-end network reliability. The highest
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relative increase of traffic happens for packets of two original fragments and NCFEC is
more efficient operating with larger packets. Therefore, if the reliability requirements allow
it, a network could be designed to use XORFEC for small packets, and NCFEC for larger
packets in order to limit the traffic increase. RFEC always doubles the amount of traffic
but has the benefit of not performing encoding which makes it better suited for networks
where nodes have very limited computing power.
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(a) Fragments per packet. (b) End-to-end latency. (c) End-to-end PDR.
Figure 16. Simulation results for linear topology with link quality of 0.65.
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Figure 17. Simulation results for linear topology with link quality of 0.85.

7. Conclusions

In this article, we have demonstrated the relevance of FEC to improve the end-to-end
network reliability in multi-hop 6LoWPAN networks and presented three FEC mechanisms.
XORFEC adds a sole additional fragment obtained via a simple operation, RFEC repeats
all fragments identically and NCFEC applies network coding to make any fragment loss
recoverable. We carried out a performance analysis of these FEC methods compared
against the standard 6LoWPAN fragmentation. FEC allows better reliability than the
standard fragmentation at the cost of higher traffic load. However, the three FEC based
mechanisms come with different performance and costs which makes them more adapted
to worse network conditions. Indeed, NCFEC always achieves the highest reliability but
requires higher computing resources. Then, RFEC is a simple and reliable algorithm but
entails the highest increase in traffic and in latency. Finally, XORFEC comes with minimum
impact and could still be sufficient in high link quality scenarios, but is not performant
in lower-quality link situations. The simulations performed and the results obtained for
different link qualities can guide the selection of an appropriate FEC mechanism, given
the link qualities and the computational resources available in the target application.

For future work, we expect to evaluate the different fragmentation methods under
more variable conditions: with topologies where the link quality changes throughout the
simulation. Moreover, we would like to go deeper into the evaluation of these algorithms
by performing real world experiments, for instance using the FIT IoT-LAB platform [20].

8. Materials and Methods

The simulations of Section 6 have been performed using the 6TISCH simulator [4].
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